Visualizing Image Priors: Supplementary Materials

Tamar Rott Shaham and Tomer Michaeli

Technion—Israel Institute of Technology
{stamarot@campus,tomer.m@ee}.technion.ac.il

1. We explain how we perform denoising with the cross-scale patch recurrence prior of [19], which was originally proposed in the context of blind deblurring.
2. We remark on how we solve the optical flow problem (5) using the algorithm proposed in [38].

1 Denoising Using Cross-Scale Patch Recurrence

Small patches tend to recur abundantly across scales of natural images. This property was used in [19] for performing blind deblurring. To visualize the cross-scale recurrence prior of [19], we adapt their algorithm to solving the denoising problem

$$\arg \min_x \|y - x\|^2 + \lambda \rho(x),$$

where y is an input (noisy) image, and x is the output denoised image. Specifically, we use the penalty term $\rho(x)$ proposed in [19], which measures the degree of dissimilarity between patches in the image x and their Nearest Neighbor patches (NNs) within the α-times smaller version of x, denoted x^α. This term is defined as

$$\rho(x) = -\sum_j \log \left(\sum_i \exp \left\{ -\frac{1}{2h^2} \|Q_j x - R_i x^\alpha\|^2 \right\} \right).$$

where Q_j is the matrix which extracts the j-th patch from x, R_i is the matrix which extracts the i-th patch from x^α, and h is a bandwidth parameter. Following the derivation in [19], setting the gradient to zero leads to the condition

$$x = \frac{y + \beta z}{1 + \beta},$$

where $\beta = \frac{\lambda M^2}{h^2}$, with M being the patch width (assuming square patches), and z is an image obtained by replacing each patch in x by a weighted combination of its NNs from x^α. Namely,

$$z = \frac{1}{M^2} \sum_j Q_j^T \sum_i w_{i,j} R_i x^\alpha$$

with weights

$$w_{i,j} = \frac{\exp \left\{ -\frac{1}{2h^2} \|Q_j x - R_i x^\alpha\|^2 \right\}}{\sum_m \exp \left\{ -\frac{1}{2h^2} \|Q_j x - R_m x^\alpha\|^2 \right\}}.$$
Input: Noisy image y
Output: Denoised image x

Initialize $x = y$

for $n = 1, \ldots, N$ do

| Image prior update: Down-scale the image x by a factor of α to obtain x^α. |

| for $k = 1, \ldots, K$ do |

| z step: update the image z according to (4). |

| x step: update the image x according to (3). |

end

end

Algorithm 1: Cross-scale patch recurrence denoising

As in [19], to solve (3), we iterate between computing z based on the current x and updating x based on the new z. Once every several iterations, we update x^α to be the α-times smaller version of the current x. This denoising algorithm is described in Alg. 1.

As in [19], we use $\alpha = 0.75$ and one NN per patch.

2 Optical Flow

To solve the optical flow problem (Eq. (5) in the paper), we used the iteratively re-weighted least-squares (IRLS) algorithm proposed in [38]. We note that our problem involves an L_2 data fidelity term, whereas the algorithm of [38] is typically used with an L_1 data fidelity term. However, the derivation in [38] is actually quite general, and can be easily adapted to arbitrary data fidelity penalties. Specifically, [38] considers the minimization of the following objective

\[
\arg \min_{u,v} \iint \psi \left(|x(\xi, \eta) - y(\xi + u(\xi, \eta), \eta + v(\xi, \eta))|^2 \right) d\xi d\eta + \alpha \iint \phi \left(\|\nabla u(\xi, \eta)\|^2 + \|\nabla v(\xi, \eta)\|^2 \right) d\xi d\eta,
\]

where x and y are two images, (u, v) is the flow field which warps y into x, and α is the weight of the flow regularization term.

The algorithm proposed in [38], iteratively solves sets of linear equations to update u and v. In [38], this approach was specifically implemented and tested with the robust functions

\[
\psi(x^2) = \sqrt{x^2 + \varepsilon^2}, \quad \phi(x^2) = \sqrt{x^2 + \varepsilon^2},
\]

where ε is some small constant. For our prior visualization algorithm, we rather need to solve (6) with an L_2 data fidelity (namely, where the first term in (6) is the L_2 distance between x and the warped version of y). Therefore, in our implementation, we changed ψ to be the L_2 penalty

\[
\psi(x^2) = x^2.
\]

This modification leads to a different set of linear equations, which have to be solved in each stage. But the general algorithm remains the same.