Exercise 2: Half Quadratic Splitting and Contrastive Divergence Learning (Due 3/5/2017)*

Statistical Methods in Image Processing 048926

Half Quadratic Splitting (60 points)

As we saw in class, using the pairwise-cliques model with potential $\rho(\cdot)$, the MAP estimate of an image x from its degraded version $y = Hx + n$ can be computed by solving

$$\arg \min_{x,\{z_{i,j}\}} \frac{1}{2\sigma^2} \|y - Hx\|^2 + \sum_f \sum_{(i,j) \in c} b_{ij} \rho(z^f_{ij}) + \frac{\beta}{2} \sum_f \sum_{\{i,j\} \in C} \|z^f_{ij} - (d^f \ast x)_{ij}\|^2,$$

where $\{z_{i,j}\}$ are auxiliary variables and f represents the filter index. In our case, h stand for horizontal derivatives and v for vertical derivatives ($d^h = [1, -1]$, $d^v = [1, -1]^T$ respectively). This problem is solved iteratively, by alternating between minimizing the objective with respect to x and z while gradually increasing β.

1. Implement the x-step:

 (a) Write the solution of (1) with respect to x while regarding z as fixed.

 (b) Since the solution involves convolutions, it is easier (and faster) to implement it in the frequency domain. Write this step in the frequency domain.

 (c) Implement this x update step. Pay attention: frequency domain operations require additional processes. Pad the image using the matlab function `padarray` using ‘replicate’ mode. Use the function `fftshift` if required. As a sanity check, after returning to the spatial domain, you should get a real valued image. Don’t use `real` or `abs` to suppress non-negligible imaginary components! Make sure your code produces real values to begin with.

*Please send your solutions to Tamar
2. Implement the z-step:

(a) Minimizing (1) with respect to z boils down to:

$$\arg \min_{\{z_{i,j}\}} \sum_f \sum_{(i,j) \in c} b_{ij} \rho(z^f_{ij}) + \frac{\beta}{2} \sum_f \sum_{(i,j) \in c} \|z^f_{ij} - (d^f \ast x)_{ij}\|^2,$$

which can be solved separately for each z_{ij}. Using the TV prior $\rho(\Delta) = |\Delta|/\sigma_x$, write the solution for each z_{ij}.

(b) Implement this z update step by updating each z^f_{ij} independently.

3. Implement the full HQS scheme by iterating between updating z, updating x and increasing β.

4. Show the results of the HQS optimization scheme in the following settings. Use the two images in the supplementary zip file. Compare the results in terms of PSNR

$$\text{PSNR}(x, y) = 10 \log_{10} \left(\frac{255^2}{\sum_i (x_i - y_i)^2} \right).$$

Use the estimation for $\hat{\sigma}_x$ from the clean images using the function from HW1.

(a) Denoising: show the denoising results using the TV prior for $\sigma = 15, 25, 35$.

(b) Deblurring: show the deblurring results using the TV prior for the given blur kernels and with a noise variance of $\sigma_n = 2.5$.

5. Discuss and compare the differences between the Majorization Minimization scheme of HW1 and Half Quadratic Splitting.

Contrastive Divergence Learning (40 points)

1. Given a set of realizations $\{I\}$ (training examples) drawn from the product of Student-t (PoT) distributions

$$p(x; \theta) = \frac{1}{Z(\theta)} \prod_{n=1}^N \left(1 + \frac{1}{2}(J_n^T x)^2\right)^{-\alpha_n},$$

we would like to estimate the parameters $\theta = \{J_n, \alpha_n\}$. Assuming we know how to draw samples from this model, write a closed form expression for the θ update step in the Contrastive Divergence algorithm.

2. Matlab Implementation

Consider the distribution

$$p(x; \{\mu_i\}) = \sum_{i=1}^N \frac{1}{N} \frac{1}{2 \pi} \exp \left\{ -\frac{1}{2} ||x - \mu_i||^2 \right\},$$

where $x, \mu_i \in \mathbb{R}^2$.
(a) Initialization

i. Describe how to draw a sample \(x\) from \(p(x; \{\mu_i\})\) given \(\{\mu_i\}\). Write a function that accepts \(\{\mu_i\}\), and returns a sample \(x\) from \(p(x; \{\mu_i\})\).

ii. Use \(N = 4\) and \(\mu = \{(0,0)^T, (0,2)^T, (2,0)^T, (2,2)^T\}\) and draw 1000 samples \(x\) from \(p(x; \{\mu_i\})\).

(b) Contrastive divergence estimation of \(\{\mu_i\}\)

From now on we will refer to \(\{\mu_i\}\) as unknowns and we will estimate them using the contrastive divergence algorithm.

i. Randomly select an initial guess \(\{\tilde{\mu}_i\}\).

ii. Draw 1000 samples \(\tilde{x}\) from \(p(x; \{\mu_i\})\) using \(\{\tilde{\mu}_i\}\).

iii. Update \(\{\tilde{\mu}_i\}\) using the gradient descent step:

\[
\tilde{\mu}_i^{k+1} = \tilde{\mu}_i^k + \eta \left(\langle \nabla_{\mu_i} \log p(x; \{\mu_i\}) \rangle_x - \langle \nabla_{\mu_i} \log p(x; \{\mu_i\}) \rangle_{\tilde{x}} \right),
\]

where \(\langle \cdot \rangle_x\) denotes averaging over the input samples from 2(a)ii and \(\langle \cdot \rangle_{\tilde{x}}\) denotes averaging over the synthetically generated samples from 2(b)ii.

iv. Repeat 2(b)ii and 2(b)iii until convergence.