
Visualizing Image Priors

Tamar Rott Shaham and Tomer Michaeli

Technion—Israel Institute of Technology
{stamarot@campus,tomer.m@ee}.technion.ac.il

Abstract. Image priors play a key role in low-level vision tasks. Over the years,
many priors have been proposed, based on a wide variety of principles. While
different priors capture different geometric properties, there is currently no uni-
fied approach to interpreting and comparing priors of different nature. This limits
our ability to analyze failures or successes of image models in specific settings,
and to identify potential improvements. In this paper, we introduce a simple tech-
nique for visualizing image priors. Our method determines how images should
be deformed so as to best conform to a given image model. The deformed images
constructed this way, highlight the elementary geometric structures to which the
prior resonates. We use our approach to study various popular image models,
and reveal interesting behaviors, which were not noticed in the past. We confirm
our findings through denoising experiments. These validate that the structures we
reveal as ‘optimal’ for a specific prior are indeed better denoised by this prior.

1 Introduction

Image priors play a fundamental role in many low-level vision tasks, such as denois-
ing, deblurring, super-resolution, inpaiting, and more [1,2,3,4,5,6,7,8,9]. Over the years,
many priors have been proposed, based on a wide variety of different principles. These
range from priors on derivatives [10,2], wavelet coefficients [11,12], filter responses
[13,14], and small patches [15,1], to nonparametric models that rely on the tendency of
patches to recur within and across scales in natural images [16,17,18,19].

Different priors capture different geometric properties. For example, it is known
that the total variation (TV) regularizer [10] prefers boundaries with limited curvature
[20], whereas the local self-similarity prior [21] prefers straight edges and sharp corners
(structures which look the same at different scales). However, generally, characterizing
the behavior of complex image priors (e.g., trained models) is extremely challenging.
This limits our ability to interpret failures or successes in specific settings, as well as to
identify possible model improvements.

In this paper, we present a simple technique for visualizing image priors. Given
an image model, our method determines how images should be deformed so that they
become more plausible under this model. That is, for any input image, our algorithm
produces a geometrically ‘idealized’ version, which better conforms to the prior we
wish to study. Figure 1 shows several example outputs of our algorithm. As can be seen,
our idealization process nicely highlights the elementary features to which different
priors resonate, and thus gives intuition into their geometric preferences.
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Fig. 1. Visualizing image priors. Our algorithm determines how images should be deformed so
as to better comply with a given image model (exemplified here on a Brain Coral image). The
deformed images give insight into the elementary geometric features to which the prior resonates.
As can be seen, different image models (BM3D [17], Shrinkage Fields [22] with pairwise cliques,
Total Variation [10], Multi-Layer Perceptron [4]) have quite different geometric preferences.

Our approach is rather general and, in particular, can be used to visualize generative
models (e.g., fields of experts [14]), discriminative models (e.g., deep nets [4]), non-
parametric models (e.g., nonlocal means [16]), and any other image model that has an
associated denoising algorithm. In fact, the ‘idealized’ images produced by our method
have a nice interpretation in terms of the associated denoiser: Their geometry is not
altered if we attempt to ‘denoise’ them (treating them as noisy images). We thus refer
to our ‘idealized’ images as Geometric Eigen-Modes (GEMs) of the prior.

Figure 2 illustrates how GEMs encode geometric preferences of image models. For
example, since the TV prior [10] penalizes for large gradients, a TV-GEM is a deformed
image in which the gradient magnitudes are smaller. Similarly, the wavelet sparsity prior
[11] penalizes for non-zero wavelet coefficients. Therefore, a wavelet-GEM is a de-
formed image in which the wavelet coefficients are sparser. Finally, the internal KSVD
model [15] assumes the existence of a dictionary over which all patches in the image
admit a sparse representation. Thus, a KSVD-GEM is a deformed image for which there
exists a dictionary allowing better sparse representation of the image patches.

We use our approach to study several popular image models and observe various in-
teresting phenomena, which, to the best of our knowledge, were not pointed out in the
past. First, unsurprisingly, we find that all modern image priors prefer large structures
over small ones. However, the preferred shapes of these large objects, differ among pri-
ors. Specifically, most internal priors (e.g., BM3D [17], internally-trained KSVD [15],
cross-scale patch recurrence [19]) prefer straight edges and sharp corners. On the other
hand, externally trained models (e.g., EPLL [1], multi-layer perceptorn [4]), are much
less biased towards straight borders, and their preferred shapes of corners are rather
round. But we also find a few surprising exceptions to this rule. For example, it turns
out that nonlocal means (NLM) [16], which is an internal model, rather resonates to
curved edges, similarly to external priors. Another interesting exception is the fields of
experts (FoE) prior [14], an externally-trained model which turns out to prefer straight
axis-aligned edges.

The behaviors we reveal are often impossible to notice visually in standard image
recovery experiments on natural images (e.g., denoising, deblurring, super-resolution).
However, they turn out to have significant effects on the PSNR in such tasks. We demon-
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Fig. 2. GEMs better conform to the prior. (a) The internal KSVD model [15] assumes that
each patch in the image can be sparsely represented over some dictionary. (b) A KSVD-GEM is a
deformed image in which the diversity between patches is smaller, so that the sparsity assumption
holds better. Namely, for the KSVD-GEM, there exists a dictionary over which each patch can
be sparsely represented with better accuracy. Note how less atoms are invested in representing
the fine details in this dictionary. (c) The wavelet sparsity prior [11] penalizes the `1 norm of the
wavelet coefficients of the image (we use the Haar wavelet for illustration). (d) A wavelet-GEM is
a deformed image in which the wavelet coefficients have a smaller `1 norm, and are thus sparser.
(e) The TV prior penalizes the `1 norm of the gradient magnitude. (f) A TV-GEM is a deformed
image in which the gradient magnitude is smaller (and so has a smaller `1 norm).

strate this through several denoising experiments. As we show, structures predicted by
our approach to be most ‘plausible’, can indeed be recovered from their noisy versions
significantly better than other geometric features. So, for example, we show how the
FoE model indeed performs significantly better in denoising an axis-aligned square,
than in denoising a rotated one.

1.1 Related Work

There are various approaches to interpreting and visualizing image models. However,
most methods are suited only to specific families of priors, and are thus of limited use
when it comes to comparing between models of different nature. Moreover, existing
visualizations are typically indirect, and hard to associate to the reaction of the model
to real natural images.

Analytic Characterization: Certain models can be characterized analytically. One ex-
ample is the TV regularizer [10], which has been shown to preserve convex shapes
as long as the maximal curvature along their boundary is smaller than their perimeter
divided by their area [20]. Another example is sparse representations over multiscale
frames (e.g., wavelets [23], bandlets [24], curvelets [25], etc.). For instance, contourlets
have been shown to provide optimally sparse representations for objects that are piece-
wise smooth and have smooth boundaries [26] (i.e., functions that are C2 except for dis-
continuities along C2 curves). However, general image priors (especially trained mod-
els), are extremely difficult to analyze mathematically.
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Patch Based Models: Many parametric models have been used for small image patches,
including independent component analysis (ICA) [27], products of experts [28], Gaus-
sian mixture models (GMMs) [1], sparse representation over some dictionary [15], and
more. Those models are usually visualized by plotting the basic elements which com-
prise them. Namely, the independent components in ICA, the dictionary atoms in sparse
representations, the top eigenvectors of the Gaussians’ covariances in GMM, etc.

Markov Random Fields: These models use Gibbs distributions over filter responses
[29,13,30,14,31]. The filters (as well as their potentials) are typically learned from a
collection of training images. Those priors can be visualized by drawing samples from
the learned model using Markov-chain Monte Carlo (MCMC) simulation [29]. Another
common practice is to plot the learnt filters. However, as discussed in [32], those filters
are often nonintuitive and difficult to interpret. Indeed, as we show in Sec. 3, our visu-
alization reveals certain geometric preferences of the MRF models [14,31,22], which
were not previously pointed out.

Deep Networks: These architectures are widely used in image classification, but are
also gaining increasing popularity in low-level vision tasks, including in denoising [4],
super-resolution [33], and blind deblurring [34]. Visualizing feature activities at differ-
ent layers has been studied mainly in the context of convolutional networks, and was
primarily used to interpret models trained for classification [35,36]. Features in the first
layer typically resemble localized Gabor filters at various orientations, while deeper
layers capture structures with increasing complexity.

Patch Recurrence: Patch recurrence is known as a dominant property of natural im-
ages. A technique for revealing and modifying variations between repeating structures
in an image was recently presented in [37]. This method determines how images should
be deformed so as to increase the patch repetitions within them. Although presented in
the context of image editing, this method can in fact be viewed as a special case of our
proposed approach, where the prior being visualized enforces patch-recurrence within
the image. Here, we use the same concept, but to visualize arbitrary image priors.

In contrast to previous approaches, which visualize filters, atoms, or other building
blocks of the model, our approach rather visualizes the model’s effect on images. As
we illustrate, in many cases this visualization is significantly more informative.

2 Algorithm

Suppose we are given a probability model p(x) for natural images. To visualize what
geometric properties this model captures, our approach is to determine how images
should be deformed so that they become more likely under this model. That is, for any
input image y, we seek an idealized version x ≈ T {y}, for some piecewise-smooth de-
formation T , such that log p(x) is maximal. More specifically, we define the idealizing
deformation T as the solution to the optimization problem

argmin
x,T

− log p(x)︸ ︷︷ ︸
log-prior

+ λΦ(T )︸ ︷︷ ︸
smoothness

+ 1
2σ2 ‖T {y} − x‖2︸ ︷︷ ︸

fidelity

. (1)
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The log-prior term forces the image x to be highly plausible under the prior p(x). The
smoothness term regularizes the deformation T to be piecewise smooth. Finally, the
fidelity term ensures that the deformed (idealized) input image T {y} is close to x. The
parameters σ and λ control the relative weights of the different terms, and as we show
in Sec. 2.2, can be used to control the scales of features captured by the visualization.

We use nonparametric deformations, so that the transformation T is defined as

T {y}(ξ, η) = y(ξ + u(ξ, η), η + v(ξ, η)) (2)

for some flow field (u, v). We define the smoothness term to be the robust penalty

Φ(T ) =
∫∫ √

‖∇u(ξ, η)‖2 + ‖∇v(ξ, η)‖2 + ε2 dξdη, (3)

where ∇ = ( ∂∂ξ ,
∂
∂η ) and ε is a small constant. This penalty is commonly used in the

optical flow literature [38] and is known to promote smooth flow fields while allowing
for sharp discontinuities at objects boundaries.

To solve the optimization problem (1), we use alternating minimization. Namely,
we iterate between minimizing the objective w.r.t. the image x while holding the defor-
mation T fixed, and minimizing the objective w.r.t. T while holding x fixed.
x-step: The smoothness term in (1) does not depend on x, so that this step reduces to

argmin
x

1
2σ2 ‖T {y} − x‖2 − log p(x). (4)

This can be interpreted as computing the maximum a-posteriori (MAP) estimate of x
from a “noisy signal” T {y}, assuming additive white Gaussian noise with variance σ2.
Thus, x is obtained by “denoising” the current T {y} using the prior p(x).
T -step: The log-likelihood term in (1) does not depend on T , so that this step boils
down to solving

argmin
T
‖T {y} − x‖2 + 2λσ2 · Φ(T ). (5)

This corresponds to computing the optical flow between the current image x and the
input image y, where the regularization weight is 2λσ2. To solve this problem we use
the iteratively re-weighted least-squares (IRLS) algorithm proposed in [39] (using an
L2 data-term in place of their L1 term).

Therefore, as summarized in Alg. 1, our algorithm iterates between denoising the
current deformed image, and warping the input image to match the denoised result. In-
tuitively, when the denoiser is applied on the image, it modifies it to be more plausible
according to the prior p(x). This modification introduces slight deformations, among
other effects. The role of the optical flow stage is to capture only the geometric modifi-
cations, which are those we wish to study. This process is illustrated in Fig. 3.

Note that typical optical flow methods work coarse-to-fine to avoid getting trapped
in local minima (the flow computed in each level is interpolated to provide an initial-
ization for the next level). In our case, however, this is not needed because the flow
changes very slowly between consecutive iterations of Alg. 1. Thus, in each iteration,
we simply use the flow from the previous iteration as initialization.
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Input: Image y, denoising function Denoise()
Output: Idealizing transformation T , idealized image yGEM

Initialize T 0 to be the identity mapping.
for k = 1, . . . ,K do

xk ← Denoise(T k−1{y}) /* tuned for noise level σ */
T k ← OpticalFlow(y, xk) /* with regularization parameter 2λσ2 */

end
T ← T K

yGEM ← T {y}
Algorithm 1: Geometric prior visualization.

Denoising Optical flow Warping Denoising Optical flow Warping

Input Iteration 1 Iteration K GEM

Fig. 3. Schematic illustration of the algorithm. In each iteration, the current corrected image
T {y} is “denoised” to obtain an updated image x. Then, the deformation T is updated to be
that which best maps the input y to the new x. This results in a new corrected image T {y}. The
iterations are shown for the FoE model [14]. Photo courtesy of Mickey Weidenfeld.

2.1 Alternative Interpretation: Geometric Eigen-Modes

Our discussion so far assumed generative models for whole images. However, many im-
age enhancement algorithms do not explicitly rely on such probabilistic models. Some
methods only model the local statistics of small neighborhoods (patches), either by
learning from an external database [1], or by relying on the recurrence of patches within
the input image itself [17,16]. Other approaches are discriminative [4], directly learning
the desired mapping from input degraded images to output clean images. In all these
cases, there is no explicit definition of a probability density function p(x) for whole im-
ages, so that the optimization problem (1) is not directly applicable. Nevertheless, note
that Alg. 1 can be used even in the absence of a probability model p(x), as all it requires
is the availability of a denoising algorithm. To understand what Alg. 1 computes when
the denoising does not correspond to MAP estimation, it is insightful to examine how
the flow T evolves along the iterations.

Collecting the two steps of Alg. 1 together, we see that the deformation evolves as
T k+1 = OpticalFlow(y,Denoise(T k{y})). Therefore, the algorithm converges
once the transformation T satisfies

T = OpticalFlow(y,Denoise(T {y})). (6)

This implies that after convergence, denoising T {y} does not introduce geometric de-
formations anymore. In other words, the output yGEM = T {y} has the same geometry
as its denoised version Denoise(yGEM). To see this, note that condition (6) states that
the image Denoise(yGEM) is related to y by the deformation T . But, recall that the
image yGEM itself is also related to y by the deformation T . This is illustrated in Fig. 4.
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Denoiser

Fig. 4. Denoising a GEM does not change its geometry. The GEM yGEM is obtained by warping
the image y with the ‘idealizing’ flow field T . ‘Denoising’ yGEM, results in an image with the
same geometry as yGEM itself. That is, the optical flow between Denoise(yGEM) and yGEM

is zero, and optical flow between Denoise(yGEM) and y is equal to T (like the transformation
between yGEM itself and y). The results are shown for the multi-layer perceptron (MLP) model [4].

From the discussion above we conclude the image yGEM produced by our algorithm
has the property that its geometry is not altered by the denoiser. We therefore call yGEM

a Geometric Eigen-Mode (GEM) of the prior, associated with image y. Because GEMs
are not geometrically modified by the denoiser, the local geometric structures seen in
a GEM are precisely those structures which are best preserved by the denoiser. This
makes GEMs very informative for studying the geometric preferences of image priors.

2.2 Controlling the Visualization Strength

Recall that the parameters λ and σ control the relative weights of the three terms in
Problem1 (1). To tune the strength of the visualization, we can vary the weight of the
log-prior term, which affects the extent to which the ‘idealized’ image complies with
the prior. This requires varying σ while keeping the product λσ2 fixed. Figure 5 shows
BM3D-GEMs with several different strengths. As we increase the weight of the log-
prior term, smaller and smaller features get deformed so that the prior is better satisfied.
This effect is clearly seen in the small arcs, the mandrill’s pupils, and the delicate tex-
tures on the mandrill’s fur.

3 Experiments

We used our algorithm on images from [40,41] and from the Web to study a variety
of popular priors [17,1,14,15,4,16,22,10,31]. Some denoising methods work only on
grayscale images. So, for fair comparison, we always determined the idealizing defor-
mation based on the grayscale version of the input image, and then used this defor-
mation to warp the color image itself. In all our experiments we used 50 iterations,

1 Strictly speaking, this interpretation is valid only if our denoiser performs MAP estimation.
However, the intuition is the same also for arbitrary denoisers.
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(a) Input (b) Low log-prior weight (c) Medium log-prior weight (d) High log-prior weight

Fig. 5. Controlling the visualization strength. (a) Input images Arcs and Mandril. (b)-(d)
BM3D-GEMs with varying strengths, obtained by tuning the log-prior weight in Problem (1).
The effect is obtained by increasing σ while decreasing λ so that the product λσ2 is kept fixed.
We used σ = 20, 30, 50 in (b),(c),(d), and λσ2 = 0.128. As the log-prior weight increases,
smaller structures get deformed (e.g., the small arcs and the mandril’s pupils and fur).

σ = 25/50 and λ in the range [0.5 × 10−4, 3 × 10−4] (for gray values in the range
[0, 255]). Some denoisers do not accept σ as input, like nonlocal means and TV. We
tuned those methods’ parameters to perform best in the task of removing noise of vari-
ance σ2 from noisy images.

Figure 6 shows visualization results for BM3D [17], FoE [14], EPLL [1] and TV [10].
As can be seen, common to all these models is that they prefer large structures over
small ones. Indeed, note how the small yellow spots on the butterfly, the small arcs in
the colosseum, the small black spots on the Dalmatians, and the small white spots on the
owl, are all removed in the idealization process (the flow shrinks them until they disap-
pear). The remaining large structures, on the other hand, are distorted quite differently
by each of the models.

BM3D [17] is an internal model, which relies on comparisons between patches
within the image. As can be seen in Fig. 6, BM3D clearly prefers straight edges con-
nected at sharp corners. Moreover, it favors textures with straight thin threads (see the
owl’s head). This can be attributed to the fact that the patch repetitions in those struc-
tures are strong. In fact, as we show in Fig. 7, straight edges and sharp corners are also
favored by other internal patch-recurrence models, including internally-trained KSVD
[15] and the cross-scale patch recurrence prior of [19].

The FoE model [14] expresses the probability of natural images in terms of fil-
ter responses. As can be seen in Fig. 6, FoE resonates to straight axis-aligned edges
connected at right-angle corners. This surprising behavior cannot be predicted by ex-
amining the models’ filters, and to the best of our knowledge, was not reported in the
past. Note that FoE is an external model that was trained on a collection of images [41].
Therefore, an interesting question is whether its behavior is associated to the statistics
of natural images, or rather to some limitation of the model. A partial answer can be
obtained by examining the visualizations of EPLL [1], another external model which
was trained on the same image collection [41]. As observed in Fig. 6, EPLL also has a
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(a) Input (b) BM3D (c) FoE (d) EPLL (e) TV

Fig. 6. Visualizing popular image priors. (a) Input images Flower, Colosseum, Dalmatians, and
Owl. (b)-(e) Geometric idealization w.r.t. to the BM3D [17], FoE [14], EPLL [1] and TV [10]
priors with σ = 50 and λ = 0.7× 10−4. Note how different elementary structures are preferred
by each of the models.

preference to straight edges, but its bias towards horizontal and vertical edges is much
weaker than that of FoE (a small bias can be noticed on the butterfly’s wings, on the
flowers behind the butterfly, and on the Dalmatians’ spots). This suggests that the ex-
cessive tendency of FoE to axis-aligned structures is rather related to a limitation of the
model, as we further discuss below. We also note that, unlike FoE, the optimal shapes
of corners in EPLL are rather round.

Finally, as seen in Fig. 6, the TV prior exhibits a very different behavior. As opposed
to all other priors, which prefer straight edges over curved ones, TV clearly preserves
curved edges as long as their curvature is not too large. This phenomenon has been
studied analytically in [20].

Internal Models: We next compare between several internal models, which rely on the
tendency of patches to repeat within and across scales in natural images [42]. Figure 7
shows visualizations for four such methods: BM3D [17], KSVD [15] (trained internally
on the input image), the cross-scale patch recurrence model2 of [19], and NLM [16].
As can be seen, the GEMs of all these priors have increased redundancy: Edges are
deformed to be straighter, stripes are deformed to have constant widths, etc. However,

2 This model was presented in [19] in the context of blind deblurring. To use for denoising, we
removed the blur-kernel estimation stage and forced the kernel to be a delta function.
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(a) Input (b) BM3D (c) Internal KSVD
(d) Cross-scale  

patch recurrence
(e) Nonlocal means

Fig. 7. Comparing internal image models. (a) Input images Train and Zebra (courtesy of
Mickey Weidenfeld). (b)-(e) Geometric idealization w.r.t. the BM3D [17], internal KSVD [15],
cross-scale patch recurrence [19], and nonlocal means [16] models using σ = 25 and λ =
2× 10−4/3.6× 10−4 for Train/Zebra.

(a) Input (b) EPLL (c) FoE (d) MLP (e) Shrinkage Fields

Fig. 8. Comparing external image models. (a) Input images Tiger and Mandril. (b)-(e) Geomet-
ric idealization w.r.t. the EPLL [1], FoE [14], multi-layer perceptron (MLP) [4], and Shrinkage
Fields [22] models with σ = 25 and λ = 2× 10−4.

close inspection also reveals interesting differences between the GEMs. Most notably,
the NLM method seems to reduce the curvature of edges, but does not entirely straight-
ens them. This may be caused by the fact that it uses a rather localized search win-
dow for finding similar patches (15× 15 pixels in this experiment). Another noticeable
phenomenon, is the thin straight threads appearing in the cross-scale patch recurrence
visualization. Those structures are locally self-similar (namely, they look the same at
different scales of the image), and are thus preserved by this prior.

External Models: While internal models share a lot in common, external methods ex-
hibit quite diverse phenomena. Figure 8 shows visualizations for several external mod-
els, which were all trained on the same dataset [41]: EPLL [1], FoE [14], multi-layer
perceptron (MLP) [4], and Shrinkage Fields [22] (an MRF-based model with 7× 7 fil-
ters). As can be seen, all these models seem to prefer edges with small curvatures. How-
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(d) 3x3(a) Input (e) Pairwise (f) 3x3 (g) 7x7(b) 5x5

Shrinkage FieldsFoE (Student-T) FoE (GSM)

(c) Pairwise

Fig. 9. Comparing MRF image models. (a) Input Jaguar image. (b) GEM of the FoE model with
Student-T potentials [14]. (c)-(d) GEMs of FoE model with GSM potentials [31], (e)-(g) GEMs
of the Shrinkage Fields model [22]. In all cases σ = 25 and λ = 2× 10−4.

ever, apart for FoE, none of them prefers sharp corners. Moreover, the typical shapes
of the optimal low-curvature edges differ substantially among these methods. An ad-
ditional variation among external methods, is that they resonate differently to textures,
as can be seen on the mandril’s fur. In the EPLL GEM, the fur is deformed to look
smoother, while in all other GEMs, the fur is deformed to exhibit straight strokes.

MRF Models: As mentioned above, the FoE model has a surprising preference to
straight axis-aligned edges, significantly more than other external methods trained on
the same dataset. This suggests that the FoE model either has limited representation
power (e.g., due to the use of 5 × 5 filters as opposed to the 8 × 8 patches used in
EPLL, or due to the use of Student-T clique potentials), or the learning procedure has
converged to a sub-optimal solution. To study this question, Fig. 9 compares the FoE
model with [31], an MRF model with Gaussian scale mixture (GSM) clique potentials,
and with Shrinkage Fields [22], a discriminative approach which is roughly based on
a cascade of several MRF models. The Shrinkage Fields architecture allows efficient
training with far larger image crops, than what is practically possible in the FoE model.
As can be seen, when using pairwise cliques (horizontal and vertical derivatives), the
GSM MRF and Shrinkage Fields also tend to prefer axis-aligned edges. However, this
tendency decreases as the filter sizes are increased. With 3× 3 filters, in both the GSM
MRF and Shrinkage Fields this behavior is already weaker than in the 5×5 FoE model.
And for Shrinkage Fields with 7 × 7 filters, this phenomenon does not exist at all. We
confirm this observation in denoising experiments below. While FoE and Shrinkage
Fields differ in a variety of aspects (not only the choice of filter sizes), our experiment
suggests that MRF models can achieve a decent degree of rotation invariance, even
with small filters. However, this seems to require large training sets to achieve without
intervention. Note that imposing rotation invariance on the filters, has been shown to be
beneficial in [32].

3.1 Denoising Experiments

The geometric preferences revealed by our visualizations are very hard, if not impossi-
ble, to visually perceive by the naked eye in conventional image recovery experiments
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Fig. 10. Denoising GEMs. We added noise to the GEMs corresponding to various priors, and then
denoised each of them using various denoising methods. For each denoiser, we report the ratio
between the MSE it achieves in denoising the GEM, and the MSE it achieves in denoising the
original image. Each color corresponds to a different denoiser, and each group of bars corresponds
to a different GEM.

on natural images (e.g., denoising, deblurring, super-resolution, etc.). This raises the
question: To what extent do these geometric preferences affect the recovery error in
such tasks? To study this question, we performed several denoising experiments.

Denoising GEMs: We begin by examining how much easier it is for denoising methods
to remove noise from the GEM of an image, than from the image itself. Intuitively,
since GEMs contain structures that best conform to the prior, denoising a GEM should
be an easier task. Denote by yGEM

p the GEM of image y according to prior p (e.g.,
p ∈ {‘BM3D’, ‘MLP’, . . . }). We define the error ratio

rp,q(y) =
MSEq(y

GEM
p )

MSEq(y)
, (7)

where MSEq(y
GEM
p ) and MSEq(y) denote the mean square errors (MSEs) attained in

recovering the images yGEM
p and y, respectively, from their noisy versions, based on

prior q. An error ratio smaller than 1 indicates that recovering yGEM
p with prior q leads

to better MSE than recovering y itself with prior q.
Figure 10 shows the error ratios attained by 9 different denoising methods (colored

bars), on the 9 GEMs of the corresponding priors (groups of bars) for the tiger image
of Fig. 8(a). As can be seen, all the denoisers attain an error ratio smaller than 1 on the
GEMs corresponding to their prior (namely rp,p(y) < 1 for all p). Moreover, almost
all the denoisers attain error ratios smaller than 1 also on the GEMs corresponding to



Visualizing Image Priors 13

Input GEM

(a) EPLL

GEMInput

(b) Total Variation

GEMInput

(c) FoE

Noisy 

Images

Pixelwise

Denoising

Error

Deformation 

Fields

Fig. 11. Pixelwise RMSE. We compare between the pixelwise RMSE (averaged over 50 noise
realizations) attained in denoising an image and its GEM. Results are shown alongside the de-
formation field for (a) EPLL [1], (b) Total variation [10] and (c) FoE [14]. As can be seen, a
significant RMSE improvement is achieved in regions which undergo a large deformation.

other priors3. This suggests that the geometric structures that are optimal for one prior
are usually quite good also for other priors.

This experiment further highlights several interesting behaviors. BM3D and NLM
perform very poorly on the TV-GEM. This illustrates that an image with low total-
variation (the TV-GEM) does not necessarily have strong patch repetitions (as required
by the BM3D and NLM denoisers). Shrinkage Fields with pairwise cliques and TV
perform very similarly on all the GEMS, and quite differently from all other methods.
This may be associated to the fact that they are the only priors based on derivatives.
Another distinctive group is MLP, Shrinkage Fields (7 × 7) and EPLL, which perform
similarly on all the GEMs. Common to these methods, is that they are all based on
external models trained on the same dataset.

Pixelwise MSE: We next visualize which pixels in a GEM contribute the most to the
improved ability to denoise it. Figure 11 shows the pixelwise root-MSE (RMSE) at-
tained in denoising the Brain Coral image and its GEM (using the GEM’s prior), aver-
aged over 50 noise realizations. As can be seen, the largest RMSE improvement occurs
at regions which are strongly deformed. Those regions are precisely the places which
did not comply with the model initially, and were ‘corrected’ in the GEM.

Rotation Invariance: Our visualizations in Figs. 6,8,9, revealed an interesting prefer-
ence to axis aligned edges for some of the priors (especially FoE). To verify whether our
observations are correct, we plot in Fig. 12 the root MSE (RMSE) that different meth-
ods attain in denoising images of rotated squares. As predicted by our visualizations,
among external models, the FoE prior indeed has the least degree of rotation invariance,

3 Note that some denoisers perform better on the GEMs of other priors than on their own GEM.
This is because GEMs are not optimized to minimize the MSE in denoising tasks. Their con-
struction also takes into account a penalty on the deformation smoothness.
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Fig. 12. Rotation invariance. The RMSE attained by various denoising methods in the task of
removing noise from a noisy square, as a function of the square’s angle. (a) Methods based on
external priors. (b) Methods based on internal priors.

followed by Shrinkage Fields with pairwise cliques. The RMSE of these two methods
drops significantly as the angle of the square approaches 0. It can be seen that EPLL also
has a slight tendency to axis-aligned edges, while Shrinkage Fields (7 × 7) is almost
entirely indifferent to the square’s angle. These behaviors align with our conclusions
from Figs. 8 and 9. We note, however, that MLP also seems to perform slightly better in
denoising axis-aligned squares, a behavior that we could not clearly see in the GEM of
Fig. 8. The internal models, shown in Fig. 12(b), are almost completely insensitive to
the square’s angle, which aligns with the behaviors we observed in the GEMs of Fig. 7.
The singular behaviors at angles 0 and 45 are related to the fact that these are the only
two angles in which the rotated square does not involve interpolation artifacts.

4 Conclusions

We presented an algorithm for visualizing the geometric preferences of image priors.
Our method determines how an image should be deformed so as to best comply with
a given image model. Our approach is generic and can be used to visualize arbitrary
priors, providing a useful means to study and compare between them. Applying our
method on several popular image models, we found various interesting behaviors that
are impossible to see using any other visualization technique. Although we demon-
strated our approach in the context of visualizing geometric properties of image models,
our framework can be easily generalized to other types of transformations (e.g., color
mappings). This only requires replacing the optical-flow stage in our algorithm accord-
ingly. Our visualizations can be used to analyze failures and successes of image models
in specific settings, and may thus help to identify potential model improvements, which
are of great importance in image enhancement tasks.
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