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Abstract

Time-frequency analysis, such as the Gabor transform, plays an important role in many signal processing

applications. The redundancy of such representations is often directly related to the computational load of any

algorithm operating in the transform domain. To reduce complexity, it may be desirable to increase the time and

frequency sampling intervals beyond the point where the transform is invertible, at the cost of an inevitable recovery

error. In this paper we initiate the study of recovery procedures for non-invertible Gabor representations. We propose

using fixed analysis and synthesis windows, chosen e.g., according to implementation constraints, and to process the

Gabor coefficients prior to synthesis in order to shape the reconstructed signal. We develop three methods to tackle

this problem. The first follows from the consistency requirement, namely that the recovered signal has the same Gabor

representation as the input signal. The second, is based on the minimization of a worst-case error criterion. Last, we

develop a recovery technique based on the assumption that the input signal lies in some subspace of L2. We show that

for each of the criteria, the manipulation of the transform coefficients amounts to a 2D twisted convolution operation,

which we show how to perform using a filter-bank. When the under-sampling factor is an integer, the processing

reduces to standard 2D convolution. We provide simulation results to demonstrate the advantages and weaknesses of

each of the algorithms.

I. INTRODUCTION

Time-frequency analysis has become a popular tool in signal processing. During the past three decades, it has been

successfully used for noise suppression [1], [2], blind source separation [3], echo cancelation [4], [5], [6], relative

transfer function identification [7], beamforming in reverberant environments [8], system identification in general

[9], [10], and more. In algorithms based on time-frequency transforms such as the Gabor representation, there

is often a tradeoff between performance and computational complexity, which can be controlled by adjusting the

redundancy of the transform. The latter is determined by the product of the sampling intervals in time and frequency,

which we denote by a and b respectively. Specifically, as a and b are increased, there are less coefficients per time

unit for any given frequency range, and therefore the amount of computation needed to process them decreases.
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An important example in which the performance-complexity tradeoff is controlled by the redundancy of the

transform, is that of system identification in the time-frequency domain [9], [10]. In this discipline, the operation

of the LTI system to be identified is often modeled by a sub-band filtering structure, in which each frequency bin

is convolved with a finite-impulse response (FIR) filter. The goal is to identify these sub-band filters given noisy

observations of the input and output of the system. It is clear that the smaller a and b are, the larger the amount

of data that has to be processed. On the other hand, as the redundancy is increased a model mismatch error is

introduced, since the sub-band filtering structure seizes to constitute a loyal model for the LTI system. This tradeoff

was thoroughly investigated in [9].

The signal processing literature on Gabor-domain algorithms heavily relies on the fundamental requirement that

any signal can be recovered from its coefficients in the transform domain. This requirement leads to the upper bound

ab ≤ 1. However, since the performance-complexity tradeoff is of continuous nature, it seems very restrictive to

limit the discussion to this regime. Specifically, by increasing the sampling intervals beyond this bound we may

further reduce the computational load of any algorithm operating in the Gabor domain. This benefit is obtained

at the expense of additional deterioration in performance. It is important to note that when ab > 1, an additional

source of performance degradation comes into play, which is the inherent reconstruction error. This is because in

this regime, we can only guarantee perfect reconstruction for signals lying in certain subspaces of L2, as we show

in this paper, but not for the entire space. Nevertheless, the resulting complexity reduction may be of greater value

in some applications.

In this paper, we explore reconstruction techniques for non-invertible Gabor transforms, namely in which ab ≥ 1.

The fact that in these cases perfect recovery cannot be guaranteed for every signal introduces extra flexibility

in choosing the analysis and synthesis windows of the transform. Specifically, we address the case where both

the analysis and synthesis windows of the transform are specified in advance. They can be chosen according to

implementation considerations, for example finite support windows, or certain multiple-pole windows [11] admitting

an efficient recursive implementation. Our goal, then, is to process the transform coefficients before reconstruction

such that the recovered signal possesses certain desired properties.

To tackle this problem, we borrow several approaches from the field of sampling theory, which has reached a

high degree of maturity in recent years [12], [13]. We begin by employing the consistency criterion in which the

recovered signal f̃(t) is constructed such that its Gabor transform coincides with that of the original signal f(t)

[14]. We then proceed to analyze a minimax strategy, where the reconstruction error ‖f̃ − f‖ is minimized for the

worst-case input f(t) [15]. Both these approaches are prior-free in the sense that they do not make use of any

special properties, or prior knowledge, that might be available on the signal.

A prevalent prior in the sampling literature, is that the signal to be recovered lies in a shift invariant (SI) subspace

of L2 (see e.g., [16], [17], [18], [19], [20], [21] and references therein). In fact, signals and images encountered in

many applications can be quite accurately modeled as belonging to some SI space [12], [13], such as the space of

bandlimited functions, the space of polynomial splines and more. Their widespread use can also be attributed to the

link that subspace priors have with stationary stochastic processes [22], [23], [24], [25], which have been shown to
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constitute realistic priors for the behavior of natural images [26]. In this paper, we generalize the SI-prior used in

the sampling community to a richer type of subspaces of L2, which we term shift-and-modulation (SMI) invariant

spaces (see e.g., also [27]). The third class of inverse Gabor techniques we consider, then, makes use of the SMI

prior. We show that such a prior can lead to perfect recovery in some cases, given that the synthesis window is

chosen according to the prior. For a fixed synthesis window, which is not matched to the prior, we show how to

achieve the minimal possible reconstruction error for signals in the prior-space.

In each of the three techniques we develop, the processing of the Gabor coefficients amounts to a 2D twisted-

convolution [28] with a certain kernel, which depends on the analysis and synthesis windows. We show that the

twisted-convolution operation can be interpreted in terms of a filter-bank. Furthermore, in the case of integer

under-sampling (i.e., when ab is an integer), the resulting process reduces to a standard 2D convolution in the

time-frequency domain. In these cases, we discuss situations in which the 2D convolution kernel is a separable

function of time and frequency. This allows a significant reduction in computation, namely by implementing the

2D convolution as two successive 1D filtering operations along the time and frequency directions.

The paper is organized as follows. Section II is devoted to notation that will be used throughout the paper. In

Section III we derive conditions on the analysis and synthesis windows such that they generate Riesz bases for their

span, which guarantees that the non-invertible Gabor representation is stable. In Section IV we review sampling

and reconstruction schemes in shift-invariant (SI) spaces in order later to be able to generalize them to the Gabor

transform using SMI spaces. Sections V, VI and VII constitute the central part of the paper, where in the first two

we develop prior-free recovery procedures for Gabor transforms in the integer and rational under-sampling regimes

respectively, and in the last we discuss SMI-prior recoveries. Finally, in Section VIII we demonstrate the methods

we develop for the case in which both the analysis and synthesis are performed with Gaussian windows, and we

devote Appendix A to describing how twisted convolution can be realized as a filter-bank and also how to obtain

the inverse of a sequence with respect to twisted convolution.

II. NOTATION AND DEFINITIONS

We will be working throughout the paper with the Hilbert space of complex square integrable functions, denoted

by L2(R), with inner product

〈f, g〉 =
∫ ∞

−∞
f(t)g(t)dt for all f, g ∈ L2(R), (1)

where g(t) denotes the complex conjugate of g(t). The norm, induced by this inner product, is given by

‖f‖2 = 〈f, f〉 . (2)

The Fourier transform of f ∈ L2(R) is defined as

Ff(ω) =
∫ ∞

−∞
f(t)e−2πitω dt. (3)

For convenience, we will sometimes write f̂ for Ff .
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In order to ensure stable recovery we focus on subspaces of L2(R) which are generated by frames or Riesz

bases. A collection of elements {sk}k∈Z is a frame for its closed linear span if there exist constants A > 0 and

B < ∞ such that

A‖f‖2 ≤
∑

k∈Z
|〈f, sk〉|2 ≤ B‖f‖2 for all f ∈ span{sk}, (4)

where span denotes the closed linear span of a set of vectors. The vectors {sk}k∈Z form a Riesz basis if there

exist A > 0 and B < ∞ such that for all sequences c ∈ `2

A‖c‖2`2 ≤
∥∥∥

∑

k∈Z
cksk

∥∥∥
2

≤ B‖c‖2`2 , (5)

where ‖c‖2`2 =
∑

k∈Z|ck|2 is the squared `2-norm of ck. A direct consequence of the lower inequality is that the

basis functions are linearly independent, which means that every function in span{sk} is uniquely specified by its

coefficients ck.

The fundamental building blocks of the Gabor representation are the so-called Gabor systems. To define a Gabor

system, let a > 0 and b > 0 be such that ab = q/p with p and q relatively prime, and let Tak and Mbl, for k, l ∈ Z,

be the translation and modulation operators given by

Takf(t) = f(t− ak) ; (6)

Mblf(t) = e2πibltf(t) . (7)

For s ∈ L2(R), the Gabor system G(s, a, b) is a collection {MblTaks(t) ; (k, l) ∈ Z2}. The composition

MblTakf(t) = e2πibltf(t− ak), (8)

which is a unitary operator, is called a time-frequency shift operator. Many technical details in time-frequency

analysis are linked to the commutation law of the translation and modulation operators, namely

MblTak = e2πiabklTakMbl. (9)

When p = 1, the time-frequency shift operators commute, i.e. Mbl Tak = Tak Mbl, because e2πiabkl = 1 for all

k, l ∈ Z. One consequence of the commutation rule, which we will use in our exposition, is the relation

〈f,Mbl−bnTak−amf〉 = e2πiab(l−n)m 〈MbnTamf,MblTakf〉 . (10)

When p = 1 this becomes 〈f, Mbl−bnTak−amf〉 = 〈MbnTamf, MblTakf〉.
For s ∈ L2(R), the collection G(s, a, b) is a Riesz basis for its closed linear span if there exist bounds A > 0

and B < ∞ such that

A‖c‖2`2 ≤
∥∥∥

∑

k,l∈Z
ck,lMblTaks

∥∥∥
2

≤ B‖c‖2`2 c ∈ `2, (11)

and is a frame when

A‖f‖2 ≤
∑

k,l∈Z
|〈f, MblTaks〉|2 ≤ B‖f‖2 for all f ∈ span{MblTaks}. (12)
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A necessary condition for G(s, a, b) to constitute a frame for L2(R) is that ab ≤ 1, [29]. Moreover, if G(s, a, b) is

a frame, then it is a Riesz basis for L2(R) if and only if ab = 1 [29]. In this paper we focus on the regime ab ≥ 1,

where G(s, a, b) does not necessarily span L2(R).

With a Gabor system G(s, a, b) we associate a synthesis operator (or reconstruction operator) S : `2(Z2) →
L2(R), defined as

Sc =
∑

k,l∈Z
ck,lMblTaks(t) for every c ∈ `2(Z2). (13)

The conjugate S∗ : L2(R) → `2(Z2) of S is called the analysis operator (or sampling operator), and is given by

S∗f = {〈f, MblTaks〉} for every f ∈ L2(R). (14)

III. STABLE GABOR REPRESENTATIONS

The Gabor representation of a signal f(t) comprises the set of coefficients {ck,l}k,l∈Z obtained by inner products

with the elements of some Gabor system G(s, a, b) [29]:

ck,l = 〈f, MblTaks〉 . (15)

This process can be represented as an analysis filter-bank, as shown in Fig. 1(a). Consequently, s(t) is referred to

as the analysis window of the transform. If G(s, a, b) constitutes a frame or Riesz basis for L2(R), then there exists

a function v(t) ∈ L2(R) such that any f(t) ∈ L2(R) can be reconstructed from the coefficients {ck,l}k,l∈Z using

the formula

f(t) =
∑

k,l∈Z
ck,lMblTakv(t). (16)

The Gabor system G(v, a, b) is the dual frame (Riesz basis) to G(s, a, b). Consequently, the synthesis window v(t)

is referred to as the dual of s(t). The recovery process can be represented as a synthesis filter-bank, as shown in

Fig. 1(b).

Generally, there is more than one dual window v(t). It can be shown that any function v(t) satisfying
〈
v,Ml/aTk/bs

〉
=

δkδl is a dual window. The canonical dual window is given by v = Q−1s, where Q is the frame operator associated

to s(t), which is defined by Qf =
∑

k,l∈Z 〈f, MblTaks〉MblTaks(t). There are several ways of finding an inverse

of Q, namely by employing the Janssen representation of Q, through the Zak transform method or iteratively using

one of several available efficient algorithms [29].

In this paper, we are interested in Gabor systems that do not necessarily span L2(R) but rather only a (Gabor)

subspace. A Gabor space is the set V of all signals that can be expressed in the form (16) with some norm-bounded

sequence ck,l. Since perfect recovery cannot be guaranteed for every signal in L2(R) in these situations, we have

the freedom of choosing the analysis and synthesis windows according to implementation constraints. However, in

order for the analysis and synthesis processes to be stable, we would still like to assure that the systems G(s, a, b)

and G(v, a, b) form frames or Riesz bases for their span. In this section, we give several equivalent characterizations

of windows v(t) and sampling intervals a and b such that the Gabor system G(v, a, b) forms a Riesz basis.
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(b) Synthesis filter bank

Fig. 1: Filter-bank representation of the Gabor transform (a) and of the inverse Gabor transform (b).

For tractability, we assume throughout the paper that a and b are positive constants such that ab = q/p, where p

and q are relatively prime. Moreover, we will consider only Gabor spaces whose generators come from the so-called

Feichtinger algebra S0, which is defined by

S0 =
{

f ∈ L2(R)
∣∣∣ ‖f‖S0 :=

∫
|〈f, MωTxψ〉| dx dω < ∞

}
, (17)

where ψ(t) is a Gaussian window. An important property of S0 is that if v(t) and s(t) are elements from S0 then

{〈v,MblTaks〉}k,l∈Z is an `1(Z2) sequence. Examples of functions in S0 are the Gaussian and B-splines of strictly

positive order. The Feichtinger algebra is an extremely useful space of “good” window functions in the sense of

time-frequency localization. Rigorous descriptions of S0 can be found in [29] and references therein.

The first characterization of Gabor Riesz bases we consider is stated directly in terms of their generator v(t). It

is a simple corollary of a result on Gabor frames for L2(R), see [29].

Proposition III.1. Let v(t) ∈ S0 and ab = q/p with p and q relatively prime. The collection G(v, a, b) is a Riesz

basis for its closed linear span if and only if there exist constants A > 0 and B < ∞ such that

AIp ≤ V (ω, x) ≤ BIp for almost all (ω, x) ∈ R2, (18)

where Ip is the p× p identity matrix and V (ω, x) is a p× p matrix-valued function with entries given by

V r,s(ω, x) =
1
b

∑

k,l∈Z
v

(
x− ar − qk + l

b

)
v

(
x− as− l

b

)
e−2πiakω, r, s = 0, . . . , p− 1. (19)

G(v, a, b) is an orthonormal basis if A = B = 1.
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Proof: By the Ron-Shen duality principle [30], G(v, a, b) is a Riesz basis (orthonormal basis) for its closed

linear span if and only if the system G(v, 1/b, 1/a) is a frame (Parseval frame) for L2(R). The latter is a frame for

L2(R) if and only if there exist constants A > 0 and B < ∞ such that the so-called frame operator Svv , defined

as Svvf(t) =
∑

k,l∈Z
〈
f, Ml/aTk/bv

〉
Ml/aTk/bv(t) satisfies

A

b
I ≤ Svv ≤ B

b
I, (20)

where I is the identity operator on L2(R). This means that Svv is bounded and invertible on L2(R). It was shown

in [29] that, since 1/(ab) = p/q, the operator Svv satisfies (20) if and only if (18) is satisfied, which completes the

proof.

Note that ω is a frequency variable associated with the discrete-time variable k, and similarly x is a time variable

associated with the discrete frequency index l. Another valuable observation is that V (ω, x) is a (1/a, 1/b)-periodic

function. Furthermore, it has been shown in [29] that V r,s(ω, x) is continuous. Therefore, the lower bound in (18)

can be replaced by the requirement that det(V (ω, x)) > 0 for all (ω, x) ∈ [0, 1/a)× [0, 1/b).

The next characterization we consider is in terms of the twisted convolution operator. Specifically, the Riesz basis

condition implies that G(v, a, b) is a Riesz basis for its closed linear span if and only if there exist constants A > 0

and B < ∞ such that

A 〈c, c〉 ≤ 〈rvv \ c, c〉 ≤ B 〈c, c〉 for all c ∈ `2(Z2), (21)

where the 2D cross-correlation sequence rvv[k, l] is defined as

rvv[k, l] = 〈v, MblTakv〉 . (22)

The operation \ represents the twisted convolution defined by

(d \ c)[k, l] =
∑

m,n∈Z
dm,nck−m,l−ne−2πiab(l−n)m. (23)

When p = 1, twisted convolution becomes standard convolution, because the exponential term in (23) equals 1 for

all m,n, l ∈ Z. Therefore, v(t) generates a Riesz basis if and only if the twisted convolution (standard convolution

when p = 1) operator with kernel rvv[k, l] is bounded and invertible. Invertibility of this operator translates to the

invertibility of the sequence rvv[k, l] with respect to \ (∗ respectively). Proposition III.1 states then, that this twisted

convolution operator is bounded and invertible if and only if the matrix-valued function V (ω, x) is bounded and

invertible for almost all ω and x. Explicitly finding the inverse of a sequence with respect to twisted convolution

is not a trivial task. We will address the problem in Section A.

Our last representation follows from restating Proposition III.1 using a different, but equivalent, matrix-valued

function that involves the cross-correlation sequence rvv[k, l] defined earlier. This new representation was first

introduced in [31] to characterize the invertibility of general Gabor frame operators.

Proposition III.2. [31] The matrix-valued function V (ω, x) of (19) coincides with the matrix-valued function
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Φ(ω, x) whose entries are given by

Φr,s(ω, x) =
∑

k,l∈Z
rvv[s− r + pk, l]e−2πiablre−2πi(blx+akω), (24)

and therefore G(v, a, b) is a Riesz basis for its closed linear span if and only if there exist constants A > 0 and

B < ∞ such that

AIp ≤ Φ(ω, x) ≤ BIp for almost all (ω, x) ∈ R2. (25)

In the integer under-sampling case p = 1, Φ(ω, x) of (24) reduces to the scalar function

Φ(ω, x) =
∑

k,l∈Z
rvv[k, l]e−2πi(blx+akω) = (Frvv)(ω, x), (26)

where Frvv is the 2D discrete-time Fourier transform (DTFT) of rvv[k, l]. Therefore, in this case condition (25)

reduces to

A ≤ (Frvv)(ω, x) ≤ B for almost all (ω, x) ∈ R2 (27)

for some A > 0 and B < ∞.

The Φ-characterization is of particular interest in our context as it can be used to investigate any twisted

convolution operation with a sequence h ∈ `1(Z2). Indeed, it was shown in [32] that such an operation is invertible

if and only if the matrix-valued function

Φh
r,s(ω, x) =

∑

k,l∈Z
hs−r+pk,le

−2πiabrle−2πi(blx+akω) (28)

is invertible for almost all ω and x. In fact, in some sense the function Φ(ω, x) is to twisted convolution what

the DTFT is for convolution. Specifically, we show in Appendix B that for two sequences ck,l and dk,l having

Φ-representations Φd(ω, x) and Φc(ω, x) respectively, the matrix-valued function Φ(c \ d)(ω, x) associated to the

twisted convolution c \ d, can be expressed as

Φ(c \ d)(ω, x) = Φd(ω, x)Φc(ω, x). (29)

We conclude this section with the observation that having a Riesz basis for a Gabor space V , it is possible to

construct many others using equivalent generating functions.

Proposition III.3. Let G(v, a, b) be a Riesz basis for its closed linear span V and ab = q/p with p and q relatively

prime. Let

w(t) =
∑

k,l∈Z
hk,lMblTakv(t), (30)

where {hk,l} is a sequence of weights. Then G(w, a, b) is an equivalent Riesz basis for V if and only if there exist

constants A > 0 and B < ∞ such that the (p× p)-matrix-valued function Φh(ω, x) of (28) satisfies

AIp ≤ Φh(ω, x)Φh(ω, x)H ≤ BIp for almost all (ω, x) ∈ R2, (31)

where Φh(ω, x)H denotes the conjugate transpose of Φh(ω, x).
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s(−t)
t = ak

f(t) ck

(a) Sampling

v(t) f̃(t)dk

∞∑

k=−∞

δ(t − ak)

(b) Reconstruction

Fig. 2: Sampling (a) and reconstruction (b) with given filters.

Proof: See Appendix C.

In the case of integer under-sampling (i.e., when p = 1), Φh(ω, x) becomes a scalar function, which is simply

the 2D DTFT of hk,l. In this setting, condition (31) becomes

A ≤ |Φh(ω, x)|2 ≤ B for almost all (ω, x) ∈ R2. (32)

IV. SAMPLING AND RECONSTRUCTION IN SHIFT-INVARIANT SPACES

To address the recovery of a function f(t) from its non-invertible Gabor transform, we will harness several

strategies which were initially developed in the context of sampling theory. Specifically, the last two decades have

witnessed a substantial amount of research devoted to the problem of recovering a signal f(t) from the equidistant

point-wise samples of its filtered version, using a predefined reconstruction filter [12], [13], [33]. As can be seen

in Fig. 2, the sampling stage in this setting, corresponds to the central branch in the analysis filter-bank of the

Gabor transform shown in Fig. 1(a). Thus, the time-frequency plane is sampled in this scenario only on the lattice

{(ak, 0)}k∈Z. Similarly, the reconstruction process of Fig. 2 can be identified with the central branch of the synthesis

filter-bank of Fig. 1(b).

The main goal in this setting is to produce a set of expansion coefficients {dk} by processing the samples {ck},

such that the recovered signal f̃(t) possesses certain desired properties. In this section we briefly review three

methods for tackling this problem, each based on a different design criterion. For more detailed explanations and

a review of other methods, we refer the reader to [14], [34], [15], [13], [33]. In the following sections, we will

extend these results to the Gabor scenario.

For simplicity, we assume here that a = 1. The reconstruction process of Fig. 2 can be written in operator

notation as f̃ = V d, where V : `2 → L2(R) is the synthesis operator associated with the functions {v(t− k)}k∈Z,

defined as

V d =
∑

k∈Z
dkv(t− k) =

∑

k∈Z
dkTkv(t) for every d ∈ `2(Z). (33)

Similarly, since ck = 〈f(t), s(t− k)〉, the sequence of samples {ck} are obtained by applying the synthesis operator

S∗, which is the conjugate of the analysis operator S associated with the functions {s(t− k)}k∈Z:

S∗f = {〈f(t), s(t− k)〉} = {〈f, Tks〉} for every f ∈ L2(R). (34)
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We will refer to S = span{v(t−k)} and V = span{v(t−k)} as the sampling and reconstruction spaces respectively.

Spaces of this type are called shift-invariant (SI).

As in the Gabor transform, we will focus on cases where the sets of functions {s(t−n)} and {v(t−n)} constitute

Riesz bases for their span. Then, both the sampling and reconstruction are stable procedures. It is well known [35]

that the functions {v(t − n)} form a Riesz basis for their span V if and only if there exist constants A > 0 and

B < ∞ such that

A ≤ φV V (ω) ≤ B for almost all ω ∈ R, (35)

where

φV V (ω) =
1
2π

∑

k∈Z
|v̂(ω − k)|2 (36)

is the DTFT of the auto-correlation sequence

rvv[n] = 〈v(t), v(t− n)〉 =
(
v(t) ∗ v(−t)

)
(n), (37)

and v̂(ω) is the Fourier transform of v(t). In other words, {v(t− n)} is a Riesz basis if and only if the sequence

rvv[n] is bounded and invertible in the convolution algebra `1(Z, ∗). In particular, the functions {v(t−n)} form an

orthonormal basis if and only if A = B = 1. Notice the analogy with condition (25) (and (27) in the case p = 1),

which was developed for Gabor systems.

A. Consistent reconstruction

Perhaps the most intuitive demand from the recovered signal f̃(t) is that it would produce the same sequence of

samples {ck} were it re-injected to the sampling device of figure 2(a), namely
〈
f̃(t), s(t− k)

〉
= ck = 〈f(t), s(t− k)〉 (38)

for all k ∈ Z. This consistency requirement was first introduced in [14] in the context of sampling in SI spaces

and then generalized to arbitrary spaces in [36], [34]. There, it was shown that consistent reconstruction is possible

under the direct-sum condition S⊥ ⊕ V = L2(R), where ⊕ denotes a sum of two subspaces that intersect only at

the zero vector. This means that S⊥ and V are disjoint and together span the space L2(R).

In the SI setting, the direct-sum condition translates into the simple requirement that [20]

|φSV (ω)| > A, for almost all ω ∈ R (39)

for some positive constant A, where

φSV (ω) =
1
2π

∑

k∈Z
ŝ(ω − k)v̂(ω − k) (40)

is the DTFT of the cross-correlation sequence rsv[n] = 〈s(t), v(t− n)〉. Under this condition, reconstruction can

be obtained by convolving the sample sequence {ck} with the filter hcon, whose DTFT is given by [14], [37], [38]

Hcon(ω) =
1

φSV (ω)
, (41)
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to obtain the sequence of expansion coefficients {dk}1.

If S and V are two arbitrary subspaces of L2(R) satisfying S⊥⊕V = L2(R) (namely not necessarily SI spaces),

spanned by the functions {sn(t)} and {vn(t)} respectively, then the sequence of expansion coefficients d can be

obtained by applying the operator

Hcon = (S∗V )−1 (42)

on the sequence of samples c, where S and V are the synthesis operators associated with {sn(t)} and {vn(t)}
respectively. The direct-sum requirement guarantees that S∗V : `2 → `2 is continuously invertible. In the next

sections, we will use this latter characterization to develop a consistent reconstruction procedure for non-invertible

Gabor transforms.

B. Minimax regret reconstruction

A drawback of the consistency approach is that the fact that f(t) and f̃(t) yield the same samples does not

necessarily imply that f̃(t) is close to f(t). Indeed, for a signal f(t) not in V , the norm of the resulting reconstruction

error f̃(t)− f(t) can be arbitrarily large, if S is nearly orthogonal to V .

To directly control the reconstruction error, it is important to notice that f̃(t) is restricted to lie in V by

construction. Therefore, the best possible recovery is the orthogonal projection of f(t) onto V , namely f̃ = PVf ,

a fact that follows from the projection theorem. This solution cannot be generated in general, because we do not

know f(t) but rather only the sequence of samples {ck} it produced. The difference between the squared-norm

error of any recovery f̃(t) and the smallest possible error, which is ‖f − PVf‖2 = ‖PV⊥f‖2, is called the regret

[39]. The regret depends in general on f(t) and therefore generally cannot be minimized uniformly for all f(t).

Instead, the authors in [15] proposed minimizing the worst-case regret over all bounded-norm signals f(t) that are

consistent with the given samples, which results in the problem

min
f̃∈V

max
f∈B

‖f̃ − f‖2 − ‖PV⊥f‖2, (43)

where B = {f : S∗f = c, ‖f‖ ≤ L} is the set of feasible signals.

It was shown in [15] that the minimax-regret reconstruction can be obtained by filtering the samples ck with the

filter hmx whose DTFT is given by

Hmx(ω) =
φV S(ω)

φSS(ω)φV V (ω)
, (44)

where φV S(ω), φSS(ω) and φV V (ω) are as in (40) with the corresponding substitution of the generators v(t) and

s(t). Note that the solution is independent of the bound L appearing in the definition of B.

1When assigning Hcon(ω) in (41) we set it to zero whenever φSV (ω) is zero. It can happen that φSV (ω) is zero for some ω, since the

condition (39) holds for almost all ω, and not all. Such assignment rule will also hold for other H throughout the presentation, whenever they

are defined by φ that is almost everywhere positive.
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If the sampling and reconstruction functions form Riesz bases for arbitrary spaces S and V (not necessarily SI),

then the sequence of expansion coefficients d can be obtained by applying the operator

Hmx = (V ∗V )−1S∗V (S∗S)−1 (45)

on the sequence of samples c. The operators V ∗V and S∗S are guaranteed to be continuously invertible due to

the Riesz basis assumption. This more general characterization will be used in the next sections to develop a

minimax-regret recovery method for non-invertible Gabor transforms.

C. Subspace-prior reconstruction

The consistent reconstruction approach leads to perfect recovery for input signals that lie in the reconstruction

space V [14]. The minimax-regret method, on the other hand, leads to the best possible approximation f̃ = PVf

for signals f(t) lying in the sampling space S [15]. Therefore, the two methods can be thought of as emerging

from the prior that f(t) lies in a certain subspace W of L2(R), where W = V in the consistent strategy and

W = S in the minimax-regret approach. In practice, though, it is often desirable to choose the sampling and

reconstruction spaces according to implementation constraints and not to reflect our prior knowledge on the typical

signals entering our sampling device. Thus, commonly neither constitutes a subspace prior W , which is good in

the sense that ‖f − PWf‖ is small for most signals in our application.

A generalization of these two methods results by assuming that f ∈ W where W = span{w(t − k)} for a

generator w(t), which may be different than s(t) and v(t). If the subspace W satisfies the direct-sum condition

S⊥ ⊕W = L2(R), then the solution f̃ = PVf can be generated by filtering the sample sequence ck with [15]

Hsub(ω) =
φV W (ω)

φSW (ω)φV V (ω)
, (46)

where φV W (ω), φSW (ω) and φV V (ω) are as in (40) with the appropriate substitution of v(t), s(t), and w(t).

For arbitrary sampling, reconstruction and prior subspaces S , V and W (i.e., not necessarily SI), the coefficient

sequence d can be obtained by applying the transformation

Hsub = (V ∗V )−1V ∗W (S∗W )−1 (47)

on the sample sequence c, where W is the synthesis operator associated to the prior functions {wn(t)}. This general

formulation will be used in the next sections to derive a subspace-prior recovery technique for non-invertible Gabor

transforms.

V. INTEGER UNDER-SAMPLING

In this section we address the problem of recovering a signal f(t) from its non-invertible Gabor transform

coefficients {ck,l}, given by (15), using a pre-specified synthesis window v(t). We focus on prior-free approaches

that do not take into account any knowledge on the signal f(t). Specifically, here we employ the consistency and

minimax-regret methods discussed in the previous section to the Gabor scenario. To emphasize the commonalities

with respect to the SI sampling case, and to retain simplicity, we begin the discussion with the case of integer

under-sampling (p = 1). In the next section we generalize the results to arbitrary p.
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A. Consistent synthesis

In the Gabor transform, the sampling (analysis) space S is spanned by the Gabor system G(s, a, b) and the

reconstruction (synthesis) space V is the span of G(v, a, b). As discussed in Section IV-A, consistent reconstruction

is possible if S⊥⊕A = L2(R). In the case of SI spaces, this direct-sum condition translates to the requirement that

the cross-correlation sequence {〈s(t), v(t− n)〉}n∈Z has an inverse in the convolution algebra `1(Z2, ∗). A similar

condition is true in the setting of Gabor spaces.

The next proposition characterizes the class of pairs of analysis and synthesis windows satisfying the direct-sum

requirement in the integer under-sampling regime.

Proposition V.1. Assume that G(s, a, b) and G(v, a, b) are Riesz sequences that span the spaces S and V respectively,

and ab = q ∈ N. Then S⊥ ⊕ V = L2(R) if and only if the function Φsv(ω, x), defined as

Φsv(ω, x) =
∑

k,l∈Z
rsv[k, l]e−2πi(blx+akω) = (Frsv)(ω, x), (48)

is nonzero for almost all (ω, x) ∈ [0, 1/a)× [0, 1/b). Here,

rsv[k, l] = 〈v,MbnTams〉 (49)

is the Gabor transform of the synthesis window v(t).

Proof: It was shown in [34], for general Hilbert spaces, that if S and V are spanned by Riesz bases G(s, a, b)

and G(v, a, b) respectively, then S⊥⊕V = L2(R) if and only if the operator S∗V is continuously invertible on `2.

Here, S∗ and V are the analysis and synthesis operators associated with G(s, a, b) and G(v, a, b), respectively. By

definition, for any sequence c ∈ `2(Z2)

(S∗V c)[k, l] =

〈 ∑

m,n∈Z
cm,nMbnTamv, MblTaks

〉

=
∑

m,n∈Z
cm,n 〈v, Mbl−bnTak−ams〉

=
∑

m,n∈Z
ck−m,l−n 〈v, MbnTams〉

= (rsv ∗ c)[k, l]. (50)

Hence, the operator S∗V is simply a 2D convolution operator with kernel rsv[k, l] = 〈v, MbnTams〉 and S∗V is

invertible if and only if rsv[k, l] is invertible in the convolution algebra `1(Z2, ∗). As shown in Section III, this

sequence has a representation Φsv(ω, x), defined by (28), which is its 2D DTFT in the case p = 1. A sequence is

invertible with respect to convolution if and only if its DTFT has no zeros. Therefore, rsv[k, l] is invertible if and

only if Φsv(ω, x) 6= 0 implying that S⊥ ⊕ V = L2(R) if and only if Φsv(ω, x) 6= 0.

Assuming that indeed S⊥⊕A = L2(R), we know from Section IV-A that to obtain a consistent recovery, we must

apply the operator Hcon = (S∗V )−1 on the coefficients {ck,l} prior to synthesis. In the proof of Proposition V.1, we
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showed that S∗V is a 2D convolution operator with the kernel rsv[k, l] of (49). Therefore, (S∗V )−1 corresponds

to filtering the Gabor coefficients with the filter hcon whose 2D DTFT is given by

Hcon(ω, x) =
1

Φsv(ω, x)
. (51)

This filter is well defined by Proposition V.1 since we assumed that the spaces generated by s(t) and v(t) satisfy

the direct sum condition.

Observe that during the operations of analysis and pre-processing of the Gabor coefficients ck,l, we in fact

compute a dual Riesz basis for the reconstruction space V . In case the synthesis and analysis spaces are the same,

namely S = V , we compute the orthogonal dual basis. However, when the spaces are different we compute a

general (oblique) dual Riesz basis for V .

Proposition V.2. Let G(s, a, b) and G(v, a, b) be Riesz sequences that span the spaces S and V respectively, where

ab is an integer, and assume that S⊥ ⊕ V = L2(R). Then a dual Riesz basis for the space V is G(g, a, b) with

g(t) =
∑

m,n∈Z
hcon[m,n]T−amM−bns(t) ∈ S. (52)

where hcon[m,n] is the inverse of rsv[k, l] with respect to ∗.

Proof: Any signal in V can be recovered from the corrected coefficients dk,l = (hcon ∗ c)[k, l] via f(t) =
∑

k,l∈Z dk,lMblTakv(t), where ck,l is as in (15). Therefore, we may view this sequence as the coefficients in a basis

expansion. To obtain the corresponding basis we note that by combining the effects of the analysis window s(t) and

the correction filter Hcon of (51), the expansion coefficients can be equivalently expressed as dk,l = 〈f, Mbl Tak g〉
where

g(t) =
∑

m,n∈Z
hcon[m,n]T−amM−bns(t) ∈ S. (53)

Indeed,

〈f,MblTak, g〉 =

〈
f, MblTak


 ∑

m,n∈Z
hcon[m,n]T−amM−bns




〉

=

〈
f,

∑

m,n∈Z
hcon[m,n]MblTakT−amM−bns

〉

=

〈
f,

∑

m,n∈Z
hcon[m,n]Mbl−bnTak−ams

〉

=
∑

m,n∈Z
hcon[m, n] 〈f, Mbl−bnTak−ams〉

=
∑

m,n∈Z
hcon[m, n]ck−m,l−n

= (hcon ∗ c)[k, l] = dk,l. (54)
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Therefore, any f ∈ V can be written as

f(t) =
∑

k,l∈Z
〈f, MblTakg〉MblTakv(t). (55)

It can be easily verified, by Proposition III.3, that G(g, a, b) is an equivalent Riesz basis for S . Furthermore, it can

be checked that

〈MblTakv,MbnTamg〉 = δm−kδn−l, (56)

implying that G(g, a, b) is a dual Riesz basis to G(v, a, b).

B. Minimax regret synthesis

We now wish to develop a minimax-regret recovery method, similar to the SI sampling case of Section IV-B.

Specifically, we would like to produce a recovery f̃(t) for which the worst-case regret ‖f̃ − f‖2 − ‖PV⊥f‖2

over all bounded-norm signals f(t) consistent with the given Gabor coefficients {ck,l}, is minimal. As men-

tioned in Section IV-B, the minimax-regret reconstruction can be obtained by applying the operator Hmx =

(V ∗V )−1S∗V (S∗S)−1 on the Gabor coefficients ck,l prior to synthesis.

From Section V-A we know that when p = 1, the operators V ∗V , S∗V and S∗S correspond to 2D convolutions

with the kernels rvv[k, l], rsv[k, l] and rss[k, l] respectively, which are given by (49) with the appropriate substitution

of s(t) and v(t). Therefore, the minimax-regret recovery is obtained by filtering the Gabor coefficients ck,l with

the 2D filter hmx, whose DTFT is given by

Hmx(ω, x) =
Φsv(ω, x)

Φss(ω, x)Φvv(ω, x)
. (57)

Here, Φsv(ω, x), Φss(ω, x), and Φvv(ω, x) are the 2D DTFTs of rsv[k, l], rss[k, l] and rvv[k, l] respectively. This

filter is well defined by Proposition III.2 since we assumed that s(t) and v(t) generate Riesz bases for their span.

C. Efficient implementation

As we have seen, the two reconstruction approaches discussed above are based on 2D filtering of the Gabor

transform ck,l prior to synthesis. A significant reduction in computation can be achieved in cases where the 2D

correction filter is a separable function of k and l, namely when hk,l = ukvl for two sequences uk and vk. In

these situations, one can first apply the 1D filter uk on each of the rows of ck,l (i.e., along the time direction),

and then apply the 1D filter vl on each of the columns (along the frequency direction). If, for example, hk,l is a

separable finite-impulse-response (FIR) filter with N ×N nonzero coefficients, then direct application of it requires

N2 multiplications per output coefficient, whereas only 2N multiplications suffice when implementing it using two

1D filtering operations.

Separable correction filters emerge when the cross-correlation sequences involved are separable functions of k and

l. One such example is the case where s(t) and v(t) are Gaussian windows with variances σ2
s and σ2

v respectively

and abσ2
s/(σ2

s + σ2
v) is an integer (recall that we also require that ab be an integer). Then rsv[k, l], rss[k, l], and

rvv[k, l] are all separable functions of k and l, so that both the consistent and the minimax-regret filters are separable.

More details on non-invertible Gaussian-window Gabor transforms are given in Section VIII.
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VI. RATIONAL UNDER-SAMPLING

We now generalize the results of the previous section to the case where the product ab is not an integer, but

rather some rational number q/p with p and q relatively prime. The main difficulty here is the fact that the time-

frequency shift operators do not commute when p 6= 1. Therefore, instead of standard convolution we will be faced

with a twisted convolution, which is a noncommutative operation. This makes the techniques from Fourier theory

inapplicable in a straightforward manner.

A. Consistent synthesis

Obtaining a reconstruction f̃(t), which is consistent with the Gabor representation ck,l of f(t), is possible if

S⊥ ⊕ V = L2(R). As we have seen in Proposition V.1, in the integer under-sampling case p = 1 the direct sum

condition translates to the requirement that the cross-correlation sequence rsv[k, l] be invertible in the convolution

algebra `1(Z2, ∗). In the setting of rational under-sampling, we have the following.

Proposition VI.1. Assume that G(s, a, b) and G(v, a, b) are Riesz sequences that span the spaces S and V
respectively, and ab = q/p with p and q relatively prime. Then S⊥ ⊕ V = L2(R) if and only if the (p × p)-

matrix-valued function Φsv(ω, x) with entries defined as

Φsv
m,n(ω, x) =

∑

k,l∈Z
rsv[n−m + pk, l]e−2πiablme−2πi(blx+akω) m, n = 0, . . . , p− 1. (58)

is invertible for almost all (ω, x) ∈ [0, 1/a)× [0, 1/b), which is equivalent to det(Φ(ω, x)) 6= 0 for all (ω, x).

Proof: The proof is similar to the proof of Proposition V.1. Since s(t) and v(t) generate Riesz bases for S and

V respectively, the condition S⊥⊕V = L2(R) is satisfied if and only if the operator S∗V is continuously invertible

on `2, where S∗ and V are the analysis and synthesis operators associated to G(s, a, b) and G(v, a, b) respectively.

By definition, for any sequence c ∈ `2(Z2), we have

(S∗V c)[k, l] =

〈 ∑

m,n∈Z
cm,nMbnTamv, MblTaks

〉

=
∑

m,n∈Z
cm,n 〈v,Mbl−bnTak−ams〉 e−2πi(bl−bn)am

=
∑

m,n∈Z
ck−m,l−n 〈v,MbnTams〉 e−2πiab(k−m)n

= (rsv \ c)[k, l].

Therefore, S∗V is a twisted convolution operator with kernel

rsv[k, l] = 〈v, MblTaks〉 , (59)

and S∗V is invertible if and only if rsv[k, l] is invertible in the twisted convolution algebra `1(Z2, \). As shown

in Section III, this sequence has a representation Φsv(ω, x) defined by (28) and so is invertible if and only if this

matrix is invertible. Therefore, S⊥ ⊕ V = L2(R) if and only if Φsv(ω, x) is invertible almost everywhere.
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Note that for p = 1, the above proposition reduces to Proposition V.1. When p 6= 1, we conclude from

Proposition VI.1 that the direct sum condition translates to the requirement that rsv[k, l] be invertible in the twisted

convolution algebra, which can be checked by analyzing its Φ-representation. An alternative method for checking

whether rsv[k, l] is invertible with respect to \, is presented in Section A. It involves only the sequence rsv[k, l]

without introducing the continuous variables ω and x, making it more attractive in some cases.

As in Section V-A, to obtain a consistent recovery f̃(t), we have to apply the operator Hcon = (S∗V )−1 to the

Gabor coefficients ck,l. However, as opposed to the case p = 1, where Hcon was a standard convolution operator,

here it corresponds to a twisted convolution operation. This is due to the fact that time-frequency shift operators

do not commute for p 6= 1. Specifically, in the proof of Proposition VI.1, it was shown that S∗V corresponds

to twisted convolution with rsv[k, l]. Therefore, (S∗V )−1 corresponds to twisted convolution with the sequence

r−1
sv [k, l], which is the inverse of rsv[k, l] in the twisted convolution algebra `1(Z2, \). This inverse exists, since we

assumed that the spaces generated by s(t) and v(t) satisfy the direct-sum condition, and it will be shown in the

next section how to construct it.

One can write the twisted convolution relation between the Gabor transform ck,l and the expansion coefficients

dk,l in terms of their Φ-representations. Specifically, since d = (S∗V )−1c, we have ck,l = (rsv\d)[k, l] and therefore

Φc(ω, x) = Φd(ω, x)Φsv(ω, x), (60)

where Φc(ω, x), Φd(ω, x) and Φsv(ω, x) are the p× p-matrix-valued Φ-representations of the sequences ck,l, dk,l

and rsv[k, l] respectively, defined in (24). Therefore, to obtain the sequence dk,l from the Gabor coefficients ck,l,

we apply a twisted convolution filter, whose Φ function is

Hcon(ω, x) = Φsv(ω, x)−1. (61)

The twisted convolution operation can be modeled as a filter bank which is specified by the convolutional inverse

of rsv[k, l], as we show in Section A.

During the operations of sampling and pre-processing of the samples ck,l we in fact compute a dual Riesz basis

for the synthesis space V . If the synthesis and analysis spaces are the same, namely S = V , we compute the

orthogonal dual basis. However, when the spaces are different we compute a general (oblique) dual Riesz basis for

V .

Proposition VI.2. Let G(s, a, b) and G(v, a, b) be Riesz sequences that span the spaces S and V respectively, and

ab = q/p with p and q relatively prime. Assume that S⊥ ⊕ V = L2(R). Then a dual Riesz basis for the space V
is G(g, a, b) with

g(t) =
∑

m,n∈Z
hcon[m,n]T−amM−bns(t) ∈ S , (62)

where hcon[m,n] is the inverse of rsv[k, l] with respect to \.

Proof: Any signal in V , that has been sampled with the Riesz sequence G(s, a, b) resulting in the coefficients

ck,l given by (15), can be recovered from the corrected samples dk,l = (hcon \ c)[k, l], where hcon[k, l] = r−1
sv [k, l]
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is the inverse of rsv[k, l] with respect to \, via f(t) =
∑

m,n∈Z dk,lMblTakv(t). This sequence may be viewed as

the coefficients in a basis expansion. To obtain the corresponding basis we note that by combining the effects of

the analysis window s(t) and the correction twisted-convolution filter hcon[k, l], the expansion coefficients can be

equivalently expressed as dk,l = 〈f,MblTakg〉 where

g(t) =
∑

m,n∈Z
hcon[m,n]T−amM−bns(t) ∈ S. (63)

Indeed,

〈f, MblTakg〉 =

〈
f, MblTak


 ∑

m,n∈Z
hcon[m,n]T−amM−bns




〉

=

〈
f,

∑

m,n∈Z
hcon[m,n]MblTakT−amM−bns

〉

=

〈
f,

∑

m,n∈Z
hcon[m,n]e2πiab(k−m)nMbl−bnTak−ams

〉
, (64)

and using the linearity of the inner product, we have

〈f, MblTakg〉 =
∑

m,n∈Z
hcon[m, n]e−2πiab(k−m)n 〈f, Mbl−bnTak−ams〉

=
∑

m,n∈Z
hcon[m, n]e−2πiab(k−m)nck−m,l−n

= (hcon \ c)[k, l] = dk,l. (65)

Therefore, any f ∈ V can be written as

f(t) =
∑

k,l∈Z
〈f, MblTakg〉MblTakv(t). (66)

It can be easily verified, by Proposition III.3, that G(g, a, b) is an equivalent Riesz basis for S . Now, for it to be

a dual Riesz basis to G(v, a, b) we need to check that

〈MblTakv,MbnTamg〉 = δm−kδn−l. (67)

Indeed,

〈MblTakv,MbnTamg〉 = e2πiab(l−n)k
〈
v, Mb(n−l)Ta(m−k)g

〉

= e2πiab(l−n)k
∑

x,y∈Z
hcon[x, y]

〈
v,Mb(n−l−y)Ta(m−k−x)s

〉
e−2πiab(m−k−x)y

= e2πiab(l−n)k
∑

x,y∈Z
hcon[x, y]rsv[m− k − x, n− l − y]e−2πiab(m−k−x)y

= e2πiab(l−n)k(hcon \ rsv)[m− k, n− l] = δm−kδn−l,

where we used the fact that MbnTamg(t) =
∑

x,y∈Z hcon[x, y]e2πiab(m−x)yMb(n−y)Ta(m−x)s(t) and that hcon is

the inverse of rsv with respect to \.
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B. Minimax regret synthesis

Next, we develop a minimax-regret reconstruction method for non-invertible Gabor transforms with rational

under-sampling. Our goal here, as in Section V-B, is to minimize the worst case regret maxf∈B{‖f̃ − f‖2 −
‖PV⊥f‖2}, where B is the set of bounded-norm signals whose Gabor coefficients coincide with ck,l. As dis-

cussed in Section IV-B, the recovery f̃ attaining the minimum can be obtained by applying the operator Hmx =

(V ∗V )−1S∗V (S∗S)−1 on the Gabor coefficients ck,l prior to synthesis. However, as opposed to the integer

under-sampling case discussed in Section V-B, where V ∗V , S∗V , and S∗S were convolution operators, here

they correspond to twisted convolutions with rvv[k, l], rsv[k, l] and rss[k, l] respectively. Therefore, to obtain the

sequence dk,l, we apply a twisted convolution filter on the Gabor coefficients ck,l, whose impulse response is

hmx[k, l] =
(
r−1
vv \ rsv \ r−1

ss

)
[k, l]. (68)

Here, r−1
vv [k, l] and r−1

ss [k, l] are the inverses of rvv[k, l] and rss[k, l] with respect to \. Consequently, the Φ function

of the minimax-regret filter is given by

Hmx(ω, x) = Φss(ω, x)−1Φsv(ω, x)Φvv(ω, x)−1, (69)

where Φss(ω, x), Φsv(ω, x), and Φvv(ω, x) are the Φ-representations of rss[k, l], rsv[k, l] and rvv[k, l] respectively.

C. Extension to symplectic lattices

Throughout the current and previous sections, we considered a special type of sampling points in the time-

frequency plane, called separable lattices Λ = aZ × bZ. However, with the help of metaplectic operators, these

results carry over to the more general class of lattices, called symplectic lattices. A lattice Λs ⊆ R2 is called

symplectic, if one can write Λs = DΛ where Λ is a separable lattice and D ∈ SL2(R), meaning it is an invertible

2 × 2 matrix with determinant 1 [29]. To every D ∈ SL2(R) there corresponds a unitary operator µ(D), called

metaplectic operator, acting on L2(R). One can show that a Gabor system on a symplectic lattice is unitarily

equivalent to a Gabor system on a separable lattice under µ(D), that is G(g, Λs) is a frame/Riesz basis if and only

if G(µ(D)−1g, Λ) is a frame/Riesz basis, and

G(g, Λs) = µ(D)G(µ(D)−1g, Λ) . (70)

Therefore, instead of considering a representation of f(t) in span{gλ}λ∈Λs one can look at the representation of

f(t) in span{µ(D)−1gλ}λ∈Λ. For more details see [29].

VII. SUBSPACE-PRIOR SYNTHESIS

In the previous two sections we attempted to recover a signal from its non-invertible Gabor representations

without using any prior knowledge on the signal. When such knowledge is available, it can significantly reduce the

reconstruction error and in some cases even lead to perfect recovery. A common prior in sampling theory is that

the signal to be recovered lies in some SI subspace of L2, namely that it can be written as

f(t) =
∑

k∈Z
dkTakw(t) =

∑

k∈Z
dkw(t− ak) (71)
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with some norm-bounded sequence {dk} and some window w(t). This model can quite accurately describe many

types of natural signals, which exhibit a certain degree of smoothness. For example, the class of bandlimited signals

is the SI space generated by the sinc window. The class of splines of degree N also follows this description with

w(t) being the B-spline function of degree N .

Here, we would like to generalize the SI-prior setting to Gabor spaces, which we also term in this context

shift-and-modulation-invariant (SMI) spaces. We will use these spaces as priors on our input signals, in order to

recover them from their non-invertible Gabor transform. An SMI subspace W ⊆ L2 is the set of signals that can

be represented in the form

f(t) =
∑

k,l∈Z
hk,lMblTakw(t), (72)

for some sequence hk,l in `2(Z2), where w(t) is an arbitrary window in S0. In other words, W is the closed linear

span of the Gabor system G(w, a, b), which in [27] is called the smallest SMI space generated by G(w, a, b). Our

choice of terminology follows from the fact that if f(t) lies in W , then the function MblTakf(t) is also an element

of W for every fixed k, l ∈ Z. Indeed, let f(t) =
∑

m,n∈Z hm,nMbnTamw(t) for some sequence hm,n, then

MblTakf(t) = MblTak


 ∑

m,n∈Z
hm,nMbnTamw(t)




=
∑

m,n∈Z
hm,nMblTakMbnTamw(t)

=
∑

m,n∈Z
hm,ne−2πiabknMb(n+l)Ta(m+k)w(t)

=
∑

m,n∈Z
hm−k,n−le

−2πiab(n−l)kMbnTamw(t)

=
∑

m,n∈Z
dm,nMbnTamw(t) ∈ W, (73)

where dm,n = hm−k,n−le
−2πiab(n−l)k. The same holds for TakMblf(t).

Our setting is thus as follows. We assume that f(t) lies in some SMI space W , generated by G(w, a, b), which

we term the prior space, and that we are given the Gabor coefficients ck,l of f(t), which were computed with the

analysis window s(t). Our goal is to produce a recovery f̃(t) using the synthesis window v(t). Clearly, if W does

not coincide with our synthesis space V , then the reconstruction f̃(t) cannot equal f(t). The interesting question

is whether we can obtain the best possible recovery, which is the orthogonal projection f̃ = PVf , from the Gabor

coefficients ck,l of f(t). As above, we discuss the integer and rational under-sampling cases separately.

A. Integer under-sampling

As discussed in Section IV-C, if the analysis and prior spaces satisfy S⊥ ⊕ W = L2(R), then the recovery

f̃ = PVf can be generated by applying the operator Hsub = (V ∗V )−1V ∗W (S∗W )−1 on the Gabor coefficients

ck,l prior to synthesis. From Proposition V.1 we know that this direct-sum condition is satisfied if and only if

Φsw(ω, x) 6= 0 almost everywhere, where Φsw(ω, x) is as in (48) with v(t) replaced by w(t). The operators V ∗V ,
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V ∗W and S∗W correspond to 2D convolutions with the kernels rvv[k, l], rvw[k, l] and rww[k, l] respectively, which

are given by (49) with the appropriate substitution of s(t), v(t) and w(t). Hence, the operator Hsub corresponds to

2D convolution with the filter hsub, whose 2D DTFT is given by

Hsub(ω, x) =
Φvw(ω, x)

Φsw(ω, x)Φvv(ω, x)
, (74)

where Φvw(ω, x), Φsw(ω, x), and Φvv(ω, x) are the 2D DTFTs of rvw[k, l], rsw[k, l] and rvv[k, l] respectively.

When the synthesis space V coincides with the prior space W , we have Hsub = (V ∗V )−1V ∗W (S∗W )−1 =

(S∗W )−1, so that the correction filter is the same as in the consistency approach of section V-A. In this case, the

direct-sum condition (namely the invertibility of the operator S∗W ) guarantees perfect recovery of f(t). To see

this, note that any f ∈ W can be written as f = Wd for some sequence dk,l, so that the Gabor coefficients ck,l are

given by c = S∗f = S∗Wd. Therefore, the expansion coefficients can be perfectly recovered using d = (S∗W )−1c.

This property is, of course, independent of the sampling lattice and holds true also in the rational under-sampling

regime.

B. Rational under-sampling

We now extend the subspace-prior approach to the rational under-sampling regime. As before, we assume that the

input f(t) can be expressed in the form (72) for some sequence hk,l, where w(t) is a given window in S0. As we have

seen, the best possible recovery, which is the orthogonal projection f̃ = PVf , can be obtained if the analysis and prior

spaces satisfy S⊥⊕W = L2(R), which in our case is equivalent to rsw[k, l] being invertible with respect to twisted

convolution. In this case, f̃ = PVf can be produced by applying the operator Hsub = (V ∗V )−1V ∗W (S∗W )−1

on the Gabor transform ck,l prior to reconstruction. The operators V ∗V , V ∗W , and S∗W correspond to twisted

convolution with the kernels rvv[k, l], rv,w[k, l] and rs,w[k, l] respectively. Therefore, Hsub corresponds to twisted

convolution with

hsub[k, l] =
(
r−1
vv \ rvw \ r−1

sw

)
[k, l], (75)

where, r−1
vv [k, l] and r−1

sw [k, l] are the inverses of rvv[k, l] and rsw[k, l] with respect to \. Consequently, the Φ

function of the subspace-prior filter is given by

H sub(ω, x) = Φsw(ω, x)−1Φvw(ω, x)Φvv(ω, x)−1, (76)

where Φsw(ω, x), Φvw(ω, x), and Φvv(ω, x) are the Φ-representations of rsw[k, l], rvw[k, l] and rvv[k, l] respec-

tively.

VIII. EXAMPLE: INTEGER UNDER-SAMPLING WITH GAUSSIAN WINDOWS

We now demonstrate the prior-free recovery techniques derived in this paper. To retain simplicity we will focus

on the integer under-sampling scenario. In this regime, the smallest amount of information loss occurs when ab = 2.

Therefore, in our simulations we used a = 1 and b = 2. In this setting there are at most half the number of time-

frequency coefficients for any given frequency range per time unit, than in any invertible Gabor representation.
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Fig. 3: The 2D correction filters corresponding to the minimax-regret and consistency methods.

Consequently, algorithms operating in the Gabor domain (e.g., for system identification, speech enhancement, blind

source separation, etc.) will benefit from a reduction of at least a factor of 2 in computational load. On the other

hand, we expect the norm of the reconstruction error to be roughly on the order of the signal’s norm in the worst-case

scenario, since half of the information is lost in such a representation.

For tractability, we will work out the case in which the analysis and synthesis are both performed with a Gaussian

window:

s(t) =
1√
2πσ2

s

exp
{
− t2

2σ2
s

}
(77)

v(t) =
1√
2πσ2

v

exp
{
− t2

2σ2
v

}
. (78)

In this scenario, the cross-correlation sequence rsv[k, l] = 〈v, MbnTams〉, has an analytic expression:

rsv[k, l] =
1√

2π (σ2
s + σ2

v)
exp

{
− (ak)2 + 4π2σ2

sσ2
v(bl)2

2 (σ2
s + σ2

v)

}
exp

{
2πiσ2

sabkl

σ2
s + σ2

v

}
. (79)

Similarly, rss[k, l] and rvv[k, l] can be obtained by replacing σs by σv and vice versa.

The 2D filter hcon of (51), corresponding to the consistency requirement, is the convolutional inverse of rss[k, l].

This sequence can be approximated numerically using the discrete Fourier transform (DFT) of the finite-length

sequence rsv[k, l], (k, l) ∈ [−K,K] × [−L,L], for some (large) K and L. To compute the filter hmx of (57),

corresponding to the minimax-regret approach, we need to invert rss[k, l] and rvv[k, l], which can be done in a

similar manner. Note that both hcon and hmx are generally complex sequences. Figure 3 depicts the modulus |hcon|
and |hmx| for the case σs = 0.1, σv = 2, and ab = 2.

To see the effect of these two filters, we now examine the recovery of a chirp signal from its non-invertible
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Fig. 4: A chirp signal and its Gaussian-window Gabor representation.

Gabor representation using both methods. Specifically, let

f(t) = 2 cos
(
t2

)
. (80)

The Gaussian-window Gabor transform of f(t) has a closed form expression, given by

ck,l =
1√

−2iσ2
s + 1

exp
{
−ak(ak + 2blπ) + 2ib2l2π2σ2

s

i + 2σ2
s

}

+
1√

2iσ2
s + 1

exp
{−ak(ak − 2blπ) + 2ib2l2π2σ2

s

−i + 2σ2
s

}
. (81)

The signal f(t) and the modulus of its Gabor transform, |ck,l|, are shown in Fig. 4. Although ck,l seems to constitute

a good time-frequency representation of f(t), it is certainly not suited to play the role of the synthesis expansion

coefficients dk,l. This can be seen in Fig. 5(a), where ck,l have been used without modification as expansion

coefficients to produce a recovery f̃(t). The signal-to-noise ratio (SNR) of this recovery is 20 log10(‖f‖/‖f− f̃‖) =

−0.44dB.

The reconstructions obtained with the consistency and minimax-regret methods are shown in Fig. 5(b) and

(c). Clearly, they both bear better resemblance to f(t). The consistent recovery is the unique signal that can be

constructed with the synthesis window v(t), whose Gabor transform coincides with ck,l. This property makes this

reconstruction desirable in some sense, although its SNR is only −1.03dB, worse than the uncompensated recovery.

To guarantee that the error between our recovery f̃(t) and the original signal f(t) is small, for every possible f(t)

that could have generated ck,l, one has to use the minimax regret approach, as shown Fig. 5(c). This reconstruction

achieves an SNR of 0.1dB, and thus is better than the other two methods in terms of reconstruction error. Figure 6

depicts the expansion coefficients dk,l corresponding to the two methods.
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Fig. 5: Reconstructions of f(t) from its Gabor coefficients ck,l. (a) Without processing ck,l. (b) Consistent recovery,

namely using dk,l = (c ∗ hcon)k,l as expansion coefficients. (c) Minimax-regret recovery, namely using dk,l =

(c ∗ hmx)k,l as expansion coefficients.
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Fig. 6: The modulus of the expansion coefficients, |dk,l|, corresponding to the consistent and minimax-regret recovery

methods.

IX. CONCLUSIONS

In this paper we explored various techniques for recovering a signal from its non-invertible Gabor transform,

where the under-sampling factor is rational. Specifically, we studied situations where both the analysis and synthesis

windows of the transform are given, so that the only freedom is in processing the coefficients in the time-frequency

domain prior to synthesis. We began with the consistency approach, in which the recovered signal is required

to possess the same Gabor transform as the original signal. We then analyzed a minimax strategy whereby a

reconstruction with minimal worst case error is sought. Finally, we developed a recovery method yielding the
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minimal possible error when the original signal is known to lie in some given Gabor space. We showed that all three

techniques amount to performing a 2D twisted convolution operation on the Gabor coefficients prior to synthesis.

When the under-sampling factor of the transform is an integer, this process reduces to standard convolution. We

demonstrated our techniques for Gaussian-window transforms in the context of recovering a chirp signal.

APPENDIX A

TWISTED CONVOLUTION

In Section VI , we saw that in order to process the samples cm,n one needs the inverse of certain cross-correlation

sequences with respect to \. In this section we show how to obtain explicitly the inverse of some sequence dk,l

with respect to twisted convolution with parameter ab. This depends very much on ab. If ab ∈ N, then the twisted

convolution is a standard convolution, and the Fourier transform can be used to compute the inverse of dk,l. If

ab = q/p, then one can use the construction derived in [28], which breaks the problem into computing inverses

of several sequences with respect to standard convolution. We now briefly review this method. For the proofs and

more detailed explanations, we refer the reader to the original paper.

Let dk,l be a sequence in `1(Z2). We create p2 new sequences out of dk,l, defined as

(dr,s)k,l = dk,l

∑

m∈Z

∑

n∈Z
δ[k − r − pm, l − s− pn], (82)

where r, s = 0, 1, . . . , p− 1. It is easy to see that the sequence dr,s is supported on the coset (r + pZ)× (s + pZ)

and therefore d =
∑p−1

r=0

∑p−1
s=0 dr,s. In the case when p = 2, out of a sequence dk,l we obtain four subsequences:

d0,0 which is supported on 2Z× 2Z, d0,1 supported on 2Z× (2Z+ 1), d1,0 supported on (2Z+ 1)× 2Z and d1,1

supported on (2Z+ 1)× (2Z+ 1).

Next, we associate with the sequence dk,l a p× p matrix D whose entries are sequences in `1:

Dr,s =
p−1∑
m=0

dm,r−se−2πimsq/p, (83)

where r− s should be interpreted as modulo p. This matrix is an element of an algebra M of p× p matrices with

multiplication of two matrices D and E given by

(D ~ E)r,s =
p−1∑
m=0

Dr,l ∗ El,s , (84)

where ∗ is a standard convolution. It was shown in [28] that an algebra of such matrices is closed under taking

inverses, meaning that if D is invertible in M then its inverse is also an element of M and its entries are also

coming from some sequence in `1(Z2). For example, when p = 2 the above matrix takes the form

D =


 d0,0 + d1,0 d0,1 − d1,1

d0,1 + d1,1 d0,0 − d1,0




where we used the fact that since p = 2, q must be odd, and thus e2πimsq/2 for m, s = 0, 1 takes the values 1 and

−1. Note that summing up the elements of the first column gives us back the sequence d.
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It was shown in [28] that the invertibility of the sequence dk,l with respect to \ is equivalent to the invertibility

of the matrix D in this new matrix algebra, which in turn is equivalent to the invertibility of det(D) in `1(Z2, ∗).
Therefore, if D is invertible, its inverse can be computed using Cramer’s Rule. That is the (r, s) entry of D−1 is

given by

(D−1)r,s = (det(D))−1 ∗ det(D(s, r)), (85)

where D(s, r) is a p× p matrix obtained from D by substituting the sth row of D with a vector of zeros having δ

on the rth position, and the rth column with a column of zeros having δ on the sth position. Note that det(D) is

a sequence and its inverse in (85) is taken with respect to standard convolution. For example, when p = 2 we get

D(0, 0) =


 δ 0

0 d0,0 − d1,0


 ,

D(1, 0) =


 0 δ

d0,1 + d1,1 0


 ,

D(0, 1) =


 0 d0,1 − d1,1

δ 0


 ,

D(1, 1) =


 d0,0 + d1,0 0

0 δ


 . (86)

Thus,

D−1 = (det D)−1 ∗

 d0,0 − d1,0 −d0,1 + d1,1

−d0,1 − d1,1 d0,0 + d1,0


,

where det(D) = (d0,0 + d1,0) ∗ (d0,0 − d1,0)− (d0,1 + d1,1) ∗ (d0,1 − d1,1). Since the matrix algebra M is closed

under taking inverses, summing up the elements of the first column of D−1 results in some sequence ek,l which

is the inverse of dk,l with respect to twisted convolution. Therefore, it is enough to compute only this column

and sum up its entries to get d−1. In our example with p = 2, the twisted-convolutional-inverse of d equals

(det(D))−1 ∗ (d0,0 − d1,0 − d0,1 − d1,1).

We mentioned in the previous sections that it is possible to realize twisted convolution with a rational parameter

ab using a filter bank. Indeed, using the decomposition (82) of the sequences, the twisted convolution of two

sequences c and d,

(d \ c)m,n =
∑

k,l∈Z
dk,lcm−k,n−le

−2πiab(m−k)l =
∑

k,l∈Z
ck,ldm−k,n−le

−2πiab(n−l)k (87)

can be written as

(d \ c) =
p−1∑

r,s=0

p−1∑
u,v=0

(cr,s ∗ du−r,v−s)e−2πi(v−s)rq/p for u, v = 0, 1, . . . , p− 1. (88)

Therefore, as shown in Fig. 7, each of the p2 sequences cr,s, r, s = 0, 1, . . . , p− 1, is split into p2 filters associated

with the sequences du,v, u, v = 0, 1, . . . , p − 1. Then, d \ c is obtained by summing over the resulting p4 output

sequences. Figure 7 depicts one of the p4 branches, which corresponds to the indices r, s ,u and v.
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ck,l

∑

m,n
δ[k − r − pm, l − s − pn]

d
u−r,v−s
k,l e−2πi(v−s)rq/p

c
r,s
k,l (c\d)k,l

p2 branches:
r, s = 0, . . . , p − 1

p4 branches:
for each r, s,

u, v = 0, . . . , p − 1

Fig. 7: A filter-bank realization of twisted convolution between ck,l and dk,l.

APPENDIX B

THE MULTIPLICATION PROPERTY OF THE Φ REPRESENTATION

Let ck,l and dk,l be two sequences having Φ matrix-valued function representations Φc and Φd respectively.

Then the matrix-valued function Φ associated with the twisted convolution c \ d, can be expressed as

Φ(c \ d)(ω, x) = Φd(ω, x)Φc(ω, x). (89)

Indeed, let again ab = q/p and let r, s = 0, . . . , p− 1 be fixed, then

Φ(c \ d)
r,s (ω, x) =

∑

k,l∈Z
(c \ d)[s− r + pk, l]e−2πiabrle−2πi(blx+akω)

=
∑

k,l∈Z

∑

m,n∈Z
cm,n ds−r+pk−m,l−ne−2πiab(s−r+pk−m)ne−2πiabrle−2πi(blx+akω)

=
p−1∑
u=0

∑

k,l∈Z

∑

m,n∈Z
cu+pm,nds−r−u+p(k−m),l−ne−2πiab(s−r−u)ne−2πiabrle−2πi(blx+akω)

=
p−1∑
u=0

∑

k,l∈Z

∑

m,n∈Z
cs−u+pm,ndu−r+pk,le

−2πiab(u−r)ne−2πiabr(l+n)e−2πi(b(l+n)x+a(k+m)ω)

=
p−1∑
u=0


 ∑

k,l∈Z
du−r+pk,le

−2πiabrle−2πi(blx+akω)





 ∑

m,n∈Z
cs−u+pm,ne−2πiabune−2πi(bnx+amω)




=
p−1∑
u=0

Φd
r,u(ω, x)Φc

u,s(ω, x).

Hence, Φ(c \ d)(ω, x) = Φd(ω, x)Φc(ω, x).
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APPENDIX C

PROOF OF PROPOSITION III.3

Since G(v, a, b) is a Riesz basis for V , there exist bounds A > 0 and B < ∞ such that AIp ≤ Φvv(ω, x) ≤ BIp,

where Φvv(ω, x) is the matrix-valued function associated to the sequence rvv[k, l], defined in (24). The system

G(w, a, b), with w(t) =
∑

k,l∈Z hk,lMblTakv(t), is a Riesz basis if and only if there exist constants C > 0 and

D < ∞ such that

CIp ≤ Φww(ω, x) ≤ DIp, (90)

where Φw(ω, x) is a matrix-valued function built from the cross-correlation sequence rww[k, l] = 〈w, MblTakw〉.
By substituting w(t) =

∑
k,l∈Z hk,lMblTakv(t) in rww[k, l] one obtains

rww[k, l] =
∑

y,z∈Z

∑

m,n∈Z
rvv[y −m, z − n]hm,ne−2πiab(z−n)mhy−k,z−le

2πiab(z−l)k

=
∑

y,z∈Z
(rvv \ h)[y, z]hy−k,z−le

2πiab(z−l)k

= (h∗ \ rvv \ h)[k, l] , (91)

where rvv[m,n] = 〈v,MbnTamv〉 and h∗[k, l] = h−k,−l. It is easy to check, and we leave it for the reader, that

Φh∗(ω, x) = Φh(ω, x)H . Therefore, using the relation from Appendix B, the (r, s)-entry of the matrix Φww(ω, x)

is

Φww
r,s (ω, x) =

(
Φh(ω, x)Φvv(ω, x)Φh(ω, x)H

)
r,s

, (92)

where Φh(ω, x) is a matrix-valued function associated to the sequence hk,l and defined in the Proposition. Hence,

if G(w, a, b) and G(v, a, b) are Riesz bases with bounds C > 0, D < ∞, and A > 0, B < ∞ respectively then

Φh(ω, x)Φh(ω, x)H ≥ 1
A

Φh(ω, x)Φvv(ω, x)Φh(ω, x)H =
1
A

Φww(ω, x) ≥ D

A
(93)

Φh(ω, x)Φh(ω, x)H ≤ 1
B

Φh(ω, x)Φvv(ω, x)Φh(ω, x)H =
1
B

Φww(ω, x) ≤ C

B
. (94)

Therefore Φh(ω, x) satisfies (31) with bounds m = C/B and M = D/A.

On the other hand, if the sequence hk,l is such that (31) is satisfied, then

Φww(ω, x) = Φh(ω, x)Φvv(ω, x)Φh(ω, x)H ≥ AΦh(ω, x)Φh(ω, x)H ≥ Am (95)

Φww(ω, x) = Φh(ω, x)Φvv(ω, x)Φh(ω, x)H ≤ BΦh(ω, x)Φh(ω, x)H ≤ BM, (96)

and so G(w, a, b) is a Riesz basis with bounds C = Am and D = BM . It remains to show that G(w, a, b) and

G(v, a, b) span the same space. Every element of G(w, a, b) can be uniquely represented by a linear combinations

of the elements from G(v, a, b), since the latter is a Riesz basis. It suffices to show that v(t) can be written as a

linear combination of the elements from G(w, a, b) (it will be a unique representation since G(w, a, b) is a Riesz

basis). Then, since Gabor spaces are closed under translation and modulations, other basis elements from G(v, a, b)

will also admit a unique representation in terms of G(w, a, b). Let gk,l be the inverse of hk,l with respect to \,
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meaning h \ g = δ. The inverse exists because hk,l satisfies (31). Let ṽ(t) =
∑

m,n∈Z gm,nMbnTamw(t). We will

now show that ṽ(t) = v(t). Indeed,

ṽ(t) =
∑

m,n∈Z
gm,nMbnTamw(t) =

∑

m,n∈Z

∑

k,l∈Z
gm,nhk,lMbnTamMblTakv(t)

=
∑

m,n∈Z
gm,n

∑

k,l∈Z
hk,le

−2πiabmlMb(n+l)Ta(m+k)v(t)

=
∑

m,n∈Z

∑

k,l∈Z
gm−k,n−lhk,le

−2πiab(m−k)lMbnTamv(t)

=
∑

m,n∈Z
(h \ g)[m, n]MbnTamv(t) = v(t). (97)
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