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ABSTRACT
We address the problem of recovering signals from samples taken at
their rate of innovation. Our only assumption is that the sampling
system is such that the parameters defining the signal can be stably
determined from the samples. As such, our analysis subsumes pre-
viously studied nonlinear acquisition devices and nonlinear signal
classes. Our strategy relies on minimizing a least-squares (LS) ob-
jective, which is generally non-convex and might possess many local
minima. We show, though, that under the stability hypothesis, any
optimization method designed to trap a stationary point necessarily
converges to the true solution. We demonstrate the usefulness of our
approach in recovering finite-duration and periodic pulse streams.

Index Terms— Finite rate of innovation, nonlinear distortion,
generalized sampling.

1. INTRODUCTION

Sampling theory is concerned with recovery of continuous-time sig-
nals from their samples. Two important aspects of every sampling
theorem are the prior on the signal and the sampling mechanism. For
example, in the Shannon sampling theorem the prior is that the signal
is π/T -bandlimited and the measurements are pointwise uniformly-
spaced samples at a rate of 1/T [1].

Until recently, much of the sampling literature treated linear ac-
quisition devices and linear signal priors, that is, families of signals
that form subspaces of L2 (see [1] and references therein). These
include shift-invariant (SI) spaces, of which the bandlimited prior is
a special case [2]. Subspace models and linear sampling result in lin-
ear recovery algorithms that are often easy to implement. However,
many real-world signals do not conform to the subspace model and
practical samplers often introduce nonlinear distortions [3].

One deviation from the linear setting concerns nonlinear sam-
pling of linear models. This topic has been treated in several works
(see e.g., [3] and references therein) which primarily focused on sys-
tems with memoryless nonlinear distortions and SI signal priors.

Another departure from the classical setting, which has recently
drawn much attention, corresponds to linear sampling of nonlin-
ear models. Particularly, focus has been devoted to finite rate-of-
innovation (FRI) signals [4], which are classes of functions defined
by a finite number ρ of parameters per time unit. The quantity ρ, re-
ferred to as the rate of innovation, is often far lower than the Nyquist
rate. Yet, various sampling settings allow for perfect recovery from
samples taken at a rate of ρ. This has been demonstrated for several
families of pulse streams [4, 5, 6, 7] as well as for multiband signals
with unknown band locations [8].

Both lines of work treating nonlinear sampling of linear mod-
els and linear sampling of nonlinear models lack the full generality
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required for deployment in a wide range of practical systems. In
particular, common to all nonlinear sampling works is the assump-
tion that the nonlinearity is memoryless, while this is not the case in
many real-world applications. Similarly, all nonlinear models treated
in the literature correspond to unions of subspaces [9], with the vast
majority focusing on pulse streams. These do not include, for exam-
ple, FRI signals such as continuous-phase modulation (CPM) trans-
missions. Furthermore, even within the restricted category of pulse
streams, solutions are only available for a few special cases of signal
structures and sampling devices. These solutions are very unstable
in certain situations [10].

In this paper, we address the problem of reconstructing arbitrary
FRI signals from possibly nonlinear measurements obtained at the
rate of innovation. The only assumption we make on the sampling
mechanism and signal prior is that the parameters defining the signal
can be stably recovered from the samples. This assumption must be
made by any practical sampling theorem that attempts to recover the
signal parameters, whether explicitly or implicitly. Our approach is
based on minimization of the error norm between the given set of
samples and those of our signal estimate. Our main result is that,
under the stability assumption, this least-squares criterion possesses
a unique stationary point. Consequently, any optimization algorithm
designed to trap a stationary point, will necessarily converge to the
true parameters. In particular, we show that the steepest-descent and
Gauss-Newton methods can be used to recover the signal parameters.

Our approach is suited to a family of problems, which super-
sedes those treated by existing techniques. In particular, we do not
assume that the sampling mechanism is linear or that the class of
feasible signals forms a union of subspaces. It also provides a uni-
fied framework for recovering signals from samples taken at their
rate of innovation. Thus, rather than tailoring a different algorithm
for every possible combination of sampling method and signal prior,
we can always apply the same optimization technique to recover the
signal parameters.

The proofs of the results presented here can be found in [11].

2. PROBLEM SETTING

The signal classes in focus are those that are determined by a finite
number of parameters per time unit. The τ -local rate of innovation
of a signal x(t), denoted ρτ , is the minimal number of parameters
defining any length-τ segment of x(t), divided by τ . An FRI signal
is one for which ρτ is finite, at least for large enough τ .

Perhaps the simplest class of FRI signals corresponds to func-
tions that can be expressed as

x(t) =
∑
m∈Z

amg(t−mT ), (1)

where {am} are unknown coefficients, g(t) is a given pulse shape,
and T > 0. This set of signals is a linear space, termed shift-
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Fig. 1: The signal model (2) with a pulse g(t) supported on
[−2T, 2T ] and minimal separation of T . Bold pulses are those that
affect the segment [t, t + 3T ]. The maximal number of pulses that
can affect the segment is 7 so that ρ3T = 2× 7/(3T ) = 14/(3T ).

invariant (SI) [2]. The model (1) can represent bandlimited signals,
spline functions, pulse-amplitude modulation (PAM) transmissions
and more [1]. If supp{g(t)} ⊆ [ta, tb], then any segment [t, t + τ ]
is affected by no more than ⌈(tb − ta + τ)/T ⌉ coefficients. Thus,
the τ -local rate of innovation of (1) is1 ρτ = ⌈(tb − ta + τ)/T ⌉/τ
and the asymptotic rate is limτ→∞ ρτ = 1/T .

A more complicated model results when the location of the
pulses are unknown a-priori, as often happens in channel sounding
scenarios. In these cases,

x(t) =
∑
m∈Z

amg(t− tm), (2)

where both {am} and {tm} are unknown parameters. If we fix the
time-delays {tm} and vary only the amplitudes {am} then we get
a subspace. But different choices of time-delays result in different
subspaces so that overall (2) corresponds to a union of subspaces.
Assuming that the minimal separation between any two of the time
delays {tm} is T , this model is determined by (at most) twice the
number of parameters defining (1) per time unit, as demonstrated in
Fig. 1. Therefore, the associated τ -local rate of innovation is twice
that of (1) and the asymptotic rate is 2/T .

The model (2) and several of its variants have received the
largest amount of attention in the FRI literature. However, as shown
in [11], other interesting FRI signal classes exist, all of which can
be treated within our framework. These include multiband signals
with unknown band locations and CPM transmissions, which do not
conform to the union-of-subspace structure.

In this paper, we focus on the recovery of an arbitrary segment
from an FRI signal. By definition, any length-τ interval is deter-
mined by no more than K = ⌈τρτ⌉ parameters. Therefore, any
such segment is a vector in some Hilbert space H, which is known
to lie within the set

X = {x = h(θ) : θ ∈ A} , (3)

where A is an open set in RK and h : A → H is some given func-
tion. For example, with a minimal separation of T seconds between
any two time delays {tm}, the segment [T + tb,MT + ta] from
(2) is affected by no more than M pulses. Indexing these pulses as
m = 1, . . . ,M , this setting corresponds to the 2M -dimensional pa-
rameter vector θ = (t1, · · · , tM , a1, · · · , aM )T and to the function
h : R2M → L2([T + tb,MT + ta]) given by

h : (t1, · · · , tM , a1, · · · , aM )T 7→
M∑

m=1

amg(t− tm). (4)

1According to our definition, if g(t) is not compactly supported then
the rate of innovation is infinite, unless there is only a finite number of
pulses. Thus, for example, bandlimited signals (which correspond to g(t) =
sinc(t/T )) are not considered FRI in this paper.

In addition to the recovery of x, it is often of interest to identify
the parameters θ defining it. This goal cannot be achieved if the
parametrization of the set X is redundant in the sense that there exist
parameters θ1 ̸= θ2 such that h(θ1) = h(θ2). To be able to recover
θ in a stable manner, we require the slightly stronger condition that

αh∥θ1 − θ2∥RK ≤ ∥h(θ1)− h(θ2)∥H (5)

for some constant αh > 0 and for all θ1,θ2 ∈ A.
As shown in [11], condition (5) has several implications to

union-of-subspace models. Specifically, suppose that θ comprises
a sub-vector2 θN, which determines a subspace AθN in H and a
sub-vector θL that determines a vector within AθN . A special case
is (2), in which θN comprises {tℓ} and θL comprises {aℓ}. In this
situation, condition (5) implies that the feasible set A must be such
that the elements of θL are bounded away from zero, the vector θN

is restricted to a bounded set in RK and its elements are sufficiently
separated. This can be achieved in (2) by requiring that

am > a0, Tmin < tm − tm−1 < Tmax, (6)

for every m = 1 . . . ,M , and for some a0 > 0, 0 < Tmin <
Tmax < ∞ and arbitrary t0.

Our goal is to recover x by observing N generalized samples
c = (c1, · · · , cN )T obtained as

c = S(x), (7)

where S : H → RN is some (possibly nonlinear) Fréchet dif-
ferentiable operator. This representation of the sampling mecha-
nism is more general than the widely used linear setting, in which
cn = ⟨x, sn⟩ for some set of vectors {sn}Nn=1 in H. In particular,
(7) may account for nonlinear distortions introduced by the sampling
device. For example, S can represent the samples cn = f(⟨x, sn⟩),
where f(·) is a nonlinear sensor response.

We require that

αs∥x2 − x1∥H ≤ ∥S(x1)− S(x2)∥RN ≤ βs∥x2 − x1∥H (8)

for all x1, x2 ∈ X , where 0 < αs ≤ βs < ∞. The left-hand
inequality ensures that if two signals x1 and x2 are sufficiently dif-
ferent, then their samples S(x1) and S(x2) are different as well. In
particular, it implies that two different signals x1, x2 ∈ X cannot
produce the same set of samples, so that there is a unique recovery
x ∈ X associated with every valid set of samples c = S(x) ∈ RN .

Conditions (8) and (5) lie at the heart of any practical sampling
theorem, whether implicitly or not.

3. LEAST SQUARES RECOVERY

As a first step towards devising a general reconstruction strategy, we
determine the minimal number of samples N required for perfect
recovery. Interestingly, conditions (8) and (5) implicitly impose a
limitation on N .

Proposition 1 Assume that conditions (5) and (8) hold. Then

N ≥ K + max
x1∈X

dim

(
N

((
∂S

∂x

∣∣∣∣
x1

)∗))
, (9)

where ∂S/∂x is the Fréchet derivative of S(x).

2The superscripts ‘N’ and ‘L’ stand for nonlinear and linear respectively,
intending as a reminder that h is linear in θL and nonlinear in θN.



Proposition 1 shows that the minimal number of samples N re-
quired for perfect recovery is the number of parameters K defining
x. In other words, stable recovery is impossible when sampling be-
low the rate of innovation. Furthermore, we see that sampling at
the rate of innovation is insufficient if the null space of (∂S/∂x)∗ is
nonempty at some x ∈ X . We therefore focus on the case in which
N = K samples of x(t) are obtained with an operator S satisfying

N

((
∂S

∂x

∣∣∣∣
x1

)∗)
= {0}, ∀x1 ∈ X . (10)

This corresponds to sampling at the rate of innovation.
To recover a signal x = h(θ0) from its samples c = S(x),

where θ0 ∈ RK is unknown, it is natural to seek the minimizer of

ε(θ) =
1

2
∥S(h(θ))− c∥2RK =

1

2
∥ĉ(θ)− c∥2RK , (11)

where we defined ĉ(θ) = S(h(θ)). The reasoning behind this
choice follows from the following observation

Proposition 2 Assume that N = K and conditions (5) and (8) hold.
Then θ0 is the unique global minimizer of ε(θ).

When the samples are perturbed by white Gaussian noise, (11)
yields the maximum-likelihood (ML) estimate of θ from c.

Unfortunately, the function ε(θ) is generally non-convex and
might possess many local minima. It therefore seems that standard
optimization techniques may fail in finding its global minimizer θ0.
However, as we show next, when sampling at the rate of innovation,
assumptions (5) and (8) guarantee that θ0 is the unique stationary
point of ε(θ). Thus, any algorithm designed to trap a stationary
point, necessarily converges to the true parameter vector θ0.

Theorem 1 Assume that N = K and conditions (5), (8) and (10)
hold. Then ∇ε(θ1) = 0 only if θ1 = θ0.

Theorem 1 shows that, rather than developing a different algo-
rithm for every choice of signal family and sampling method, we can
always employ the same general-purpose optimization technique to
find the stationary point of (11).

4. ITERATIVE RECOVERY

There are numerous optimization algorithms that can be used to
find the stationary point of the objective function ε(θ) over A. For
simplicity, we focus here on unconstrained optimization methods,
namely those that can be applied when A = RK . This does not
limit the generality of the discussion since if A ̸= RK , then the
constrained problem minθ∈A ε(θ) can be transformed into the un-
constrained problem minθ̃∈RK ε(p(θ̃)), where p : RK → A is one-
to-one and onto. For example, the model (2) with the constraints (6)
can be handled by defining

θ̃Lm = ln(am − a0), θ̃Nm = tan

(
π
tm − tm−1 − T̄

∆

)
, (12)

where T̄ = (Tmax + Tmin)/2 and ∆ = Tmax − Tmin, so that

am = eθ̃
L
m + a0, tm = t0 +mT̄ +

∆

π

m∑
i=1

arctan
(
θ̃Ni

)
. (13)

With this choice, θ̃
L

and θ̃
N

vary over the entire space RM .

s(−t)
t = T0 + nTs

x(t) cn
f

Fig. 2: Nonlinear and nonideal sampling.

Most unconstrained optimization methods start with an initial
guess θ0 and perform iterations of the form

θℓ+1 = θℓ − γℓBℓ∇ε(θℓ), (14)

where γℓ is a scalar step size obtained by means of a one dimen-
sional search and Bℓ is a positive definite matrix. As we show next,
convergence guarantees for such methods can be obtained under as-
sumptions on the line-search method and the behavior of h on the
level-set N = {θ : ε(θ) ≤ ε(θ0)}.

Theorem 2 Suppose that N = K, conditions (5), (8) and (10)
hold, and the Fréchet derivative ∂h/∂θ is Lipschitz continuous over
N . Consider the iterations (14), with backtracking line search [12].
Then each of the following options guarantees that θℓ → θ0:

1. Bℓ = I .

2. Bℓ = ((∂ĉ/∂θ|θℓ)∗(∂ĉ/∂θ|θℓ))−1 and h is Lipschitz con-
tinuous over N .

The two options correspond, respectively, to the steepest-descent
and Gauss-Newton methods.

5. APPLICATION TO CHANNEL SOUNDING

We now demonstrate our approach in the setting (2). We assume that
x(t) comprises only M pulses and focus on recovering them from
observations of the segment [0, 1]. We adopt the assumptions (6)
and transform the optimization problem into an unconstrained one
by using the transformation described in (12) and (13).

Consider first the sampling system of Fig. 2, in which x(t) is
sampled after passing through an amplitude limiter f(·) and being
convolved with a filter s(−t). Fig. 3 demonstrates the behavior of
the algorithm in recovering M = 2 pulses from N = 4 samples con-
taminated by white Gaussian noise. Here, g(t) and s(t) were taken
to be Gaussian functions with standard deviations 0.05 and 0.1, re-
spectively, and f(c) was chosen to be 100 arctan(0.01c). We chose
Ts = 1/4 and T0 = 1/8 so that {sn(t)} equally span the entire
observation segment. The constraints (6) corresponded to a0 = 0.1,
Tmin = 0.3, Tmax = 0.7 and t0 = −0.3. The true parameters were
t1 = 0.2, t2 = 0.8, a1 = 1 and a2 = 5. The figure depicts the mean
squared error (MSE) in x(t), defined as E[

∫ τ

0
|x(t) − x̂(t)|2dt], as

a function of the signal-to-noise (SNR) ratio. The solid line corre-
sponds to the Cramér-Rao bound (CRB), developed in [10], which
is a lower bound on the MSE attainable by any unbiased estimation
technique. As can be seen, the MSE of our method coincides with
the CRB in high SNR scenarios and outperforms it at low SNR lev-
els. This is a result of the fact that our technique is biased.

Next, consider the situation in which g(t) is a 1-periodic func-
tion and the sampling system is that depicted in Fig. 4 with

sn(t) =


1 n = 0,

cos(2πnt/τ) 1 ≤ n ≤ M,

sin(2πnt/τ) M + 1 ≤ n ≤ 2M.

(15)

Figure 5 compares between iterative recovery and the method of [7],
which relies on the annihilating filter technique. Here, M = 2 pulses
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Fig. 3: MSE versus SNR for recovery with the system of Fig. 2.
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Fig. 4: Linear multichannel sampling.

were recovered from N = 2M + 1 = 5 samples. The pulse g(t)
had quadratically decaying Fourier coefficients. The true time delays
were t1 = 1/

√
15 ≈ 0.2582 and t2 = 1/

√
2 ≈ 0.7071 and the

true amplitudes were randomly generated to yield a1 ≈ 0.5285 and
a2 ≈ 0.14. The figure depicts the performance of both approaches,
as well as the CRB. As can be seen, the optimization-based approach
outperforms the annihilating-filter method at all SNR levels.

Finally, we note that our algorithm can be used to detect sit-
uations in which not all possible time-delay constellations can be
stably recovered. Indeed, we proved that if all θ ∈ A can be stably
recovered then the algorithm converges to the global minimum θ0 at
which ε(θ0) = 0. Therefore, termination of the algorithm at a point
θ1 at which ε(θ1) ̸= 0 indicates that not all θ ∈ A can be stably
recovered. In fact, it can be shown that the problematic constellation
is θ1 itself. Namely, no method can stably recover θ1 in this setting.

To demonstrate this, we applied the algorithm in the setting of
Fig. 4. We took four sinusoidal sampling functions (two sines and
two cosines) with frequencies 1 and 3. While the true parameters
were (t1, t2, a1, a2) = (0.2, 0.8, 1, 5), the algorithm converged to
(0.34, 0.85, 0.41, 3.1). This means that the latter constellation can-
not be recovered stably by any method. Figure 6 depicts the CRB
for estimating θ as function of t2 ∈ [0.85, 1] for t1 = 0.34. As can
be seen, the CRB indeed tends to infinity as t2 approaches 0.85.

6. CONCLUSION

We studied recovery of FRI signals from samples taken at their rate
of innovation. We showed that when the parameters can be stably
recovered, this can be achieved by unconstrained optimization meth-
ods. Our approach thus provides a simple means for treating a wide
range of FRI signal classes and sampling methods. We demonstrated
the usefulness of our strategy in reconstructing finite and periodic
pulse streams from nonlinear and nonideal samples.
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