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[A review of nonlinearities,
 smoothness, and sparsity  ]

D
igital applications have developed rapidly over 
the last few decades. Since many sources of 
information are of analog or continuous-time 
nature, discrete-time signal processing (DSP) 
inherently relies on sampling a continuous-

time signal to obtain a discrete-time representation. 
Consequently, sampling theories lie at the heart of signal 
processing devices and communication systems. Examples 
include sampling rate conversion for software radio [1] and 
between audio formats [2], biomedical imaging [3], lens dis-
tortion correction and the formation of image mosaics [4], 
and super-resolution of image sequences [5]. 

To accommodate high operating rates while retaining low 
computational cost, efficient analog-to-digital (ADC) and 
digital-to-analog (DAC) converters must be developed. Many 
of the limitations encountered in current converters is due 
to a traditional assumption that the sampling stage needs to 
acquire the data at the Shannon-Nyquist rate, corresponding 
to twice the signal bandwidth [6]–[8]. To avoid aliasing, a 
sharp low-pass filter (LPF) must be implemented prior to 
sampling. The reconstructed signal is also a bandlimited 

function, generated by integer shifts of the sinc interpolation 
kernel. 

A major drawback of this paradigm is that many natural 
signals are better represented in alternative bases other 
than the Fourier basis [9]–[11], or possess further structure 
in the Fourier domain. In addition, ideal pointwise sam-
pling, as assumed by the Shannon theorem, cannot be 
implemented. More practical ADCs introduce a distortion 
that should be accounted for in the reconstruction process. 
Finally, implementing the infinite sinc interpolating kernel 
is difficult, since it has slow decay. In practice, much sim-
pler kernels are used, such as linear interpolation. Therefore, 
there is a need to develop a general sampling theory that 
will accommodate an extended class of signals beyond ban-
dlimited functions and will account for the nonideal nature 
of the sampling and reconstruction processes. 

Sampling theory has benefited from a surge of research 
in recent years, due in part to the intense research in wave-
let theory and the connections made between the two fields. 
In this survey, we present several extensions of the Shannon 
theorem that have been developed primarily in the past two 
decades, which treat a wide class of input signals as well 
as nonideal sampling and nonlinear distortions. This  Digital Object Identifier 10.1109/MSP.2009.932125
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 framework is based on viewing sampling in a broader sense of 
projection onto appropriate subspaces and then choosing the 
subspaces to yield interesting new possibilities. For example, 
our results can be used to uniformly sample nonbandlimited 
signals, and to perfectly compensate for nonlinear effects. 

Our focus here is on shift-invariant (SI) settings in which both 
sampling and reconstruction are obtained by filtering operations, 
and the sampling grid is uniform. However, all the results herein 
can be extended to arbitrary Hilbert space settings [12]–[15] 
including finite-dimensional spaces, spaces that are not SI, and 
nonuniform sampling. Our exposition is based on a Hilbert-space 
interpretation of sampling tech-
niques, and relies on the con-
cepts of bases and projections. 
This perspective has been moti-
vated in the context of sampling 
in the excellent review by Unser 
[11]. Here we consider a similar 
setting and complement the paper of Unser by surveying further 
progress made in this area in recent years. 

We begin by presenting a broad class of sampling theorems 
for signals confined to an arbitrary subspace in the presence of 
nonideal sampling, and nonlinear distortions. Surprisingly, 
many types of nonlinearities that are encountered in practice 
do not pose any technical difficulty and can be completely 
compensated for. Next, we develop minimax recovery tech-
niques that best approximate an arbitrary smooth input signal. 
These methods can also be used to reconstruct a signal using a 
given interpolation kernel that is easy to implement, with only 
a minor loss in signal quality. To further enhance the quality 
of the interpolated signal, we discuss fine grid recovery tech-
niques in which the system rate is increased during recon-
struction. As we show, the algorithms we develop can all be 
extended quite naturally to the recovery of random signals. 
These additional aspects extend the existing sampling frame-
work and incorporate more realistic sampling and interpola-
tion models. 

Before proceeding with the detailed development, we note 
that an additional topic in the context of sampling that has 
received growing attention recently is that of reconstructing 
signals that are known to be sparse in some domain. This class 
of problems underlies the emerging field of compressed sens-
ing [16], [17]. However, this framework has focused primarily 
on sampling of discrete signals and reconstruction techniques 
from a finite number of samples, while our interest here is on 
sampling and reconstructing analog continuous-time signals 
from uniform samples. Some exceptions are the work in [18], 
[19], [20], and [21], which describe examples of compressed 
sensing for analog signals, and the work on finite-rate of inno-
vation [22], [23]. In the last section, we very briefly touch on 
this important area. 

SAMPLING AND RECONSTRUCTION SETUP
The Shannon sampling theorem (also attributed to Nyquist, 
Whittaker, and Kotelnikov) states that a signal x 1t 2  bandlimited 

to p/T can be recovered from its uniform samples at time 
instants nT. Reconstruction is obtained by filtering the samples 
with a sinc interpolation kernel 

 x 1t 2 5 1
T a

`

n52`
x 1nT 2sinc 1t/T2 n 2 , 

where sinc 1t 2 5 sin 1pt 2 / 1pt 2 . Although widely used, this 
theorem relies on three fundamental assumptions that are 
rarely met in practice. First, natural signals are almost never 
truly bandlimited. Second, the sampling device is usually not 

ideal, that is, it does not pro-
duce the exact signal values at 
the sampling locations. A 
common situation is that the 
ADC integrates the signal, 
usually over small neighbor-
hoods surrounding the sam-

pling points. Moreover, nonlinear distortions are often 
introduced during the sampling process. Finally, the use of 
the sinc kernel for reconstruction is often impractical due to 
its very slow decay. 

To design interpolation methods that are adapted to practi-
cal scenarios, there are several issues that need to be properly 
addressed. 
 1) The sampling mechanism should be adequately 

modeled. 
 2) Relevant prior knowledge about the class of input signals 

should be taken into account. 
 3) Limitations should be imposed on the reconstruction algo-

rithm in order to ensure robust and efficient recovery.
In this review, we treat each of these three essential compo-

nents of the sampling scheme. We focus on several models for 
each of the ingredients, which commonly arise in signal pro-
cessing, image processing and communication systems. The 
setups we consider are summarized in Table 1 and are detailed 
in the ensuing subsections. Table 2 indicates the design objec-
tive used in each scenario. As we discuss, different priors 
 dictate distinct objectives. For example, when the only infor-
mation we have about the signal is that it is smooth, then the 
error cannot be minimized uniformly over all signals, and 
alternative design strategies are needed. 

SAMPLING PROCESS

LINEAR DISTORTION
In the Shannon sampling theorem, x 1t 2  is bandlimited to 
p/T and thus an equivalent strategy is to first filter the sig-
nal with a LPF with cut-off p/T and then uniformly sample 
the output. This interpretation is depicted in Figure 1 with 
s 12t 2 5 sinc 1t/T 2  being the impulse response of the LPF. 
The samples c 3n 4  can be expressed as 

 c 3n 45 3`
t52`

x 1t 2s 1t2 nT 2dt ! 8x 1t 2 , s 1t2 nT 2 9, (1) 

FOR A SAMPLING THEOREM TO BE 
PRACTICAL, IT MUST TAKE INTO ACCOUNT 

CONSTRAINTS THAT ARE IMPOSED ON 
THE INTERPOLATION METHOD.
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where 8y 1t 2 , h 1t 2 9 denotes the L2 1R 2  inner product between two 
finite-energy continuous-time real signals. For simplicity, 
throughout the article we assume a sampling interval of T5 1. 

In practical applications the sampling is not ideal. 
Therefore, a more realistic setting is to let s 1t 2  be an arbitrary 
sampling function. This allows to incorporate imperfections in 
the ideal sampler into the function s 1t 2  [24], [14], [25], [12]. 
As an example, typical ADCs average the signal over a small 
interval rather than outputting pointwise signal values. This 
distortion can be taken into account by modifying s 1t 2  to 
include the integration. 

NONLINEAR DISTORTION
A more complicated situation arises when the sampling process 
includes nonlinear distortions. One simple approach to model 
nonlinearities is to assume that the signal is distorted by a 
memoryless, nonlinear, and invertible mapping prior to sam-
pling by s 12t 2 , as in Figure 2. This rather straightforward 
model is general enough to capture many systems of practical 
interest. Nonlinearities appear in a variety of setups and applica-
tions of digital signal processing including power electronics 
[26], radiometric photography [27], and CCD image sensors. In 
some cases, nonlinearity is insinuated deliberately to increase 
the possible dynamic range of the signal while avoiding ampli-
tude clipping or damage to the ADC [28]. 

SIGNAL PRIORS
In essence, the Shannon sampling theorem states that if x 1t 2  is 
known a priori to lie in the space of bandlimited signals, then it 
can be perfectly recovered from uniformly spaced ideal samples. 
Clearly, the question of whether x 1t 2  can be recovered from its 
samples depends on the prior knowledge we have on the class of 
input signals. In this review, we depart from the traditional ban-
dlimited assumption and discuss signal priors that appear more 
frequently in signal processing and communication scenarios. 

SUBSPACE PRIORS
Our first focus is on signal spaces that are SI. A SI subspace A of 
L2, is the space of signals that can be expressed as linear combi-
nations of shifts of a generator a 1t 2  [29] 

 x 1t 2 5 a
`

n52`
b 3n 4  a 1t2 n 2 , (2) 

where b 3n 4 is an arbitrary norm-bounded sequence. Note that 
b 3n 4 does not necessarily correspond to samples of the signal, 
that is x 1n 2 2 b 3n 4 in general. Choosing a 1t 2 5 sinc 1t 2  results 
in the space of p-bandlimited signals. However, a much broader 
class of signal spaces can be defined including spline functions 
[11]. In these cases a 1t 2  can be easier to handle numerically 
than the sinc function. 

A spline f 1t 2  of degree N  is a piecewise polynomial with the 
pieces combined at knots, such that the function is continu-
ously differentiable N2 1 times. It can be shown that any 
spline of degree N  with knots at the integers can be generated 
using (2) by a B-spline a 1t 2  of degree N , which is the function 
obtained by the 1N1 1 2 -fold convolution of the unit square 

 b 1t 2 5 e 1 0 , t , 1;
0 otherwise.

 (3)

Signals of the type (2) are also encountered when the ana-
log signal to be sampled originated from a digital source. For 
example, in communication systems, signals of this form are 
produced by pulse amplitude modulation. Extensive research 
in this field has been devoted to design receivers that undo the 
effect of inter-symbol interference, caused by overlap of the 
pulses a 1t2 n 2 . Here we provide a geometric interpretation of 
this problem, which leads to insight into which classes of 
signals can be perfectly recovered from their samples. This 

s(−t )
t = nT

x(t ) c[n]

[FIG1] Shift-invariant sampling. Filtering the signal x(t) prior to 
taking ideal and uniform samples, can be interpreted as L2 inner-
products between x(t) and shifts of s(t). Shannon’s framework 
corresponds to the choice s(2t)5 sinc(t/T ).

M
s(−t )

t = nT
x(t )

y(t )
c[n]

[FIG2] Nonlinear and shift-invariant sampling. The signal 
amplitudes x(t) are distorted by the nonlinear mapping M prior 
to shift-invariant sampling.

[TABLE 1] DIFFERENT SCENARIOS TREATED IN THIS REVIEW.

UNCONSTRAINED RECONSTRUCTION PREDEFINED INTERPOLATION KERNEL FINE GRID INTERPOLATION
SUBSPACE PRIORS THE SECTION “SUBSPACE PRIORS, 

UNCONSTRAINED RECONSTRUCTION 
WITH LINEAR SAMPLING” AND THE 
SECTION “SUBSPACE PRIORS, 
UNCONSTRAINED RECONSTRUCTION 
WITH NONLINEAR DISTORTION” 

THE SECTION “SUBSPACE PRIORS, 
CONSTRAINED RECONSTRUCTION”

THE SECTION “SUBSPACE PRIORS, DENSE GRID 
RECOVERY”

SMOOTHNESS 
PRIORS

THE SECTION “SMOOTHNESS PRIORS, 
UNCONSTRAINED RECONSTRUCTION”

THE SECTION “SMOOTHNESS PRIORS, 
CONSTRAINED RECONSTRUCTION” 

THE SECTION “SMOOTHNESS PRIORS, MINIMAX 
DENSE GRID RECONSTRUCTION”

STOCHASTIC PRIORS THE SECTION “STOCHASTIC PRIORS, 
UNCONSTRAINED RECONSTRUCTION” 

THE SECTION “STOCHASTIC PRIORS, CON-
STRAINED RECONSTRUCTION” 

THE SECTION “STOCHASTIC PRIORS, 
CONSTRAINED RECONSTRUCTION” 
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viewpoint also allows to incor-
porate various constraints on 
the reconstruction method. 

Although the discussion in 
this article is limited to SI sub-
spaces, the results we present 
are valid in more general sub-
spaces as well [12], [13]. In particular, the results can be 
extended straightforwardly to SI subspaces with multiple gen-
erators [30], [31], [21]. In this case, the filters figuring in the 
sampling and reconstruction are replaced by a bank of filters, 
and the digital correction is replaced by a multichannel cor-
rection system. This allows to treat, for example, signals whose 
spectrum is contained in several frequency bands. 

SMOOTHNESS PRIORS
Subspace priors are very useful because, as we will see, they 
often can be utilized to perfectly recover x 1t 2  from its samples. 
However, in many practical scenarios our knowledge about 
the signal is much less complete and can only be formulated 
in very general terms. An assumption prevalent in image and 
signal processing is that natural signals are smooth in some 
sense. Here we focus on approaches that quantify the extent 
of  smoothness using the L2  norm ||Lx 1t 2 ||2 ,  where 
|| f 1t 2 ||25  8 f 1t 2 , f 1t 2 9, and L is usually chosen as some differen-
tial operator. The appeal of these models stems from the fact 
that they lead to linear recovery procedures. In contrast, 
smoothness measures such as total variation, result in nonlin-
ear interpolation techniques. 

The class of smooth signals is much richer than its subspace 
counterpart. Consequently, it is often impossible to distinguish 
between one smooth signal and another based solely on their 
samples. In other words, the sampling process inevitably entails 
information loss. Since perfect recovery cannot be attained in this 
scenario, we focus on two alternative criteria: consistency (or 
least-squares) and a worst case (minimax) design. 

STOCHASTIC PRIORS
The last family we consider in detail is the family of stochastic 
priors. In this category, the signal x 1t 2  is modeled as a wide-
sense stationary (WSS) random process with known power 
spectral density (PSD), a viewpoint prominent in the field of 
statistical signal processing. As a design criterion, we focus on 
minimization of the mean-squared error (MSE) given the sig-
nal samples. The theory of sampling random signals has devel-
oped in parallel lines to its deterministic counterpart [8]. 
Interestingly, the stochastic setting leads to reconstruction 
techniques that are very similar to the methods arising from 

the smoothness priors. This 
provides an interesting equiva-
lence between the smoothness 
operator L and the PSD of 
x 1t 2  in the random setup. 
Furthermore, we show that 
the study of statistical priors 

also sheds some light on the origin of artifacts, which are com-
monly encountered in traditional interpolation methods. 

SPARSITY PRIORS
In the last section, we very briefly touch on sparsity priors. 
This class of functions lead to nonlinear reconstruction algo-
rithms that have a very different structure than the linear 
interpolation methods in the majority of this article. Since 
the treatment of these priors differs substantially from the 
rest of the review, we only point to several basic recovery 
techniques and results in this emerging area. A more detailed 
discussion merits a  separate article. 

RECONSTRUCTION METHODS
For a sampling theorem to be practical, it must take into 
account constraints that are imposed on the interpolation 
method. One aspect of the Shannon sampling theorem, which 
renders it unrealizable, is the use of the sinc interpolation ker-
nel. Due to its slow decay, the evaluation of x 1t 2  at a certain 
time instant t0, requires using a large number of samples 
located far away from t0. In many applications, reduction of 
computational load is achieved by employing much simpler 
methods, such as linear interpolation. In these cases the sam-
pling scheme should be modified to compensate for the chosen 
nonideal kernel. 

UNCONSTRAINED RECONSTRUCTION
The first setup we consider is unconstrained recovery. Here, we 
design interpolation methods that are best adapted to the 
underlying signal prior according to the objectives in Table 2, 
without restricting the reconstruction mechanism. In these 
scenarios, it is sometimes possible to obtain perfect recovery, as 
in the Shannon sampling theorem. The unconstrained recon-
struction methods under the different scenarios treated in this 
article (besides the case in which there are nonlinear distor-
tions) all have a common structure, depicted in Figure 3. Here 
w 1t 2  is the impulse response of a continuous-time filter, which 
serves as the interpolation kernel, while h 3n 4  represents a 
 discrete-time filter used to process the samples prior to recon-
struction. Denoting the output of the discrete-time filter by 
d 3n 4, the input to the filter w 1t 2  is a modulated impulse train

AN IMPORTANT CLASS OF SPARSE 
SIGNALS IS THE CLASS OF SIGNALS 

WHOSE FREQUENCY TRANSFORM (OR 
ANY OTHER TRANSFORM) HAS 

A MULTIBAND STRUCTURE.

[TABLE 2] DESIGN OBJECTIVE IN EACH SCENARIO.

UNCONSTRAINED RECONSTRUCTION PREDEFINED INTERPOLATION KERNEL FINE GRID INTERPOLATION
SUBSPACE PRIORS PERFECT RECONSTRUCTION MINIMUM SQUARED ERROR MINIMUM SQUARED ERROR 
SMOOTHNESS PRIORS CONSISTENCY/MINIMAX CONSISTENCY/MINIMAX CONSISTENCY/MINIMAX 
STOCHASTIC PRIORS MEAN-SQUARED ERROR (MSE) MSE MSE 
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Sn d 3n 4  d 1t2 n 2 . The filter’s output is given by 

 x̂ 1t 2 5 a
`

n52`
d 3n 4  w 1t2 n 2 . (4) 

Optimal interpolation kernels resulting from such consider-
ations are typically derived in the frequency domain but very 
often do not admit a closed form in the time domain. This limits 
the applicability of these recovery techniques to situations in 
which the kernel needs to be calculated only on a discrete set of 
points. The discrete Fourier transform (DFT) can be used in such 
settings to approximate the desired values. Consequently, these 
methods seem to have been used, for example, in the image pro-
cessing community only as a means of enlarging an image by an 
integer factor [32], [33]. More general geometrical transforma-
tions, such as rotation, lens distortion correction, and scaling by 
an arbitrary factor, are typically not tackled using these tech-
niques. One way to resolve this problem is to choose the signal 
prior so as to yield an efficient interpolation algorithm, as done 
e.g., in [34] in the context of exponential B-splines. Nevertheless, 
this approach restricts the type of priors that can be handled. 

PREDEFINED KERNEL
To overcome the difficulties in implementing the unconstrained 
solutions, we may resort to a system that uses a predefined interpo-
lation kernel that is easy to implement. In this setup, the only free-
dom is in the design of the digital correction filter h 3n 4 in Figure 3, 
which may be used to compensate for the nonideal behavior of the 
prespecified kernel w 1t 2  [24], [12], [15], [13], [14]. The filter h 3n 4 is 
selected to optimize a criterion matched to the signal prior. 

By restricting the reconstruction to the form (4), we are 
essentially imposing that the recovered signal x̂ 1t 2  lie in the SI 
space generated by the prespecified kernel w 1t 2 . The class of SI 
spaces is very general and includes many signal spaces that lead 
to highly efficient interpolation methods. For example, by 

appropriate choice of w 1t 2  the family of splines can be described 
using (4). B-splines have been used for interpolation in the 
mathematical literature since the pioneering work of Schonberg 
[35]. In signal processing applications, the use of B-splines 
gained popularity due to the work of Unser et al. that showed 
how B-spline interpolation can be implemented efficiently [36], 
[37]. Interpolation using splines of degree up to three is very 
common in image processing, due to their ability to efficiently 
represent smooth signals and the relatively low computational 
complexity needed for their evaluation at arbitrary locations. 

FINE GRID INTERPOLATION
Constraining the interpolation kernel may lead to severe deg-
radation of the reconstruction. This emphasizes the funda-
mental tradeoff between performance and implementation 
considerations. A common way to improve the recovery prop-
erties of a reconstruction algorithm is to first upsample the 
digital signal and then apply some simple interpolation meth-
od on the resulting finer grid. This is a widely practiced 
approach for sampling rate conversion, where usually a rect-
angular or triangular interpolation filter is used [38]. 

Under mild conditions on the interpolation kernel, this 
approach allows to approximate the optimal unconstrained 
solution arbitrarily well by using a fine enough grid. This, of 
course, comes at the cost of computational complexity. In 
practice, it is not the asymptotic behavior that interests us, but 
rather optimizing the performance for a fixed setup. Thus, 
given a fixed oversampling factor K $ 1 and an interpolation 
filter w 1t 2 , we would like to design a multirate system that 
processes the samples c 3n 4 and produces fine-grid expansion 
coefficients d 3n 4 such that the reconstruction 

 x̂ 1t 2 5 a
`

n52`
d 3n 4  w at2

n
K
b (5) 

well approximates x 1t 2 . This setup is depicted in Figure 4. 
Besides extending the discussion to general interpolation filters, 
we also relax the standard assumption that the input signal is 
bandlimited. Instead, we design a correction system that is best 
adapted to the prior we have on the input signal. 

The interpolation methods corresponding to the different 
scenarios discussed previously are summarized in Table 3. The 
numbers in the table indicate the equation numbers containing 
the reconstruction formulas. Interestingly, we will see that the 
solutions share a similar structure. Throughout the article, we 
emphasize commonalities and equivalence between the differ-
ent approaches to help design the most appropriate filter for a 
given application. We provide a number of different routes (and 
formulations) that in many cases lead to the same computa-
tional solution, while providing  several complementary insights 
into the problem as well as on the notion of optimality. 

SUBSPACE PRIORS
We begin by treating the setting in which the input signal x 1t 2  
is known to lie in a given SI subspace. We show that when the 

[FIG3] Reconstruction using a digital compensation filter h 3n 4 
and interpolation kernel w(t).

h[n] x(t)w(t )c[n]
d [n]

∞
δ (t−nT )

n = −∞
∑

∧

[FIG4] Fine grid reconstruction using an upsampler followed by 
a digital compensation filter h 3n 4 and interpolation kernel w (t). 
The rate of the sequence d 3n 4 is K times larger than that of c 3n 4.

h[n]K w(t)c[n]
d [n]

∞

n = −∞
∑δ  t −     

K
nT

x(t)^

a b
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reconstruction method is not restricted, these priors allow for 
perfect recovery of x 1t 2  from its nonideal samples both in the 
linear setting of Figure 1 as well as in the presence of nonlin-
ear distortions as in Figure 2. Specifically, for any sampling 
function s 1t 2  there are a broad class of subspace priors under 
which x 1t 2  can be perfectly reconstructed. Conversely, for any 
given class of functions there are many choices of s 1t 2  that 
will allow for perfect recovery. These filters only have to satisfy 
a rather mild requirement. The surprising fact is that these 
results are valid even when a memoryless, invertible nonlin-
earity is inserted prior to sampling, as long as the nonlinearity 
does not vary too fast. 

In the second part of this section, we extend the discus-
sion to constrained reconstruction scenarios. In these cases 
 perfect recovery is often impossible, as the restriction 

 narrows down the set of candidate signals that the system 
can output. However, we will show that it is often possible to 
produce a reconstruction that minimizes the squared-norm 
of the error. 

Throughout this section, x 1t 2  is assumed to lie in a SI sub-
space A generated by a 1t 2  [see (2)]. In order for A to be well 
defined and the corresponding sampling theorems to be stable, 
the functions 5a 1t2 n 2 6 should generate a Riesz basis or a frame 
[10]. To simplify the exposition, we focus throughout on the case 
in which these functions are linearly independent and therefore 
form a basis. However, all the results extend easily to the case in 
which they are linearly dependent. In essence, a Riesz basis is a 
set of linearly independent vectors that ensures stable expansions, 
namely a small modification of the expansion coefficients results in 
a small distortion of the signal (see “Basis Expansions”). In 

[TABLE 3] METHODS FOR SIGNAL RECOVERY.

UNCONSTRAINED RECONSTRUCTION PREDEFINED INTERPOLATION KERNEL FINE GRID INTERPOLATION 
SUBSPACE PRIORS LINEAR SAMPLING: (13)

NONLINEAR DISTORTION: (21), (22), (23) 
(24) (25) 

SMOOTHNESS PRIORS (28), (29) CONSISTENT: (33)
MINIMAX: (37)

(39) 

STOCHASTIC PRIORS (41), (42) (45) (39)

BASIS EXPANSIONS
A Schauder basis for a complex Hilbert space H is a count-
able set of vectors 5xn6 in H such that every vector x [ H 
can be written uniquely as a series 

 x5 a
`

n52`

c 3n 4 xn (S1) 

with scalars c 3n 4. For example, the set of complex exponen-
tials xn 1t 2 5 exp5 jvnt6  defined for t [ 3 2p, p 4  is a 
Schauder basis for the space L2 32p, p 4 of square integrable 
functions over 32p, p 4. In this basis, the expansion coeffi-
cients c 3n 4 of a function x 1t 2  are its Fourier coefficients. 

A countable set of vectors 5xn6 in H is a Riesz basis for H if it 
is complete and there exist two constants a . 0 and b , ` 
such that 

a a
`

n52`

|c 3n 4|2 # g a`
n52`

c 3n 4xn g 2# b a
`

n52`

|c 3n 4|2, 4c [ ,2. (S2) 

Here || y || is the norm over H. Riesz bases have the desired sta-
bility property, namely that a slight change in the expansion 
coefficients c 3n 4 is ensured to entail only a small change in x. 
Consequently, these bases are important in ensuring stable 
sampling schemes. 

An important question is how to obtain the expansion 
coefficients c 3n 4 of a vector x. If the basis 5xn6 is orthonormal 
(i.e., 8xm, xn95dmn where 8x, y9 is the inner product over H) 
then c 3n 45 8x, xn9. This follows from taking the inner prod-
ucts of both sides of (S1) with xm and exploiting the orthogo-
nality property. To determine the expansion coefficients 

when using a general nonorthogonal basis, we follow a simi-
lar route using the biorthogonal vectors, or dual basis x,n. 
The dual basis of xn is the unique basis of H that satisfies 
the property 

 8xm, x|n95dmn. (S3)

Taking the inner products of both sides of (S1) with respect to 
x,m, we find that 

 c 3n 45 8x, x|n9. (S4) 

If xn is a Riesz basis, then so is its biorthogonal basis. 
When the set of vectors 5xn6 span only a subspace U of 

H, there may be many choices of biorthogonal bases in H 
satisfying (S3). Intuitively, the biorthogonal basis vectors 
should span a subspace with the same number of degrees 
of freedom as U. A formal statement of this observation is 
that given any subspace V satisfying the direct sum condi-
tion H5 U!V', there exists a unique set of vectors 5 x|n6
lying in V which constitute a biorthogonal basis for 5xn6. 
This set is called the oblique dual basis of 5xn6 in V [14], 
[15], [13], [42], [44], [31]. The vectors 5 x|n6 satisfy (S3) and 
form a basis for V, that obey the Riesz condition given 
that 5xn6 is a Riesz basis. In each subspace V there is only 
one dual basis. The canonical dual basis refers to the 
choice U5 V. This concept can also be extended to sets of 
vectors that are linearly dependent, leading to oblique 
dual frames. 
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order for a 1t 2  to generate a Riesz basis the continuous-time 
Fourier transform (CTFT) of a 1t 2  must satisfy 

 a # a
`

k52`
|A 1v 2 2pk 2 |2 # b a.e. v, (6) 

for some constants a . 0 and b , ` [39]. The term in the 
middle of (6) is the discrete-time Fourier transform (DTFT) of 
the sampled correlation function raa 3n 45 8a 1 t 2 , a 1t2 n 2 9. More 
details on the CTFT and DTFT are given in “CTFTs and DTFTs.” 
In particular, the functions 5a 1t2 n 2 6 form an orthonormal 
basis if and only if a5 b5 1 in (6). 

UNCONSTRAINED RECONSTRUCTION 
WITH LINEAR SAMPLING
In the setup of Figure 1, the input signal x 1t 2  is sampled by a 
set of sampling functions 5s 1t2 n 2 6 . We denote by S the 
space spanned by these sampling functions: any f 1t 2  in S is of 
the form 

 f 1t 2 5 a
`

n52`
d 3n 4 s 1t2 n 2  (7) 

for some bounded-norm sequence d 3n 4. We assume through-
out that s 1t 2  satisfies the Riesz basis condition (6). 

To understand what class of signals can be reconstructed 
from these samples we first observe that knowing the samples 
c 3n 4 of (1) is equivalent to knowing the orthogonal projection 
of x 1t 2  onto S, which we denote by xS 1t 2 5 PSx 1t 2  (see 
“Projections in Hilbert Spaces”). Indeed, 

 c 3n 45 8x 1t 2 , s 1t2n 2 95 8x 1t 2 , PS s 1t2n 2 95 8PS  x 1t 2 , s 1t2n 2 9,
 (8)

where we used the fact that PSs 1t2 n 2 5 s 1t2 n 2  and PS is 
Hermitian. Since the functions s 1t2 n 2  span S, and xS 
lies in S, it is clear that xS can be reconstructed from the 
samples c 3n 4 . An immediate consequence is that if x 1t 2  
lies in S so that x 1t 2 5 xS 1t 2 , then it can be perfectly 
recovered. 

[FIG5] A unique vector in A that is consistent with the samples 
in S can be recovered from the known samples. 

S

A

PSx

x

S

CTFTS AND DTFTS 
The CTFT of a signal x 1t 2  in L2 is defined as 

 X 1v 2 5 3`
2`

x 1t 2e2jvtdt.  (S5) 

We use the convention that upper case letters denote 
Fourier transforms. The DTFT of a sequence x 3n 4 in ,2 is 
defined by 

 X 1e jv 2 5 a
`

n52`

x 3n 4e2jvn.  (S6) 

The DTFT is 2p -periodic; to emphasize this fact we use the 
notation X 1ejv 2 . 

The DTFT of the sampled sequence y 1t5 n 2  is related to the 
CTFT of y 1t 2  by 

 Y 1ejv 2 5 a
`

k52`

Y 1v 2 2pk 2 . (S7) 

In the reverse direction, if the sequence d 3n 4 is used to create 
a continuous-time signal f 1t 2 5 a

n

d 3n 4 y 1t2 n 2 , then 

 F 1v 2 5 D 1e jv 2Y 1v 2 .  (S8)

An important sequence encountered in signal recov-
ery problems is the sampled cross correlation ras 3n 4
 5 8a 1t 2 , s 1t2 n 2 9. This sequence can be obtained by sam-
pling the output of the filter s 12t 2  with a 1t 2  as its input. 
An immediate consequence from (S7) is that the DTFT of 
ras 3n 4  can be expressed as 

 wSA 1e jv 2 5 a
`

k52`

S* 1v 2 2pk 2A 1v 2 2pk 2 , (S9) 

where 1 # 2 * denotes the complex conjugate. 
The set 5a 1t2 n 2 6 is orthonormal if each function a 1t2 n 2  

is orthonormal to all of its integer shifts. This is equivalent to 
requiring that raa 3n 45d 3n 4 where 

 d 3n 4 5 e 1 n5 0;

0 otherwise.
 (S10) 

From (S9) we conclude that 5a 1t2 n6 is an orthonormal 
sequence if and only if 

 waa 1e jv 2 5 a
`

k52`

|A 1v 2 2pk 2 |25 1.  (S11) 
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PROJECTIONS IN HILBERT SPACES
A projection E in a Hilbert space H is a linear operator 
from H onto itself that satisfies the property 

  E25 E. (S12) 

The importance of projection operators is that they map 
the entire space H onto the range space R 1E 2, and leave 
vectors in this subspace unchanged. Furthermore, property 
(S12) implies that every vector in H can be uniquely writ-
ten as the combination of a vector in R 1E 2 and a vector in 
the null space N 1E 2 , that is, we have the direct sum decom-
position H5R 1E 2!N 1E 2 . This is illustrated in Figure S1 for 
two different projection operators. Therefore, a projection 
is completely determined by its range space and null space. 

An orthogonal projection P is a Hermitian projection opera-
tor. In this case the range space R 1P 2 and null space N 1P 2 are 
orthogonal. Therefore, an orthogonal projection is completely 
determined by its range space. We use the notation PV to 
denote an orthogonal projection with range V5R 1PV 2. 

An oblique projection EVW is an operator satisfying the projec-
tion property (S12) that is not Hermitian. Its range space is 
given by V so that EVWx5 x for any x [ V, and its null space is 
given by W so that EVW x5 0 for any x [W. 

When decomposing the space using an orthogonal projec-
tion, the vectors comprising the decomposition are orthogo-
nal, since R 1P 2  and N 1P 2  are orthogonal spaces. This is not 
true when using an oblique projection, as illustrated in 
Figure S1. Another important feature of the orthogonal 

 projection is that the norm of the projection is never larger 
than the original norm 

 ||PVx|| # ||x||. (S13) 

This inequality does not necessarily hold for an oblique projec-
tion. In fact, the norm of the oblique projection can be much 
larger than the signal norm. Consequently, algorithms relying 
on the oblique projection can cause a significant increase in the 
noise if it is not constrained to the range space of the projec-
tion. On the other hand, orthogonal projections are more stable 
in the presence of noise due to (S13). 

  [FIGS1]  Decomposition of a vector x into two components 
using an (a) orthogonal projection and (b) oblique projection. 

(a) (b)

W

x

x

VV

V

PV x EVW x

EWV x
PV   x

This geometric interpretation implies that the question of 
reconstruction from c 3n 4 is equivalent to asking which signals 
can be recovered from knowledge of their orthogonal projec-
tion onto S. At first glance it may seem like only signals in S 
may be reconstructed since the projection zeros out any com-
ponent in S'. However, a closer inspection reveals that if we 
know in advance that x 1 t 2  lies in a space A with suitable prop-
erties (which we will define below), then there is a unique vec-
tor in A with the given projection onto S. As depicted in 
Figure 5, in this case we can draw a vertical line from the pro-
jection until we hit the space A and in such a way obtain the 
unique vector in A that is consistent with the given samples. 
Evidently, perfect recovery is possible for a broad class of sig-
nals beyond those that lie in S. 

We next discuss how to recover x 1t 2  explicitly using a 
 discrete-time filter as in Figure 3. We first note that the orthog-
onal projection PSx 1t 2  can be obtained from the samples c 3n 4 by 
using the scheme in Figure 3 with w 1t 2 5 s 1t 2  and h 3n 4 chosen 
as the impulse response of the filter with DTFT [40], [11] 

 H 1e jv 2 5 1

a
`

k52`
|S 1v 2 2pk 2 |2 5

1

wSS 1e jv 2 , (9) 

where S 1v 2  is the CTFT of s 1t 2 , 

 wSA 1ejv 2 ! a
`

k52`
S* 1v 2 2pk 2A 1v 2 2pk 2 , (10) 

and [* denotes the complex conjugate. Here A 1v 2  is the CTFT 
of an arbitrary function a 1t 2 . The function wSA 1e jv 2  is the DTFT 
of the sampled cross-correlation sequence rsa5 8s 1t 2 , a 1t2 n 2 9 
(see “CTFTs and DTFTs”). Note that the Riesz basis condition (6) 
guarantees that (9) is well defined. Efficient implementation of (9), 
and the filters we introduce in the sequel, is possible in spline 
spaces, based on the results of [11], [36], and [37]. 

To show that the output of the resulting system is PSx 1t 2  
note that if x 1t 2  is in S', then the output will be zero since 
in this case c 3n 4 is the zero sequence. This follows from the 
fact the inner product of x 1t 2  with any signal in S is zero. 
On the other hand, if x 1t 2 [ S, then from (7) we can write 
x 1t 2 5Sn b 3n 4  s 1t2 n 2  for some sequence b 3n 4 . Using the 
Fourier relations given in “CTFTs and DTFTs,” it follows that 

 C 1e jv 2 5 B 1e jv 2 a`
k52`

|S 1v 2 2pk 2 |25 B 1e jv 2wSS 1e jv 2 . (11)

Therefore, d 3n 45 b 3n 4 and x̂ 1t 2 5 x 1t 2 . Consequently, if x 1t 2  
lies in S to begin with, then this scheme will ensure perfect 
reconstruction. If in addition s 1t 2  satisfies the partition of unity 
property, that is Sn s 1t2 n 2 5 1 for all t, then it can be shown 
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that by selecting the sampling period T sufficiently small, any 
input signal that is norm bounded can be approximated as close 
as desired by this approach [11]. 

The denominator in (9) is the DTFT of the sampled correla-
tion function rss 3n 45 8s 1 t 2 , s 1t2 n 2 9. Therefore, if the func-
tions 5s 1t2 n 2 6 form an orthonormal basis, then rss 3n 45d 3n 4 
and H 1e jv 2 5 1. In this case no preprocessing of the samples is 
necessary prior to reconstruction. This is precisely the setting 
of the Shannon sampling theorem: it is easy to verify that the 
functions s 1t2 n 2 5 sinc 1t2 n 2  form an orthonormal basis 
[41], [11]. 

To extend recovery beyond the space S, suppose that 
x 1t 2  lies in a known subspace A. Clearly to be able to 
reconstruct x 1t 2  from the given samples we need that A 
and S' intersect only at zero, since any nonzero signal y 1t 2  
in the intersection of A and S' will yield zero samples and 
therefore cannot be recovered. Throughout, we say that two 
spaces are disjoint if they intersect only at zero. Intuitively, 
we also need A and S to have the same number of degrees 
of freedom. These requirements can be made precise by 
assuming a direct sum condition L25A!S

', where ! 
denotes a sum of two subspaces that intersect only at the 
zero vector. This implies that A and S' are disjoint, and 
together span the space of L2 signals. In the SI setting this 
condition translates into a simple requirement on the CTFT 
of the generators a 1t 2 , s 1t 2  of A, S [42] 

 0wSA 1e jv 2 0 . a, (12) 

for some constant a . 0, where wSA 1ejv 2  is defined by (10). 
Under this condition, reconstruction can be obtained by choos-
ing w 1t 2 5 a 1t 2  and [12]–[15], [24] 

 H 1e jv 2 5 1

wSA 1e jv 2 . (13) 

When A5S, the filter (13) coincides with (9). 
To see that (13) ensures perfect recovery for signals in A, 

note that any x 1t 2 [ A can be written as x 1t 2 5Snb 3n 4  a 1t2 n 2
. Using the relations in “CTFTs and DTFTs” it can be shown that 
the sequence of samples will have a DTFT given by 

 C 1e jv 2 5 B 1e jv 2wSA 1e jv 2 , (14) 

from which the result follows. In addition, for any x 1t 2 [ S' 
we have immediately that x̂ 1t 2 5 0 since c 3n 4 will be the zero 
sequence. Consequently, the overall system implements an 
oblique projection EAS' with range space A and null space S' 
[43], [39] (see “Projections in Hilbert Spaces”). Indeed, this is 
the unique operator satisfying EAS'x 1t 2 5 x 1t 2  for any x 1t 2  in 
A, and EAS'x 1t 2 5 0 for all x 1t 2  in S'. 

It is also interesting to interpret the proposed sampling 
scheme as a basis expansion. Since any signal in A can be 
 recovered from the corrected samples d 3n 45 c 3n 4*h 3n 4  via 
x 1t 2 5Sn d 3n 4  a 1t2 n 2 , we may view this sequence as the 

 coefficients in a basis expansion. To obtain the corresponding 
basis we note that by combining the effects of the sampler s 1t 2  
and the correction filter h 3n 4 of (13), the sequence of samples 
can be equivalently expressed as d 3n 45 8x 1t 2 , v 1t2 n 2 9 where 
v 1t 2 5Sn h 3n 4  s 1t2 n 2 . In the Fourier domain, 

 V 1v 2 5H 1e jv 2S 1v 2 . (15)

Therefore, we conclude that any x 1t 2 [ A can be written as 

 x 1t 2 5 a
`

n52`
8 x 1t 2 , v 1t2 n 2 9 a 1t2 n 2 . (16)

It can be easily verified that the functions 5v 1t2 n 2 6 form a 
Riesz basis for S, and 8v 1t2 n 2 , a 1t2m 2 95dmn where 
dmn5 1 if m5 n and 0 otherwise. Therefore, these functions 
are the oblique dual basis of 5a 1t2 n 2 6 in S [14], [15], [13], 
[42], [44], [31] (see “Basis Expansions”). When A5S, we 
recover the conventional dual basis functions. In this case 5v 1t2 n 2 6 forms a basis for S that is dual to the original basis 5s 1t2 n 2 6 : 8v 1t2 n 2 , s 1t2m 2 95dnm. This provides a con-
crete method for constructing a dual of a given basis 5a 1t2 n 2 6 in any subspace S satisfying the direct sum condi-
tion L25A!S

'. 
To conclude our discussion so far, we have seen that a 

signal x 1t 2  in a SI subspace A generated by a 1t 2 , can be 
reconstructed from its generalized samples in Figure 1 
using any choice of s 1t 2  for which (12) is satisfied. Thus for 
a given SI space, there is a broad variety of sampling filters 
we can select from. By choosing the functions appropriate-
ly, a variety of interesting sampling theorems can be formu-
lated, such as pointwise sampling of nonbandlimited 
signals, bandlimited sampling of nonbandlimited functions, 
and many more. An example is given below. 

Despite the fact that any sampling function s 1t 2  satisfying 
(12) can be used to sample x 1t 2  in the space A generated by 
a 1t 2 , in the presence of noise out of A, the choice of sampling 
kernel will effect the reconstructed signal. More specifically, 
we have seen that the output of Figure 3 with w 1t 2 5 a 1t 2  and 
h 3n 4  given by (13) is equal to the oblique projection 
xE 1t 2 5 EAS'x 1t 2 . When x 1t 2 [ A, we have xE 1t 2 5 x 1t 2  for 
any choice of S', or equivalently any sampling function s 1t 2  
in Figure 3 satisfying (12). However, if x 1t 2  does not lie entire-
ly in A, for example due to noise, then different functions s 1t 2  
will result in different approximations xE 1t 2 [ A. A natural 
question is: Given an interpolation kernel a 1t 2 , which choice 
of sampling function s 1t 2  will lead to a reconstruction x̂ 1t 2  
that is closest to x 1t 2 ? If we measure the error using the 
squared-norm ||x̂ 1t 2 2 x 1t 2 ||2, then the choice s 1t 2 5 a 1t 2  
minimizes the error. This follows from the projection theorem 
which states that the orthogonal projection onto A is the clos-
est vector in A to an arbitrary input x 1t 2  [45] 

 arg min
v1t2[A||x 1t 2 2 v 1t 2 ||25 PAx 1t 2 . (17) 
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Therefore, since using a kernel a 1t 2  will 
lead to an interpolation x̂ 1t 2  in A irre-
spective of h 3n 4, the smallest error will 
result when x̂ 1t 2 5 PAx 1 t 2 . The orthogo-
nal projection can be achieved only if the 
sampling function s 1t 2  generates A. In 
addition, in contrast with the orthogonal 
projection, an oblique projection can 
increase the norm of the noise at the 
input (see “Projections in Hilbert 
Spaces”). In practice, however, we may 
prefer other choices that are easier to 
implement at the expense of a slight 
increase in error [24], [12]. 

We conclude this subsection with a 
nonintuitive example in which a signal that 
is not bandlimited is filtered with a LPF 
prior to sampling, and still can be perfectly 
reconstructed from the resulting samples. 

Consider a signal x 1t 2  formed by excit-
ing an RC circuit with a modulated 
impulse train Sn d 3n 4  d 1 t2 n 2 , as shown 
in Figure 6(a). The impulse response of 
the RC circuit  is  known to be 
a 1t 2 5t21exp52 t/t6u 1t 2 , where u 1t 2  is 
the unit step function and t 5 RC is the 
time constant. Therefore 

    x 1t 2 5 1
t a

`

n52`
d 3n 4exp5 2 1t2 n 2 /t6u

 1t2 n 2 . (18) 

Clearly, x 1t 2  is not bandlimited. Now, suppose that x 1t 2  is filtered 
by an ideal LPF s 1t 2 5 sinc 1t 2  and then sampled at times t5 n 
to obtain the sequence c 3n 4. The signal x 1t 2  and its samples are 
depicted in Figure 6(b). Intuitively, there seems to be information 
loss in the sampling process since the entire frequency content of 
x 1t 2  outside 32p,p 4 is zeroed out, as shown in Figure 6(c). 
However, it is easily verified that condition (12) is satisfied in this 
setup and therefore perfect recovery is possible. The digital cor-
rection filter (13) in this case can be shown to be 

 
h 3n 45 • 1 n5 0;

t

n
1 2 1 2n  n Z 0.

 
(19)

Thus, to reconstruct x 1t 2  we need to excite an identical RC cir-
cuit with an impulse train modulated by the sequence 
d 3n 45 h 3n 4*c 3n 4. The entire sampling-reconstruction setup is 
depicted in Figure 6(a). 

UNCONSTRAINED RECONSTRUCTION 
WITH NONLINEAR DISTORTION
Suppose now that as in the previous section x 1t 2  lies in a sub-
space A and (12) is satisfied. However, prior to sampling by 

s 12t 2  the signal is distorted by a memoryless, nonlinear and 
invertible mapping M 1x 2  as in Figure 2. A naive approach to 
recover the signal x 1t 2  from its samples is to first apply M21 
to the sample sequence c 3n 4, leading to a sequence d 3n 4, and 
then reconstruct x 1t 2  from the samples d 3n 4 using standard 
reconstruction techniques [46]. However, if the samples c 3n 4 
are not ideal, namely are not pointwise evaluations of x 1t 2 , 
then this approach is suboptimal in general. 

A surprising result developed in [47] is that if the non-
linearity is invertible and does not change too fast, then it 
does not introduce theoretical difficulties. More specifical-
ly, under the same direct sum condition (12) we had in the 
linear sampling case, and assuming that the derivative of 
the nonlinearity is appropriately bounded, there is a 
unique signal x 1t 2  with the given samples c 3n 4 . Therefore, 
it is enough to seek a recovery x̂ 1t 2  that is consistent in 
the sense that it yields the samples c 3n 4  after it is reinject-
ed into the system e`2`s 1t2 n 2M 1 x̂ 1t 2 2dt5 c 3n 4 . Any such 
signal must be equal to x 1t 2  due to the uniqueness prop-
erty. This result is important as it allows to reformulate 
the recovery problem in terms of minimizing the error in 
the samples. 

Since x 1t 2 [ A, we can write x̂ 1t 2 5Sn d 3n 4 a 1t2 n 2  for 
some se quence d 3n 4. Thus, our problem reduces to finding a 
sequence d 3n 4 that minimizes the consistency cost function 

 f 1d 2 5 7c 3n 42  ĉ 3n 4 7 ,2
. (20)

Here ||b 3n 4||,2
 is the ,2-norm of the sequence b 3n 4, and 

[FIG6] A nonbandlimited signal x(t), formed by exciting an RC-circuit with a modulated 
impulse train, is sampled after passing through an ideal LPF. It is then perfectly 
reconstructed by re-exciting an identical RC-circuit with an impulse train modulated by 
a digitally filtered version of the samples. (a) Sampling and reconstruction setup. (b) The 
signal x(t), its samples c 3n 4, and expansion coefficients d 3n 4. (c) The signal X (v) and the 
sampling filter S(v). Perfect recovery is possible despite the fact that a large portion of 
the frequency content is lost due to the filtering operation.
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 ĉ 3n 45 3`
2`

s 1t2 n 2  M a a
`

 

m52`
d 3m 4 a 1t2m 2 bdt, (21) 

are the estimated samples based on our current guess of x 1t 2 . 
Clearly the minimal value of f 1d 2  is 0. Since M is nonlinear, the 
cost function (20) is in general nonconvex. Therefore optimiza-
tion algorithms for minimizing (20) might trap a stationary 
point, and not the global minimum which we seek. Surprisingly, 
it can be shown [47] that under the direct sum condition and 
appropriate bounds on the derivative of M, (20) has a unique 
stationary point that is equal to the global minimum. Therefore, 
any algorithm designed to trap a stationary point automatically 
leads to perfect recovery. This is despite the fact that the objec-
tive (20) is not convex. In Figure 7, we show a block diagram of 
an iterative approach that is derived by applying a Newton 
method on (20). This same algorithm can also be obtained from 
an approximate projection onto convex sets strategy, and a lin-
earization approach; see [47] for more details. 

At each iteration, the algorithm of Figure 7 works as follows. 
Denote by dk 3n 4 the expansion coefficients at the kth iteration 
so that x̂k 1t 2 5Sn dk 3n 4  a 1t2 n 2 . Then dk11 3n 4 is calculated as 

 dk11 3n 45 dk 3n 41ak a
`

m52`
gk 3n, m 4ek 3m 4, (22) 

where ak is the step size, ek 3m 45  c 3m 42 ĉk 3m 4 is the error-
in-samples sequence with ĉk 3n 4  denoting the approximate 
samples at stage k obtained via (21) with d 3n 45 dk 3n 4, and 
gk 3l, m 4 is a linear system which is the inverse of 

 hk 3l, m 453`
2`

s 1t2 l 2M r a a` 

n52`
dk 3n 4  a 1t2n 2b  a 1t2m 2dt.

 (23) 

Here M r denotes the derivative of M. Note that hk 3l, m 4 is not 
SI in general and therefore it cannot be inverted in the frequen-
cy domain to obtain gk 3l, m 4. In practice, though, one usually 
analyzes a finite set of samples c 3n 4, 0 # n # N2 1. Assuming 
that c 3n 45 0 outside this range, the matrix 5 gk 3l, m 4 6  for 
0 # l, m # N2 1 can be obtained by inverting the correspond-
ing matrix 5hk 3l, m 4 6. 

We now demonstrate the effectiveness of the algorithm in 
a scenario similar to that of Figure 6. Specifically, suppose 

that, as in Figure 6, x 1t 2  is known to be 
of the form (18), and we are given the 
samples c 3n 4 5 en

n21arctan 1x 1t 2 2dt. This 
corresponds to using a nonlinear map-
ping M 1x 2 5 arctan 1x 2  and a sampling 
filter with impulse response equal to a 
rectangular window of length one. The 
signal and its samples are depicted in 
Figure 8(a). Evidently, the samples c 3n 4 
constitute a rather poor representation 
of the signal. Consequently, if one 
ignores the nonlinearity and uses the 
techniques developed in the previous 
section, that is filtering with H 1e jv 2  of 
(13), then the reconstruction error is 
large (dotted line). In Figure 8(b) we 
show the result of applying the algo-
rithm presented here, which leads to 
perfect reconstruction of x 1t 2  from the 
nonideal samples c 3n 4. 
CONSTRAINED RECONSTRUCTION
Up until now we specified the sampling 
process but did not restrict the recon-
struction or interpolation kernel w 1t 2  in 
Figure 3. In many applications this ker-
nel is fixed in advance due to implemen-
tation issues. For example, in image 
processing applications kernels with 
small supports are often used. These 
include nearest neighbor, bilinear, bicu-
bic, Lanczos, and splines. The interpola-
tion kernel w 1t 2  can also represent the 
pixel shape of an image display. 

[FIG7] One iteration of the nonlinear recovery algorithm. The expansion coefficients 
at the kth iteration, dk 3n 4, are used to synthesize an estimate of the signal, x̂k(t). This 
estimate goes through the sampling process to produce the corresponding samples 
ĉk 3n 4. The error with respect to the measured samples, ek 3n 45 c 3k 42 ĉk 3n 4 , is then 
used to update the estimate. 
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[FIG8] A signal x(t) lying in a shift-invariant space was linearly sampled after passing 
through a memoryless nonlinear system. (a) Ignoring the nonlinear distortion and 
filtering the samples c 3n 4 with the filter H(e jv) of (13), leads to poor reconstruction. 
(b) The algorithm presented here leads to perfect recovery of x(t) .
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To obtain stable reconstruction, we concentrate in the 
sequel on cases in which w 1t 2  satisfies the Riesz basis condition 
(6). In particular, it can be easily shown that B-splines all satisfy 
this requirement. 

Given a sampling function s 12 t 2  and a fixed interpolation 
kernel w 1t 2 , an important question is how to design the digital 
filter h 3n 4 in Figure 3 so that the output x̂ 1t 2  is a good approxi-
mation of the input signal x 1t 2  in some sense. Clearly, x̂ 1t 2  will 
always lie in the space W, spanned by the generator w 1t 2 . This is 
because for every choice of the sequence d 3n 4, x̂ 1t 2  has the form 
x̂ 1t 2 5Sn d 3n 4  w 1t2 n 2 . Therefore, if x 1t 2  does not lie in W to 
begin with, then x̂ 1t 2  cannot be equal x 1t 2 . Since x̂ 1t 2  is con-
strained to lie in W, it follows from the projection theorem (17) 
that the minimal error approximation to x 1t 2  is obtained when 
x̂ 1t 2 5 PWx 1t 2 . The question is whether this solution can be 
generated from the samples c 3n 4. In general, the answer is nega-
tive without sufficient prior knowledge on the signal [12]. 
However, when x 1t 2  lies in a subspace satisfying (12), PWx 1t 2  
can be obtained by filtering the sample sequence with 

 H 1e jv 2 5 wWA 1e jv 2
wSA 1e jv 2wWW 1e jv 2 , (24) 

where wWA 1ejv 2 , wSA 1ejv 2  and wWW 1ejv 2  are as in (10) with the cor-
responding substitution of the filters W 1v 2 , A 1v 2  and S 1v 2 . In 
this case, the output of the system of Figure 3 is given by 
PWEAS'x 1t 2  [12] .  Consequently,  i f  x 1t 2 [ A ,  then 
EAS'x 1t 2 5 x 1t 2  and the minimal squared-error approximation 
PWx 1t 2  is achieved. 

To understand this result geometrically, note that we have 
already seen in the previous subsection that under the direct 
sum condition, any vector x 1t 2 [ A can be recovered from 
the samples c 3n 4. This is illustrated in Figure 5. Here, how-
ever, we are constrained to obtain a solution in W. But, since 
we can determine x 1t 2 , we can also compute PWx 1t 2 , which 
is the minimal squared-error approximation in W. This is 
shown in Figure 9. 

DENSE GRID RECOVERY
The situation in which x 1t 2  can be completely determined 
from its samples but cannot be reproduced by the system is 
somewhat frustrating. Moreover, the error caused by 
restricting the recovered signal to lie in W may be very 
large if W is substantially different from A. One way to 
bridge the gap between the unconstrained and constrained 
recovery techniques is to increase the interpolation rate, 
name ly  p roduce  a  r econs t ruc t ion  o f  the  f o rm 
x̂ 1t 2 5Sn d 3n 4  w 1t2 n/K 2 ,  for some integer K . 1, as 
depicted in Figure 4. This strategy is legitimate as we are 
still using a predefined interpolation kernel w 1t 2 , which 
may be easy to implement. Thus, we effectively introduce a 
tradeoff between complexity and performance. 

The motivation for this approach can be understood 
from a geometric viewpoint. As we increase the interpola-
tion rate K , the reconstruction space W spanned by the 

functions 5w 1t2 n/K 2 6  becomes larger and consequently 
closer to A. In some cases, there exists a factor K  for 
which W contains A, thus recovering the possibility of 
perfect reconstruction. 

In order for the reconstruction to be stable, we focus on the 
case in which the functions 5w 1t2 n/K 2 6 form a Riesz basis. 
This requirement is satisfied if and only if there exists constants 
0 , a # b , ` such that a # S`l52`|W 1v 2 2plK 2 |2 # b is 
satisfied almost everywhere. 

Similarly to the setting in which K5 1, it can be shown that 
when x 1t 2  is in A, the minimal squared error solution 
x̂ 1t 2 5 PWx 1t 2  can be attained with the system depicted in 
Figure 4. The frequency response of the correction filter h 3n 4, 
which operates on the up-sampled data, is given by 

 H 1e  
jv 2 5 a

K21

m50
 

wWs As
1e 

j1v12pm/K2 2
wSA 1e 

jKv 2wWsWs
1e 

j1v12pm/K2 2 , (25) 

where Ws 1v 2 5W 1Kv 2 , As 1v 2 5 A 1Kv 2 , and wSA 1e jv 2  is 
defined in (10). The dense grid recovery scheme of Figure 4 can 
also be implemented using polyphase filters, which in some 
cases may lead to a simpler implementation [48]. 

SMOOTHNESS PRIORS
Up until now, we considered the setting in which the input 
signal x 1t 2  is constrained to a subspace. We now treat a more 
general and less restrictive formulation of the sampling prob-
lem in which our prior knowledge on the signal is that it is 
smooth in some sense. Here we model the extent of smooth-
ness of x 1t 2  as the L2 signal-norm at the output of a continu-
ous-time filter L 1v 2  with x 1t 2  as its input. In practice, L 1v 2  is 
often chosen to be a first or second order derivative to con-
strain the solution to be smooth and nonoscillating, i.e., 
L 1v 2 5 a01 a1 jv 1 a2 1 jv 2 21c for some constants an. 
Another common choice is the filter L 1v 2 5 1a0

21v2 2g with 
some parameter g. We denote the output norm as ||Lx 1t 2 ||. For 
simplicity, we assume that L 1v 2 . a . 0 almost everywhere 
for some a, although the results extend to the noninvertible 
case as well.  

[FIG9] The signal x(t) [ A can be recovered from the samples 
c 3n 4, allowing to compute its orthogonal projection onto W.
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Unlike subspace priors, a one-to-one correspondence between 
smooth signals and their sampled version does not exist since 
smoothness is a far less restrictive constraint than confining the 
signal to a subspace. Perfect recovery, or even error-norm mini-
mization, is therefore impossible. Indeed, it can be shown that 
there is no single choice of x̂ 1t 2  that minimizes ||x̂ 1t 2 2 x 1t 2 ||2 
over all smooth signals x 1t 2 , even when x̂ 1t 2  is constrained to lie 
in a subspace W. This is because the sample sequence c 3n 4 is no 
longer sufficient to determine the orthogonal projection PW x̂ 1t 2  
[12]. Therefore, we will focus on alternative approaches for 
designing the reconstruction  system. 

UNCONSTRAINED RECONSTRUCTION
To approximate x 1t 2  from its samples, based solely on the 
knowledge that it is smooth, we consider two design techniques. 
The first consists of finding the smoothest signal that gives rise 
to the measured samples c 3n 4 [24]. The second is a minimax 
strategy in which the system is designed to yield the best 
approximation for the worst-case signal among smooth inputs 
that are consistent with the samples [12]. 

SMOOTHEST APPROXIMATION
In this approach, we require that the reconstructed signal x̂ 1t 2  
is smooth and consistent with the samples. The consistency 
requirement means that x̂ 1t 2  should yield the same samples 
c 3n 4 when reinjected into the system 

 8 x̂ 1t 2 , s 1t2 n 2 95 c 3n 45 8 x 1t 2 , s 1t2 n 2 9 for all n. (26) 

The simplest strategy to produce a consistent smooth recon-
struction is to minimize the smoothness ||Lx 1t 2 || subject to the 
consistency requirement 

 x̂ 1t 2 5 arg min
x1t2  iLx 1t 2 i  subject to S5x 1t 2 6 5  c. (27) 

The notation S5x 1t 2 6  denotes the sequence of samples 8 s 1t2 n 2 , x 1t 2 9 and c stands for the sequence 5c 3n 4 6. It can be 
shown that the solution to (27) has the form of Figure 3 where 
now the reconstruction kernel is 

 W
| 1v 2 5 S 1v 2

|L 1v 2 |2, (28) 

and 

 H 1e jv 2 5 1

fS
,
W 1e jv 2 . (29)

In the previous section, we have seen that the filter (29) 
corresponds to the choice leading to perfect reconstruction for 
signals x 1t 2 [W|  [see (12)]. Thus, this approach can be 
viewed as first determining the optimal space given by (28), 
and then finding the unique signal in W|  that is consistent 
with the given samples. 

As a special case, we may choose to produce the minimal 
norm consistent reconstruction x̂ 1t 2  by letting L be the 

 identity operator I. This leads to w| 1t 2 5 s 1t 2  and H 1e jv 2  is 
then given by (9). Consequently, x̂ 1t 2  is the orthogonal projec-
tion onto the sampling space, x̂ 1t 2 5 PSx 1t 2 . This can also be 
seen by noting that any reconstruction x̂ 1t 2  that yields the 
samples c 3n 4 has the form x̂ 1t 2 5 PSx 1t 2 1 v 1t 2  where v 1t 2  is 
an arbitrary vector in S'. The minimal norm approximation 
corresponds to the choice v 1t 2 5 0.

MINIMAX RECOVERY
The reconstruction error ||x̂ 1t 2 2 x 1t 2 ||2 of any recovery method 
depends on the unknown original signal x 1t 2 . This renders 
comparison between interpolation methods complicated. 
Indeed, one algorithm may be better than another for certain 
input signals and worse for others. The next approach we dis-
cuss is based on optimizing the squared-error performance for 
the worst input signal. 

The prior information we have can be used to construct a set 
V of all possible input signals 

 V5 5x 1t 2  : S5x 1t 2 6 5 c, ||Lx 1t 2 || # U6, (30) 

where U . 0 is some finite constant. The set consists of signals 
that are consistent with the samples and are relatively smooth 
(with respect to the weighted norm ||Lx 1t 2 ||). We now seek the 
reconstruction that minimizes the worst-case error over V 

 min
x̂1t2 max

x1t2[V|| x̂ 1t 2 2 x 1t 2 ||2. (31) 

It can be shown that the optimal solution does not depend on 
the constant U . Furthermore, the minimax solution interest-
ingly coincides with the smoothest approximation method, that 
is, the optimal interpolation kernel and digital compensation fil-
ter are given by (28) and (29), respectively. 

Although the two approaches we discussed are equivalent 
in the unrestricted setting, the minimax strategy allows 
more flexibility in incorporating constraints on the recon-
struction, as we show next. Furthermore, it tends to out-
perform the consistency approach when further restrictions 
are imposed as we will demonstrate via several examples. 

Figure 10 compares the minimax approach with bicubic 
interpolation in the context of image enlargement. The regular-
ization operator was taken to be L 1v 2 5 1 10.1p 2 21 ||v||2 2 1.3, 
where v denotes the two dimensional (2-D) frequency vector. In 
this example, minimax recovery is superior to the commonly 
used bicubic method in terms of peak signal to noise ratio 
(PSNR), defined as PSNR5 10log10 12552/MSE 2  with MSE 
denoting the empirical squared-error average over all pixel val-
ues. In terms of visual quality, the minimax reconstruction is 
sharper and contains enhanced textures. 

CONSTRAINED RECONSTRUCTION
We next treat the problem of approximating x 1t 2  from its sam-
ples c 3n 4 using a prespecified interpolation kernel w 1t 2 . Similar 
to the unrestricted scenario, the two main approaches in this 
setup are consistent reconstruction [24], [11], [14], [15], [13] 
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and minimax recovery [12], [49]. However, here the solutions 
no longer coincide. These methods can both be interpreted in 
terms of projections onto the spaces W and S that figure in the 
problem setting. Whereas the first approach leads to an oblique 
projection, the second strategy involves orthogonal projections, 
rendering this solution more robust to noise [50], [51]. 

CONSISTENT RECONSTRUCTION
To incorporate the constraint on the interpolation kernel, we 
extend (27) to include the restriction x 1t 2 [W  

 x̂ 1t 25 arg min
x1t2  7  Lx 1t 2 7    subject to  S5x 1t 2 65 c, x 1t 2PW.

 (32)

Recall that under the direct sum condition (12) with W playing 
the role of A, there is a unique signal in W  satisfying 
S5x 1t 2 6 5 c, which is equal to the oblique projection EWS'x 1t 2 . 
Since there is only one signal in the constraint set of problem 
(32), the smoothness measure in the objective does not play a 
role. The oblique projection can be obtained by processing the 
samples c 3n 4 using the filter 

 H 1e jv 2 5 1

wSW 1e jv 2 . (33) 

Comparing with (13), we see that this is precisely the filter that 
yields perfect recovery when we know that x 1t 2 [W. When the 
direct sum condition is not satisfied, there can be several consis-
tent solutions so that the objective in (32) is needed to select 
one output among all possibilities [52], [53]. 

MINIMAX RECOVERY
A drawback of the consistency approach is that the fact that x 1t 2  
and x̂ 1t 2  yield the same samples does not necessarily imply that 
x̂ 1t 2  is close to x 1t 2 . Indeed, for an input x 1t 2  not in W, the 
norm of the resulting reconstruction error x̂ 1t 2 2 x 1t 2  can be 
made arbitrarily large, if S is close to W'. Furthermore, as we 
have seen, the consistency method essentially ignores the 
smoothness prior. 

To directly control the reconstruction error || x̂ 1t 2 2 x 1t 2 ||2, 
we may modify the minimax strategy of the previous subsection 
to include the restriction x 1t 2 [W. Therefore, our minimax 
design criterion is now 

 min
x̂1t2[W max

x1t2[V|| x̂ 1t 2 2 x 1t 2 ||2, (34) 

where V is the set of smooth consistent signals given by (30). 
It turns out that the criterion (34) is too conservative and, 

for example, in the case in which L is the identity operator 
L5 I it results in the trivial solution x̂ 1t 2 5 0 [12]. To coun-
terbalance the conservative behavior of the minimax approach, 
instead of minimizing the worst-case squared-norm error, we 
consider minimizing the worst-case regret [54]. The regret is 
defined as the difference between the squared-norm error and 
the smallest possible error that can be achieved with a recon-
struction in W, namely 7PW'x 1t 2 7 2. This error is attained when 

x̂ 1t 2 5 PW x 1t 2 , which in general cannot be computed from the 
sequence of samples c 3n 4. Since the regret depends in general 
on x 1t 2 , it cannot be minimized for all x 1t 2 . Instead we consid-
er minimizing the worst-case regret over all possible signals 
x 1t 2  that are consistent with the given samples, which results 
in the problem 

 min
x̂1t2[W max

x1t2[V5 7 x̂ 1t 2 2 x 1t 2 7 22 7PW'x 1t 2 7 26. (35) 

with V  given by (30). Expressing x 1t 2  as x 1t 2 5 PWx 1t 2 1 
PW ' x 1t 2  and recalling that x̂ 1t 2 [W it is easy to see that (35) 
is equivalent to 

 min
x̂1t2[W max

x1t2[V 7 x̂ 1t 2 2 PWx 1t 2 7 2. (36) 

The solution to (36) can be shown to be the projection onto 
W of the unconstrained minimax recovery given by (28) and 
(29). The reconstructed signal x̂ 1t 2  is obtained by digitally filter-
ing the samples c 3n 4 with the filter 

 H 1e jw 2 5 fWW
, 1e jw 2

fSW
, 1e jw 2fWW 1e jw 2  , (37) 

where W| 1v 2  is given by (28). 
In Figure 11, we demonstrate the difference between the 

consistent and minimax-regret methods in an image-enlarge-
ment task. The setup is the same as that of Figure 10, only now 
the reconstruction filter is constrained to be a triangular kernel 
corresponding to linear interpolation. It can be seen that the 
error of the minimax regret recovery is only 0.7 dB less than 
the unconstrained minimax shown in Figure 10. The consistent 
approach, on the other hand, is much worse both in terms of 
PSNR and in terms of visual quality. Its tendency to over-
enhance high frequencies stems from the fact that it ignores 
the smoothness prior. 

Many of the interesting properties of the minimax-regret 
recovery (37) can be best understood by examining the case 
where our only prior on the signal is that it is norm-bounded, 

  [FIG10]  Mandrill image rescaling: down-sampling by a factor of 
three using a rectangular sampling filter followed by upsampling 
back to the original dimensions using two interpolation 
methods. (a) The bicubic interpolation kernel leads to a blurry 
reconstruction with PSNR of 24.18 dB. (b) The minimax method 
leads to a sharper reconstruction with PSNR of 24.39 dB. 

(a) (b)
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that is, when L is the identity 
operator L5 I. This choice of L 
was thoroughly investigated in 
[12]. Setting L 1v 2 5 1 in (37), 
the correction filter becomes 

     
 H 1e jv 2 5 wWS 1e jv 2

wSS 1e jv 2wWW 1e jv 2  , (38)

since from (28), w| 1t 2 5 s 1t 2 . Applying the Cauchy-Schwartz 
inequality to the numerator of (38) and to the denominator 
of (33), it is easy to see that the magnitude of the minimax 
regret filter (38) is smaller than that of the consistent filter 
(33) at all frequencies. This property renders the minimax 
regret approach more resistant to noise in the samples c 3n 4, 
since perturbations in x̂ 1t 2  caused by errors in c 3n 4  are 
always smaller in the minimax regret method than in the 
consistent approach. 

Apart from robustness to 
digital noise, which takes place 
after the signal was sampled, the 
minimax regret method is also 
more resistant to perturbations 
in the continuous-time signal 
x 1t 2 . To see this, note that the 
minimax regret reconstruction 

is given by x̂ 1t 2 5 PWPSx 1t 2 . Thus, the norm of x̂ 1t 2  is necessar-
ily bounded by that of x 1t 2 . Furthermore, it is easy to show that 
the resulting reconstruction error is always bounded by twice the 
norm of x 1t 2  : || x̂ 1t 2 2 x 1t 2 ||2 # 2||x 1t 2 ||2. In contrast, the con-
sistent recovery is given by the oblique projection 
x̂ 1t 2 5 EWS'x 1t 2 , which may increase the norm of x 1t 2 . 
Consequently, the error of the consistent reconstruction can, in 
some cases, grow without bound. 

In Figure 12, we illustrate the minimax regret reconstruction 
geometrically for the case L5 I. We have seen already that 
knowing the samples c 3n 4  is equivalent to knowing 
xS 1t 2 5 PSx 1t 2 . In addition, our recovery is constrained to lie in 
the space W. As illustrated in the figure, the minimax regret 
solution is a robust recovery scheme in which the signal is first 
orthogonally projected onto the sampling space, and then onto 
the reconstruction space. 

When x 1t 2  is known to lie in S, it follows from the pre-
vious section that the minimal error can be obtained by 
using (24) with A 1v 2 5 S 1v 2 . The resulting filter coincides 
with the  minimax regret filter of (38). Consequently, the 
regret approach minimizes the squared-error over all 
x 1t 2 [ S. 

An interesting feature of the minimax regret solution is 
that it does not depend on the norm bound U . Therefore, 
x̂ 1t 2 5 PWPSx 1t 2  minimizes the worst-case regret error over 
all bounded inputs x 1t 2 , regardless of the norm of x 1t 2 . 
Furthermore, the regret recovery method does not require the 
direct-sum condition L25W!S

', which is necessary in the 
development of the unique consistent approach. 

In [12], tight bounds on the error resulting from each 
of the methods are developed and compared. We omit the 

technical details here and only sum-
marize the main conclusions. We 
first recall that if we know a priori 
that x 1t 2  lies in a subspace A such 
that L25A!S

', then the filter (24) 
will yield the minimal error approxi-
mation of x 1t 2  and therefore is opti-
mal in the squared-norm sense. 
When A5 S , this strategy reduces 
to the minimax regret method, 
while if A5W, then we obtain the 
consistent reconstruction. When no 
prior subspace knowledge is given, 
the regret approach is preferable if 
the spaces S and W are sufficiently 
far apart, or if x 1t 2  has enough 

THE MINMAX STRATEGY ALLOWS 
MORE FLEXIBILITY IN INCORPORATING 

CONSTRAINTS ON THE RECONSTRUCTION 
AND TENDS TO OUTPERFORM THE 

CONSISTENCY APPROACH.

  [FIG12]  Comparison of minimax regret reconstruction (PWPSx) and consistent reconstruction 
(EWS'x) for two different choices of W. (a) The minimax strategy is preferable when W is far 
from S. (b) Both methods lead to errors on the same order of magnitude when W is  close to S. 

(a) (b)
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  [FIG11]  Mandrill image rescaling: down-sampling by a factor of 
three using a rectangular sampling filter followed by upsampling 
back to the original dimensions. Upsampling is performed using a 
triangular interpolation kernel via the consistent and minimax 
regret methods. (a) The consistent approach over-enhances the 
high frequencies and results in a PSNR of 22.51 dB. (b) The 
minimax regret method leads to a smoother reconstruction with 
PSNR of 23.69 dB. 

(a) (b)
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energy in S . These results 
are intuitive as illustrated 
geometrically in Figure 12. 
In Figure 12(a), we depict 
the consistent and regret 
reconstruction when W is far from S. As can be seen in the 
figure, in this case the error resulting from the consistent 
solution is large with respect to the regret approximation 
error. In Figure 12(b), W and S are close, and the errors 
have roughly the same magnitude. 

MINIMAX DENSE GRID RECONSTRUCTION
We now extend the minimax regret approach to the dense-
grid recovery setup of Figure 4, in which the interpolation is 
performed using a predefined kernel w 1t 2  on a grid with 1/K 
spacings. To treat this scenario within the minimax-regret 
framework, we need to solve (34) with the appropriate recon-
struction space, namely W5 span5w 1t2 n/K 2 6. The corre-
sponding correction filter can be shown to be 

 H 1e jw 2 5 a
K21

m50
 

fWSW
,

S
1e j1w12pm/k2 2

fSW
, 1e jkw 2fWSWS

1e j1w12pm/k2 2  , (39) 

where Ws 1v 2 5W 1Kv 2 and W| s 1v 2 5W| 1Kv 2 with W| 1v 2 of (28). 
To understand the necessity of fine grid interpolation, 

note that there is no analytic expression for the optimal 
unconstrained kernel (28) in the time domain. In rate con-
version situations, where the output rate is an integer multi-
ple of the input rate, the kernel w 1t 2  needs to be calculated 
only on a discrete set of  points.  This is  because 
x̂ 1n/K 2 5 gm d 3m 4w 1n/K2m 2 , where K  is the oversampling 
factor. To approximate the sequence 5w 1n/K 2 6 on a finite set 
of indices, one can sample the expression g lW 1v 2 2plK 2  on 
a finite set of frequencies and apply the inverse DFT. However, 
if x̂ 1t 2  must be evaluated at arbitrary locations, then this 
method cannot be used. 

In the previous subsection, we have 
seen that this problem can be tackled by 
using a predefined interpolation kernel 
for which a formula exists. An alternative 
approach is to first evaluate the optimal 
kernel (28) on a dense grid and then use 
nearest neighbor or linear interpolation 
to obtain the values at the desired loca-
tions. This is referred to as first and sec-
ond order approximation [38]. It is easy to 
show that these approaches correspond to 
using the high-rate scheme of Figure 4 
with the digital correction filter 

 hap 3n 45 g 1n/K 2 , (40) 

and with a rectangular or triangular 
in te rpo la t ion  kerne l  w 1t 2 .  Here 
G 1v 2 5H 1e jv 2W| 1v 2  w i t h  H 1e jv 2  o f 

(29)  and  W
| 1v 2  g iven  by 

(28). Note, therefore, that 
this method does not take 
into account the nonoptimal 
interpolat ion  to  be  per-

formed in the second stage. This is in contrast with the 
dense grid approach presented here, where the correc-
tion filter (39) explicitly depends on w 1t 2 . Filter (39) 
shapes the spectrum of the up-sampled sequence in a way 
that partially compensates for the nonoptimal kernel 
to follow. 

In Figure 13, we compare the minimax-regret dense- 
grid reconstruction approach and first-order approxima-
tion to the unconstrained filter. To emphasize the 
differences, we used both methods to enlarge an image by 
an irrational factor p/e. It is clearly seen that the first-
order approximation approach produces blurry reconstruc-
tion, whereas in the  minimax method the edges are sharp 
and the textures are  better  preserved. 

STOCHASTIC PRIORS
In this section, we treat signal priors of stochastic nature. 
Specifically, the input x 1t 2  is modeled as a WSS random 
process having PSD Lxx 1v 2 . Our goal is to linearly esti-
mate x 1t 2  given the samples c 3n 4 . As we will see, the 
schemes resulting from these considerations have strong 
connections to the  minimax methods of the previous sec-
tion. In addition, this viewpoint also offers a nice explana-
tion to reconstruction artifacts, frequently encountered 
in applications. 

UNCONSTRAINED RECONSTRUCTION
We first examine constrained-free reconstruction. In the 
deterministic setting with smoothness prior we could not 
minimize the squared-error ||x̂ 1t 2 2 x 1t 2 ||2 for all smooth 

  [FIG13]  Comparison of first order approximation to the minimax method and dense grid 
minimax regret. In both methods the image is up-sampled by a factor of K5 2 and 
digitally filtered. Then, linear interpolation (triangular kernel) is used to calculate the 
gray-level values at the desired locations. (a) First order approximation to minimax 
regret (40). (b) Dense grid minimax regret (39). 

(a) (b)

THE USE OF THE SINC KERNEL FOR 
RECONSTRUCTION IS OFTEN IMPRACTICAL 

DUE TO ITS VERY SLOW DECAY.
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x 1t 2 , and therefore discussed a minimax method instead. In 
contrast, in the stochastic setting we can use the PSD 
Lxx 1v 2  of x 1t 2  to minimize the MSE E 3 |x 1t 2 2 x̂ 1t 2 |2 4  for 
every t, which depends only on the statistics of x 1t 2  and not 
on the signal itself. 

Our approach is to minimize the MSE by linear process-
ing of the samples c 3n 4 . As opposed to the common Wiener 
filtering problem, where both the input and output are 
either continuous- or discrete-time signals, here we are 
interested in estimating the continuous-time signal x 1t 2  
based on equidistant  samples of  y 1t 2 5 x 1t 2*s 12 t 2 . 
Consequently, we refer to this as the hybrid Wiener filter-
ing p roblem. 

The reconstruction x̂ 1t 2  minimizing the MSE can be imple-
mented by the block diagram in Figure 3 with the interpolation 
kernel [55], [56], [33], [57] 

 W 1v 2 5 S 1v 2Lxx 1v 2 , (41) 

and digital correction filter 

 H 1ejv 2 5 1

a
`

k52`
|S 1v 2 2pk 2 |2Lxx 1v 2 2pk 2 . (42) 

It is interesting to observe that (41) and (42) are identical to (28) 
and (29) with Lxx 1v 2 5 |L 1v 2 |22. Therefore, the smoothness 
operator in the deter ministic case corresponds to the whitening fil-
ter of the input x 1t 2 in the stochastic setting. 

CONSTRAINED RECONSTRUCTION
We now treat a more practical constrained setting, in which the 
interpolation filter is fixed in advance. Unfortunately, in this 
case, for a general given interpolation kernel, there is no digital 
correction filter that can minimize the MSE for every t [50]. In 
fact, the filter minimizing the MSE at a certain time instant t0 
also minimizes the MSE at times 5t01 n6 for all integer n, but 
not over the whole continuum. Therefore, error measures other 
than pointwise MSE must be considered. Before treating the 
problem of choosing an appropriate criterion, we first discuss 
how this time dependence phenomenon is related to artifacts 

commonly encountered in certain inter-
polation methods. 

The signal x 1t 2  in our setup is assumed 
to be WSS and, consequently, the sequence 
of samples c 3n 4 is a discrete WSS random 
process, as is the output d 3n 4 of the digital 
correction filter in Figure 4. The recon-
struction x̂ 1t 2  is formed by modulating the 
shifts of the kernel w 1t 2  by the WSS dis-
crete-time process d 3n 4. Assuming that the 
PSD of d 3n 4 is positive everywhere, signals 
of this type are not stationary unless w 1t 2  
is p–bandlimited [48]. Generally, x̂ 1t 2  will 
be a cyclostationary process. In practice, 
the inter polation kernels in use have a 
finite (and usually small) support, and are 
therefore not bandlimited. In these cases, 
the periodic correlation in x̂ 1t 2  often 
degrades the quality of the reconstruction, 
as subjectively perceived by the visual or 
auditory system. 

Note that although natural signals are 
rarely stationary to begin with, it is still 
relevant to study how an interpolation 
algorithm reacts to stationary signals. In 
fact, if an interpolation scheme outputs a 
cyclostationary signal when fed with a 
stationary input, then it will commonly 
produce reconstructions with degraded 
subjective quality also when applied to 
real world signals, as demonstrated in 
Figure 14. However, periodic structure in 
a recovered signal is not necessarily 
related to MSE. For example, the optimal 
unrestricted kernel (41) is usually not 

  [FIG14]  Periodic structure in an interpolated signal is a phenomena related to the effective 
bandwidth of the interpolation kernel. The larger the portion of its energy outside 32p,p 4, the stronger the periodic correlation. The original low-resolution image is shown 
in (a). The three images on the right were obtained by scaling a patch of the original 
image by a factor of five using three different methods. The portion of energy in the 
range 32p,p 4 of the kernels is (b) rectangular kernel – 61%, (c) bicubic kernel – 91%, and  
(d) sinc – 100%. Suppressed periodic correlation, however, does not necessarily imply that 
the reconstruction error is small. 

(a)

(b)

(c)

(d)
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bandlimited and thus leads to 
periodic structure in x̂ 1t 2 . 

The nonstationary behavior 
of x̂ 1t 2  is the reason why the 
pointwise MSE cannot be mini-
mized for every t in general. Two 
alternative error measures that 
have been proposed are the sampling-period-average-MSE 
and the projected MSE. 

The sampling-period-average-MSE utilizes the periodicity of 
the MSE, and integrates it over one period [58], [48] 

 MSEA5 E 3e t0

t011|x 1t 2 2 x̂ 1t 2 |2dt 4. (43) 

It turns out that minimization of the average MSE leads to a 
correction filter independent of t0 [48]. The second approach 
makes use of the fact that the best possible approximation to 
x 1t 2  in W is PW x 1t 2 . Therefore this method aims at minimizing 
the projected MSE, defined as the MSE with respect to the opti-
mal approximation in W [50] 

 MSEP5 E 3 |PWx 1t 2 2 x̂ 1t 2 |2 4. (44) 

Interestingly, both error measures (43) and (44) lead to the 
same digital correction filter, which is given by [48] and [50] 

 H 1e jv 2 5 fW
,
W 1e jv 2

fSW
, 1e jv 2fWW 1e jv 2 , (45) 

where here W| 1v 2 5 S 1v 2Lxx 1v 2 . This is also the solution 
obtained by the minimax regret criterion [see (37)] where 
|L 1v 2 |22 replaces the spectrum Lxx 1v 2 . Therefore, here again, 
L 1v 2  plays the role of the whitening filter of x 1t 2 . 

The average MSE criterion (43) can also be used to handle 
the dense grid recovery setup of Figure 4. Minimization of the 
average MSE, in this case, leads to the corresponding minimax 
regret solution (39) with W

| 1v 2 5 S 1v 2Lxx 1v 2 . 
The mathematical equivalence between the minimax and 

Wiener formulas suggests selecting an optimal operator L 1v 2  
in the minimax formulation that whitens the signal. In prac-
tice, one can either choose L 1v 2  in advance to approximately 
whiten signals typically encountered in a specific application 
(e.g., magnetic resonance images), or specify a parametric 
form for L 1v 2  and optimize the parameters based on the sam-
ples c 3n 4 [32]. 

SPARSITY PRIORS
Before concluding this review, we briefly address sampling of 
sparse analog signals, a topic that has gained considerable inter-
est in recent years. 

We have focused mainly on linear interpolation techniques 
that were sufficient to recover, or properly approximate, many 
classes of signals. An important case where nonlinear methods are 
necessary is when the prior on the signal is not a subspace but 
rather a sparsity constraint. For example, we may know that the 
signal has the form 

 x 1t 2 5 a
N21

k51
ak g 1t2 tk 2  (46)

for some coefficients ak and time 
instants tk. Such a signal is said to 
have a sparse representation since 
only a few parameters are needed 

to specify it [22], [23]. If the values tk are known, then this is 
just a subspace prior. More interesting is when the times tk need 
to be estimated along with the coefficients ak. Several sampling 
strategies to deal with these signal classes have been suggested, 
known as finite rate of innovation sampling. It turns out that 
roughly 2N  samples are enough to recover the entire signal 
with proper post processing. 

Another important class of sparse signals is the class of sig-
nals whose frequency transform (or any other transform) has a 
multiband structure. In this case, the Fourier transform consists 
of a finite number N of bands, each of width at most B, as illus-
trated in Figure 15. If the band locations ai, bi are known, then 
this corresponds to a subspace prior and the methods discussed 
in this review can be used to recover the signal from its samples 
[59], [60], [61]. A very interesting question is whether the signal 
can be recovered at a rate lower than the Nyquist rate, 1/T in 
the figure, when the band locations are unknown. Such a sam-
pling scheme is referred to as blind, since it does not require 
knowledge of the band locations in the sampling and recon-
struction stages. 

At first, it may seem that since the band locations are 
unknown, the signal can have energy in the entire Nyquist fre-
quency range, and therefore lower than Nyquist sampling will not 
be sufficient to recover the signal. Surprisingly, this reasoning is 
incorrect. In practice, such classes of signals can be sampled at 
rates much lower than Nyquist, without impairing the ability to 
perfectly recover the signals [18]. The tradeoff is in that the 
reconstruction involves nonlinear processing of the samples. In 
fact, it can be proven that the minimal sampling rate at which 
such signals can be processed is twice the sum of the widths of 
the frequency bands, which can be significantly smaller than 
twice the highest frequency, corresponding to the Nyquist rate. 
When the band locations are known, the minimal sampling rate 
is exactly the sum of the bands, referred to as the Landau rate. 
Thus, the price for constructing an ideal blind system is only a 
factor of two. (In the presence of noise and other distortions, a 
larger factor will be necessary to ensure stable recovery.) 

f

0 a1 b1 a2 b2 a3 b3

X (f )

B

1
T

  [FIG15]  Typical spectrum support of a multiband signal. 

A SURPRISING RESULT IS THAT IF 
THE NONLINEARITY IS INVERTIBLE 

AND DOES NOT CHANGE TOO FAST, 
THEN IT DOES NOT INTRODUCE 

THEORETICAL DIFFERENCES.
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The techniques developed to sample and reconstruct such 
classes of signals are based on ideas and results from the emerging 
field of compressed sensing [16], [17]. However, while the latter 
deals with sampling of finite vectors, the multiband problem is 
concerned with analog sampling. By using several tools, developed 
in more detail in [19], [20], and [21], it is possible to extend the 
essential ideas of compressed sensing to the analog domain. In this 
setting, the measurement matrix of traditional compressed sens-
ing is replaced by a bank of analog filters. This broader framework 
combines ideas presented in this review with traditional com-
pressed sensing tools in order to treat more general classes of sig-
nals, such as signals that lie in a union of SI spaces. In this case, 

 x 1t 2 5 a
K

k51
a
`

n52`
dk 3n 4 ak 1t2 n 2 ,  (47)

for a set of generators ak 1t 2  where only M , K out of the 
sequences d 3n 4 are not identically zero. This model subsumes 
the bandlimited class of functions as a special case. These 
results can also be applied more generally to signals that lie 
in a union of subspaces [62], [63], which are not necessarily 
shift invariant. 

UNIFIED VIEW AND PRACTICAL CONSIDERATIONS
In this article, we reviewed a panorama of methods for recov-
ering a signal from its samples. The solutions emerged from 
di f ferent  assumptions on the underlying s ignal , 
the sampling process, and the reconstruction mechanism. 
Whereas it is generally well understood how to model the sam-
pling process in real-world applications, choosing the signal 
prior and the reconstruction scheme is typically left to the 
practitioner. These components affect both the performance 
and the computational load of the resulting algorithm. 

Below, we emphasize commonalities and equivalence 
between the different methods to help the practitioner design 
the most appropriate filter for a particular application. We focus 
on the linear sampling scheme of Figure 1 and on the recon-
struction method of Figure 3, in which the sampling and inter-
polation grids coincide. Similar considerations can be applied in 
the more general scenarios we surveyed as well. 

The linear recovery algorithms corresponding to the first two 
columns of Table 3 share a common structure. The digital correc-
tion filter H 1e jv 2  of Figure 3 can be written in all cases in the form 

 H 1e jv 2 5 wWP 1e jv 2
wSP 1e jv 2wWW 1e jv 2 , (48) 

where wSP 1e jv 2  is defined by (10). Here S 1v 2  and W 1v 2  are 
the CTFTs of the sampling and reconstruction filters, and 
P 1v 2 , referred to as the prior filter, shapes the spectrum of 

x̂ 1t 2  according to the prior. The different priors together with 
the corresponding filters are summarized in Table 4. 

The reconstruction filter W 1v 2  can either be chosen in 
advance to lead to efficient implementation, or optimized 
according to the prior. The solutions in the unconstrained set-
ting can be recovered from (48) with W 1v 2 5 P 1v 2 . Indeed, in 
this case, the filter of (48) reduces to 

 H 1e jv 2 5 1

wSP 1e jv 2 . (49)

Substituting the values of the prior filter P 1e jv 2  into (49) 
according to Table 4 leads to the first column of Table 3. 
This filter also guarantees perfect reconstruction for any 
signal lying in the SI space spanned by the functions 5 p 1t2 n 2 6, offering an additional viewpoint on the prior fil-
ter P 1v 2 : It defines the SI space for which perfect recon-
struction is obtained using (49). 

When the reconstruction filter W 1v 2  is fixed in advance, 
substituting the values of P 1v 2  from Table 4 into (48) results in 
the second column of Table 3, with the minimax solution in the 
case of a smoothness prior. The consistent solution follows from 
choosing P 1v 2 5W 1v 2 . 

In general, practical evaluation of (48) may be difficult. One 
brute-force technique is to truncate the infinite series in (10) 
required for the computation of wSP 1e jv 2, wWP 1e jv 2 and wWW 1e jv 2. 
Any filter design technique can then be used to approximate this 
desired response with a finite-impulse response (FIR) or an infinite-
impulse response (IIR) filter. There are, however, cases in which 
H 1e jv 2  can be determined analytically. An important example is 
when s 1t 2, w 1t 2 and p 1t 2 are all B-splines [64], [12]. The numera-
tor in (48) then corresponds to an FIR filter with a simple formula. 
Each of the terms in the denominator correspond to a concatenation 
of a causal and anticausal IIR filter. We may therefore first filter the 
data with a recursive formula running from left to right and then fil-
ter the result with the same formula running from right to left [64]. 

The unified interpretation of the different interpolation 
algorithm highlights the fact that choosing a specific meth-
od is equivalent to choosing the prior filter. This filter, in 
turn, should be matched to the typical frequency content of 
the input signals. In addition, we have also seen that a gen-
eral purpose recovery algorithm (i.e., one which can handle 
resampling at arbitrary points) requires an explicit expres-
sion for w 1t 2  in the time domain. This should be taken into 
consideration when choosing the prior in the unconstrained 
approach since w 1t 2 5 p 1t 2  in this case. Therefore, a kernel 
p 1t 2  with an analytic formula is beneficial. 

Various priors have been previously proposed in the 
 literature. A common choice corresponds to selecting 

[TABLE 4] PRIOR FILTER FOR DIFFERENT SETUPS.

SUBSPACE PRIOR SMOOTHNESS PRIOR STOCHASTIC PRIOR
ASSUMPTION x 1t 2 5Sd 3n 4a 1t2 n 2 e | L 1v 2X 1v 2 |2dv # U x 1t 2  WSS WITH PSD Lxx 1v 2
PRIOR FILTER A 1v 2 S 1v 2 /|L 1v 2 |2 S 1v 2Lxx 1v 2
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L 1v 2 5 a01 a1 jv 1 a2 1 jv 2 21c1 aK 1 jv 2K as a differential 
operator together with S 1v 2  chosen as a rational causal filter 
[50]. Another type of prior is associated with a family of WSS 
processes including the Matérn class [33]. The regularization 
filter in this case is given by L 1v 2 5 wK

m51 1am1 ||v||2 2gm, 
where v  denotes the 2-D frequency vector, am . 0 and 
gm . 1. The resulting kernel p 1t 2  was shown to have a closed 
form in the case of pointwise sampling (i.e., S 1v 2 5 1) [65]. 
A nonisotropic version of this kernel was also used in [32], 
where the authors optimized the model parameters based on 
the samples c 3n 4. 

Finally, we comment briefly on the reconstruction filter 
w 1t 2 . The key consideration in choosing w 1t 2  is its sup-
port, which determines the number of coefficients of the 
corrected sequence d 3n 4  participating in computing 
x̂ 1t0 2 5 a d 3n 4w 1t02 n 2 . Typically, kernels with support 
up to four are used, requiring four multiplications per 
time instant t0 to compute x̂ 1t0 2  (or 16 in two dimensions). 
These include B-splines of degree zero to three whose sup-
ports are one to four respectively, the Keys cubic interpo-
lation kernel [66] whose support is four, and the Lanczos 
kernel with support four. Some of the commonly used ker-
nels, such as Keys and Lanczos, possess the interpolation 
property, namely w 1n 2 5d 3n 4 . This implies that if we are 
given pointwise samples of the signal c 3n 45 x 1n 2 , then no 
correction filter h 3n 4  is needed in order to obtain a consis-
tent reconstruction satisfying x̂ 1n 2 5 c 3n 4 . 
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