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Abstract—This paper considers the problem of reconstructing
a class of nonuniformly sampled bandlimited signals of which a
special case occurs in, e.g., time-interleaved analog-to-digital con-
verter (ADC) systems due to time-skew errors. To this end, we pro-
pose a synthesis system composed of digital fractional delay fil-
ters. The overall system (i.e., nonuniform sampling and the pro-
posed synthesis system) can be viewed as a generalization of time-
interleaved ADC systems to which the former reduces as a spe-
cial case. Compared with existing reconstruction techniques, our
method has major advantages from an implementation point of
view. To be precise, 1) we can perform the reconstruction as well
as desired (in a certain sense) by properly designing the digital
fractional delay filters, and 2) if properly implemented, the frac-
tional delay filters need not be redesigned in case the time skews
are changed. The price to pay for these attractive features is that
we need to use a slight oversampling. It should be stressed, how-
ever, that the oversampling factor is less than two as compared with
the Nyquist rate. The paper includes error and quantization noise
analysis. The former is useful in the analysis of the quantization
noise and when designing practical fractional delay filters approx-
imating the ideal filters.

Index Terms—Bandlimited signals, digital filters, frac-
tional delay filters, nonuniform sampling, time-interleaved
analog-to-digital converters, time-skew errors.

I. INTRODUCTION

I N uniform sampling, a sequence is obtained from an
analog1 function by sampling the latter equidistantly

at , i.e., , as illustrated in Fig. 1(a). In
this case, the time between two consecutive sampling instances
is always . In nonuniform sampling, on the other hand, the
time between two consecutive sample instances is dependent on
the sampling instances. In this paper, we deal with the situation
where the samples can be separated intosubsequences ,

, where are obtained by sampling
with the sampling rate at ,

i.e., , with being referred to as
time skews. This sampling scheme is illustrated in Fig. 1(b) for

. Such nonuniformly sampled signals occur in, e.g.,
time-interleaved analog-to-digital converter (ADC) systems
(where ) due to time-skew errors [1]; see also Section V.
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1In this paper, it is understood that analog signals are continuous-time signals,
whereas digital signals are discrete-time signals.

Fig. 1. (a) Uniform sampling. (b) Nonuniform sampling.

A question that arises is how to recover from .
This can, in principle, be done in two different ways. The first
is to reconstruct directly from through analog re-
construction functions. The second way is to first recover
and then employ reconstruction methods used for uniformly
sampled signals, e.g., a conventional digital-to-analog converter
(DAC) followed by an analog reconstruction filter. It is well
known that if is bandlimited to , then
can be recovered from as long as the average sampling
rate equals or exceeds the Nyquist rate . In other words,

can be retained when , provided that are dis-
tinct. Methods for retaining directly via analog interpo-
lation functions can be found in [2]–[6] and references therein.
Techniques for recovering have been treated in [6]–[8].
It should also be noted that there exist methods that recover

in the special case where , integers (see e.g.,
[9]–[11]), but those methods are not applicable here since we
allow to be arbitrary (distinct) real numbers.

It is thus well known how to, in principle, retain , or
from . However, when it comes to practical imple-

mentations, we are facing new problems. For instance, it is very
difficult to practically implement analog functions with high
precision. It is therefore desired to do the reconstruction in the
digital domain, i.e., to first recover . We then need only
one conventional DAC and one analog filter to obtain ,
which are much easier to implement thananalog functions.
In [6], it was shown that can be retained using a digital
synthesis filterbank with ideal noncausal multilevel filters. The
issue of using practical causal filters approximating the ideal
ones was, however, not treated. That is, it is not known how
well a “practical version” of that solution will behave. Another
method, which was introduced in [7], employs causal interpo-
lation functions, but it is not clear how to select them so that
the output from the reconstruction system approximates
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(in some sense) as close as desired. Yet another approach
in the digital domain was proposed in [8], but that is a fre-
quency domain approach that only recovers the spectrum at a
finite number of frequencies. It should also be noted that the
above-mentioned techniques have a disadvantage in that the in-
terpolation functions (filters) involved need to be changed (re-
designed) when the time skewsare altered.

In this paper, we introduce a new synthesis system for recov-
ering from . This system makes use of a filterbank
composed of digital fractional delay filters with, in general, dif-
ferent gain constants. The overall system (i.e., nonuniform sam-
pling and the proposed system) can be viewed as a generaliza-
tion of time-interleaved ADC systems, to which the former re-
duces as a special case. At first sight, it may appear to be a severe
limitation to fix the filters to fractional delay filters. There is,
however, a major advantage of this approach, whereas the dis-
advantage is tolerable. The advantage of the proposed system is
that it is very attractive from an implementation point of view.
To be precise, it has the following features: 1) We can make
approximate as close as desired by properly designing the
digital fractional delay filters, and 2) if properly implemented,
the fractional delay filters need not be redesigned in case the
time skews are changed. It suffices to adjust some multi-
plier coefficient values that are uniquely determined by the time
skews . The price to pay for these attractive features is that we
need to use a slight oversampling. [In other words, we must use

to achieve perfect reconstruction (PR). From a practical
implementation point of view, it is convenient to handle this sit-
uation by making use of what we call regionally perfect recon-
struction (RPR) systems.] It should be stressed, however, that
the oversampling factor is less than two as compared with the
Nyquist rate; it is thus not a large oversampling factor. It should
also be noted that using our system to correct errors in time-in-
terleaved ADC systems, the individual ADCs in each channel
will still work at a lower sampling rate compared with a single
ADC working at the Nyquist rate (except for the simplest case
where ). In our case, we have a reduction of the sampling
rate requirements of some instead of .

The outline of the paper is as follows. In Section II, we briefly
recapitulate uniform sampling and hybrid analog/digital filter-
banks, the latter of which is convenient to use when analyzing
the class of nonuniformly sampled signals that we are concerned
with in this paper. In Section III, we consider PR and RPR sys-
tems in the case of bandlimited input signals. Section IV deals
with nonuniform sampling and introduces the synthesis system
of digital fractional delay filters for obtaining PR. Section V
points out the relation between the proposed and time-inter-
leaved ADC systems. Sections VI and VII are concerned with
error analysis and quantization noise, respectively. Section VIII
provides an example, whereas Section IX discusses fractional
delay filter structures that are suitable for real-time applications.
Finally, some concluding remarks are given in Section X.

II. UNIFORM SAMPLING AND HYBRID

ANALOG/DIGITAL FILTERBANKS

A. Uniform Sampling

Uniform sampling and quantization are represented by the
uniform sampler and quantizer in Fig. 2. Ignoring the quanti-

Fig. 2. Uniform sampler and quantizer.

Fig. 3. Spectra of a bandlimited signalx (t) and the sequence
x(n) = x (nT ). (Uniform sampling).

zation, the output sequence is obtained by sampling the
analog input signal uniformly at the time instances ,
for all integers , i.e.,

(1)

where is the sampling period, and is the sam-
pling frequency. The Fourier transforms of and are
related according to Poisson’s summation formula as

(2)

Since the spectrum of is periodic with a period of
( -periodic) with respect to , it suffices to consider

in the region . Throughout this paper, it is
assumed that is bandlimited according to

(3)

[see also Fig. 3(a)]. That is, the Nyquist criterion for sampling
with a sampling frequency of without aliasing is fulfilled.
Thus, we have

(4)

[see also Fig. 3(b)]. Equation (4) implies that can be re-
tained from . We also note that is oversampled unless

.

B. Hybrid Analog/Digital Filterbanks

Consider the system in Fig. 4, which we refer to as a hy-
brid analog/digital filterbank, or simply a filterbank ADC. This
system makes use of an analog analysis filterbank, uniform sam-
plers and quantizers, upsamplers to retain the desired sampling
rate , and a digital synthesis filterbank. The sampling and
quantization take place at the output of the analysis filters with
the lower sampling frequency since

. Ignoring the quantizations, it can be shown that the Fourier
transform of the output sequence can be written as [12]

(5)
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Fig. 4. Hybrid analog/digital filterbank.

where

(6)

As for it suffices to consider in the region
, provided that are -periodic. In Sec-

tion III, we will treat two different types of reconstruction.

III. PERFECTRECONSTRUCTION ANDREGIONALLY PERFECT

RECONSTRUCTIONSYSTEMS FORBANDLIMITED SIGNALS

A. Perfect Reconstruction Systems

The system in Fig. 4 is aperfect reconstruction (PR) system
if

(7)

for some nonzero constantand integer constant. In the time
domain, we have, in the PR case, . That is,
with , is simply a shifted version of . Ignoring
the delay , we can thus retain from , provided that
the system in Fig. 4 is a PR system. In order to achieve PR,
aliasing into the region must be avoided. From (2),
(3), (5), and (7), it can be concluded that PR is obtained if

(8)

where

(9)

When is bandlimited according to (3), it thus suffices to
consider terms in (5).2 With , (9) reduces to

(10)

Equation (10) is illustrated in Fig. 5 for . We see that in
the region , we can discard terms in (5) for which

and , which gives us
. Similarly, we can deduce (9) by observing that

2In general, more aliasing terms need to be handled in hybrid analog/dig-
ital filterbanks compared with maximally decimated (byM ) digital filterbanks,
where it suffices to considerM terms [12]. However, for each value of!T , it
suffices to considerM terms. This explains why it is, in principle, possible to
reconstructx(n), and thusx (t), with N = M .

Fig. 5. Illustration of (10) [and (9) with! T = �].

we can discard terms in (5) for which and
.

B. Regionally PR (RPR) Systems

The system in Fig. 4 is aregionally perfect reconstruction
(RPR) systemif

(11)

for some nonzero constantand integer constant. In the RPR
case, is generally not a shifted version of , i.e.,

. However, and carry the same information
in the low-frequency region . In order to achieve
RPR, aliasing into this region must be avoided. From (2), (3),
(5), and (7), it can be concluded that RPR is obtained if

(12)
where are some arbitrary complex-valued functions,
and

(13)

Equation (13) is deduced by noting that we can discard terms in
(5) for which and

(compare with Section III-A). Finally, we note that the PR
system is obtained from the RPR system by simply filtering the
output from the RPR system through an ideal lowpass filter with
passband region .

IV. NONUNIFORM SAMPLING AND PROPOSEDSYNTHESIS

SYSTEM OF FRACTIONAL DELAY FILTERS

Let , be subsequences obtained
through sampling of at the time instances ,
i.e.,

(14)

For , is sampled according to Fig. 1(b).
The subsequences can be obtained by sampling the

output signals from the analysis filters in Fig. 4 if these filters
are selected according to

(15)
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Fig. 6. Filters producingx (m) as given by (14).

The analysis filterbank is in this case as shown in Fig. 6. Com-
bining (6) and (15) gives us

(16)

A. Proposed Synthesis System of Fractional Delay Filters

Let be -periodic filters given by

.
(17)

From (16) and (17) we obtain,

.
(18)

For PR, it is required that , as given by (18), fulfills (8).
That is, PR is obtained if

.
(19)

In general, in (17) are fractional delay filters with dif-
ferent gain constants. (Fractional delay filters delay an input
signal by a fraction of the sampling period [13]). However, for
some values of (depending on ), the delays may here be in-
tegers.

All should be zero in the high-frequency region. In
practice, it may therefore be convenient to do the reconstruction
in two steps. In the first step, an RPR system is used. In the
second step, the output from the RPR system is filtered through
an ideal lowpass filter producing an overall PR system. This is
achieved by selecting according to

(20)

where

(21)

with being arbitrary complex-valued functions, and

(22)

Fig. 7. Proposed synthesis system whenG (z) are in the form of (20).

where . The synthesis system is in this case re-
alized according to Fig. 7. Selecting in (21) so that (19) is
fulfilled ensures that the system as seen from to is
an RPR system. Choosing as in (22) produces the de-
sired overall PR system (with ). Indeed, for the system as
seen from to , we obtain, using (16) and (20) with

and (21)

(23)

where

(24)

For RPR, it is required that , as given by (23), fulfils (11),
i.e., that (19) is again satisfied. As explained in Section III, a
PR system is then obtained by filtering the output from the RPR
system through an ideal lowpass filter, i.e., here, by replacing in
(20), by given in (22).

B. Computing the Coefficients

Equation (19) can be written in matrix form as

(25)

where is a matrix according to

...
...

.. .
...

(26)

with

(27)

Further, is a column vector with elements, and is a column
vector with elements according to

(28)

(29)

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on April 13, 2009 at 02:32 from IEEE Xplore.  Restrictions apply.



JOHANSSON AND LÖWENBORG: RECONSTRUCTION OF NONUNIFORMLY SAMPLED BANDLIMITED SIGNALS 2761

where stands for the transpose (without complex conjugate).
The coefficients are the unknowns, whereas are

(30)

Equation (25) is a system of linear equations with
unknown parameters . We consider two different cases.

Case 1— : In this case, the number of un-
knowns equals the number of equations. The coefficientscan,
in this case, be uniquely determined under the conditions stated
by the following theorem.

Theorem 1: If and are as given by (26) and (29), respec-
tively, , and , , , then
there exists a uniquesatisfying (25) and, therefore, unique
satisfying (19) as well. Further, all in are real-valued con-
stants.

Proof: We first prove that there exists a unique solution.
Since , is a square matrix. If is
nonsingular, then is uniquely determined by

(31)

where is the inverse of . It thus suffices to show that
is nonsingular under the stated conditions. To this end, we first
observe that , as given by (26), can be written as

(32)

where is

...
...

.. .
...

(33)

and is a diagonal matrix according to

diag (34)

The matrix is a Vandermonde matrix [14].3 The necessary
and sufficient condition for nonsingularity of is therefore that

be distinct, i.e., , , which is the same condi-
tion as , , due to (27). Further,
since and , we have

(35)

That is, is nonsingular if and only if is nonsingular. This
proves that is nonsingular and that a unique solutionalways
exists under the stated conditions.

To prove that in are real-valued, we proceed as follows.
Assume that we have the unique valuessatisfying (19). Using
(27), (19) can equivalently be written as

(36)

3SinceA is a Vandermonde matrix here, the coefficientsa can be computed
using simple formulas [14].

with denoting the complex conjugate of. By (36), we get

(37)

This shows that the values satisfy (19) as well. However,
since are unique, it follows that they must be real-valued.

Case 2— : In this case, the number of un-
knowns exceeds the number of equations. We can therefore im-
pose additional linear constraints among the
coefficients and still satisfy (19). Here, we restrict ourselves
to the case in which of the coefficients , for ,

, are fixed to some constants. This case
covers time-interleaved ADC systems with an even number of
channels. Since coefficients are free, we could, of course, set
them to zero, in which case, the corresponding channels would
be removed. In that sense, there is no need to consider the cases
having an even number of channels. However, as we will see in
Section VII, it may be worth considering these cases in order to
reduce the quantization noise at the output of the overall system.

The system of linear equations to be solved can here be
written in matrix form as

(38)

with being an matrix, and and being column
vectors with elements according to

(39)

(40)

(41)

where is the matrix as given by (26), and
contain the unknowns and fixed constants of ,

respectively, is the column vector with elements as
given by (30), is an matrix given by

(42)

where is an null matrix, and is an identity
matrix. As in Case 1, can, in Case 2, be uniquely determined
under the conditions stated by the following theorem.

Theorem 2: If and are as given by (39) and (41), re-
spectively, in (40) contains real-valued fixed constants,

, and , , , then there
exists a unique satisfying (38) and, therefore, uniquesatis-
fying (19) as well. Further, all in are real-valued constants.

Proof: The proof follows that of Theorem 1. To prove the
existence and uniqueness, it thus suffices to show thatis non-
singular under the stated conditions sincethen is uniquely de-
termined by

(43)

To prove nonsingularity of , we first observe that

(44)
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where is a submatrix obtained from
by deleting columns for , ,
i.e.,

...
...

. . .
...

(45)

We know from the proof of Theorem 1 that , and
thus, under the stated conditions. This proves that

is nonsingular and that a unique solution always exists. The
proof that in are real-valued is done in the same manner as
that of Theorem 1.

C. Number of Channels Versus Bandwidth

From (13), we get

(46)

Further, for and , we obtain4

.
(47)

In particular, with , we get, from the above expressions

odd
even. (48)

For a Nyquist rate sampling and reconstruction system,
. From (48), we see that, with , .

Thus, we need to use a slight oversampling in our system
compared with the reconstruction systems referred to in the
introduction. However, as pointed out in the introduction, the
main reason for introducing our system is that it has attractive
features when it comes to practical implementations. This will
become clear in Sections V–IX. We also note that

oversampling factor odd
even

(49)

i.e., the oversampling factor never exceeds two. From (47), we
also see that we can achieve PR in the whole frequency region
(from to ) by increasing the number of channels. This
is, however, just another way of saying that we need to use over-
sampling.

V. TIME-INTERLEAVED ADC SYSTEMS

AND THEIR GENERALIZATIONS

This section points out the relation between the overall system
(i.e., nonuniform sampling together with the proposed synthesis
system) and time-interleaved ADC systems. As we will see, the
former can be viewed as a generalization of the latter.

Consider first the case where , with being

(50)

4As is clear from Section IV-B,! T will not change when we increase the
number of channels fromN toN + 1 forN odd and a fixedM . This explains
whyN = 2K + 1 andN = 2K + 2 yield different expressions in (47).

where

(51)

Further, let correspond to integer delays according to
. In this case, in (16) becomes

(52)

for all and all integers; thus, PR is obtained. We have, in this
case, a time-interleaved ADC system [1]. The output sequence

is here obtained by interleaving the sequences . In
practice, will, however, no longer be exactly zero. In time-
interleaved ADC systems, this introduces aliasing components
in the output sequence. If are known, the aliasing compo-
nents can be removed by employing the proposed system with

taking the form of (17) with being determined by
(31) if is odd and or (43) if . In
this case, we must, however, assume that is bandlimited
to since (see Section III-C).

Consider next the case where , with being

(53)

where, again, are given by (51), i.e., they are zero. Fur-
ther, let be given by (17) with ,

, , and . In this case, in (16)
becomes

(54)

for and all integers, and for
; thus, PR is obtained. However, in practice, will no

longer be exactly zero, which, again, introduces aliasing com-
ponents in the output sequence. If are known, the aliasing
components can again be removed by employing the proposed
system. The difference from the case above where is
that, here, with , we can increase the bandwidth
by increasing the number of channels.

VI. ERRORANALYSIS

This section provides error analysis. More precisely, we de-
rive bounds on the errors inand when and are replaced
with and , respectively. The errors inare of
interest as far as the quantization noise is concerned, as will be-
come clear in Section VII. The errors intell us how close to
the ideal fractional delay filters any practical filters must be in
order to meet some prescribed allowable errors in. Bounds on
the errors in when is replaced with are also given.
These are of interest in practical implementations because the
estimated time-skew errors inevitably will be represented with
finite precision.

We will make use of the -norms defined as

(55)
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for an vector with elements , and

(56)

for an matrix with elements .

A. Errors in

Consider first Case 1, with . First, assume that
we have for and (as in the first case
in Section V). Assume next that and are replaced with

and , respectively, whereasis kept fixed.
This amounts to

(57)

The matrix is an matrix according to

...
...

.. .
...

(58)

where

(59)

with

(60)

Now, if

(61)

then we have the well-known inequality

(62)

From (58)–(60), we get

(63)

We have , and consequently, . Fur-
ther, since is a DFT matrix (due to ), its inverse

is an IDFT matrix; hence, . We also have
because apparently is a diagonal matrix

with diagonal elements , where are given by (27). We
thus have

(64)

which, together with (63), results in

(65)

By using (62)–(65) and assuming , we
finally obtain

(66)

with since we have assumed that . Equation
(66) is of interest when computing the quantization noise, as we
will see in Section VII.

Consider next Case 2, with . We assume here
that we, ideally, have and (as in the
second case in Section V). Now, assuming for simplicity that

and , and utilizing (54), we see that we can rewrite
(38) as

(67)

where is an matrix according to

...
...

.. .
...

(68)

with being given by (27), and being a column vector with
elements according to

.
(69)

Clearly, we can express as a product between a DFT matrix
(due to ) and a diagonal matrix. We can therefore
proceed in the same way as Case 1, which, again, will give us the
bound in (66) but with since we have assumed
that .

B. Errors in and Due to Errors in

Assume that we have for and . Assume now
that , , and are replaced with , , and

, respectively. This amounts to

(70)

where is given by (58). Using (70), we get

(71)

From (71), we obtain

(72)

Utilizing (26) and (58)–(60), we finally end up with

(73)

where is related to through (60).
Equation (73) is useful when designing . Recall from

Section IV that the ideal filters should have the frequency re-
sponses for [assuming here, for sim-
plicity, that and in (17)]. In practice, can,
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of course, only approximate these responses. In this frequency
region, we can express the frequency responses of as

(74)

where and are the deviations from the
ideal magnitude and phase responses, respectively. Given the
allowable errors in and (73) and (74), it is thus easy to de-
sign so that the requirements are satisfied. The allow-
able errors in are given by some prescribed permitted errors
in . We have

(75)

for , which gives us

(76)

The above expressions hold in the low-frequency region
. In the high-frequency region ,

the magnitude of the aliasing terms are governed by the
stopband attenuation of . If are in the form of
(20), i.e., , then are fractional delay
filters, whereas is a conventional lowpass filter. In this
case, the expressions given previously for the low-frequency
region are used for , whereas the aliasing terms in the
high-frequency region are controlled by . (Except for
small passband ripples that can be made arbitrarily small, and
a certain delay, does not affect the low-frequency region,
provided that it is a linear-phase filter.)

C. Errors in and Due to Errors in Measurement of

Assume that we have for and . Assume now that
and are replaced with , and , respectively,

whereas is kept fixed. This amounts to

(77)

where is given by (58) with

(78)

where is related to via (60). From (77), we have

(79)

from which we obtain

(80)

Combining (58), (60), (78), and (80) gives us

(81)

Equation (81) is useful for analyzing practical implementa-
tions where the estimated time-skew errors are represented

Fig. 8. Polyphase realization.

with finite precision. The errors in are again related to the er-
rors in through (75).

VII. QUANTIZATION NOISE ANALYSIS

An important measure of the performance of an ADC is the
signal-to-noise ratio (SNR), which relates the average signal
power to the average noise power [15]. To compute the noise
power, it is customary to model the quantization errors as sta-
tionary white noise with zero mean. The noise power is then
given by the noise variance.

To analyze the noise variance at the output of the system in
Fig. 4, it is convenient to represent the synthesis bank with its
so-called polyphase realization [10], as shown in Fig. 8. The
output sequence is obtained by interleaving the sequences

, . The transfer function of is
given by

(82)

where

(83)

with

(84)

(85)

...
...

. . .
...

(86)

Here, are the polyphase components of according
to

(87)

Let , be uncorrelated white noise
sources with zero mean and variances. Since de-
scribes a linear and time-invariant system, the outputs ,

are also stationary noise with zero mean.
However, the variances of , which are denoted here by ,
are, in general, different, even when are equal. The outputs
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may also be correlated. The output noise will there-
fore generally not be stationary. Its variance, which is denoted
here by , is thus time-varying and periodic with period
since, obviously

(88)

We define the average quantization noise at the output as

(89)

Given the synthesis filters and its polyphase components
, is easily computed as

(90)

Now, let the synthesis filters be as in (17) with , and let
all input variances be equal according to

(91)

Combining (17) with (90) and (91) gives us

(92)

A question that arises now is for which values ofthe quan-
tity as given by (92) is minimized subject to the con-
straint that PR is simultaneously achieved. To answer this ques-
tion, we consider the following problem:

minimize subject to (93)

The constraint in (93) is one of those that must be satisfied to
obtain PR. The well-known solution to (93) is readily obtained
by noting that the objective function to be minimized can be
rewritten as

(94)

The second equality in (94) holds because the sum ofis
according to (93). Hence, the solution to (93) is obtained for

, , giving the minimum value
of as

(95)

This shows that the average quantization noise at the output is
minimized for and . That is, for fixed

and , both the time-interleaved ADC systems and their
generalizations in Section V have minimum noise. Further, we
see that for a fixed , the noise can be reduced by increasing
the number of channels . It should also be noted that for a
single ADC, the quantization noise is .

In practice, will no longer be exactly zero, which implies
that are replaced with . If are small (and
), the average quantization noise becomes, in this case

(96)

With in (96), we obtain

(97)

The quantity is bounded according to (66). Equation
(97) shows that small changes in, and thus small changes in

, have a minor affect on . That is

(98)

for small . The above analysis shows that using the pro-
posed system for correcting the time-skew errors in the time-in-
terleaved ADC systems and their generalizations in Section V,
the system has, practically, minimum noise. Furthermore, we
can simultaneously achieve arbitrarily small aliasing terms by
properly designing the fractional delay filters, as discussed in
Section VI. The prerequisite for achieving these two perfor-
mances is, of course, that we know the time-skew errors and
that these errors are reasonably small.

VIII. E XAMPLE

To illustrate the usefulness of the proposed system, we pro-
vide an example. For simplicity, we let the sampling period be

. We use as analog input signal a sum of four sinusoidals
with angular frequencies , , , and , re-
spectively. The spectrum of this input signal is plotted in Fig. 9.
First, we consider a time-interleaved ADC system with .
The time-skew errors , in (50) are assumed
to be 0, , , , and , respectively. The
obtained sequence has a spectrum according to Fig. 10. Appar-
ently, several undesired frequency components with large am-
plitudes have been introduced due to the time-skew errors. The
largest amplitude is 32.9 dB, assuming that 0 dB is the level
of the desired components.
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Fig. 9. Spectrum of the input signal.

Fig. 10. Spectrum of the sequence obtained from a time-interleaved ADC
system withM = 5.

Next, to reduce the amplitudes of the unwanted frequency
components, we use the proposed system with
(i.e., ). We do the reconstruction in two steps ac-
cording to Fig. 7. The filters , are FIR fil-
ters with eight zeros (eighth-order filters if one disregards extra
delays). These filters are optimized in such a way thatis
minimized subject to the constraints and

for [see (74)]. The maximum
value of becomes 0.000 166. Hence, by (73) and (76), we
can expect the amplitudes of the undesired frequency compo-
nents to be at most 69.6 dB. However, in practice, they will
generally be smaller since (73) is based on worst-case assump-
tions. This can be seen in Fig. 11, which plots the spectrum of
the output sequence from the RPR system, i.e., in Fig. 7.
The largest amplitude is below80 dB in the low-frequency re-
gion . We also note that we still have undesired fre-
quency components with large amplitudes in the high-frequency
region , which is expected since the system
as seen from to is an (approximately) RPR system.
These high-frequency components are removed by the lowpass
filter , producing an overall (approximately) PR system,
as illustrated in Fig. 12. Note that, in practice, we must let
have a transition band between and . Thus, the “ac-
tual ” will be smaller than the theoretical value. The smaller
the value , the higher the filter order of .

IX. FRACTIONAL DELAY FILTER STRUCTURES

The reconstruction can only be carried out if the time skews
are known. In an implementation of the system, one must

therefore be able to measure or, equivalently, measure
the time-skew errors in (50) and (53). This can be per-
formed either before or during normal operation [7]. Since the
time-skew errors may vary over time due to, e.g., component
aging and temperature variations, it may be necessary to do the
measurements during normal operation. Using the proposed

Fig. 11. Spectrum of the sequencey (n) in Fig. 7 withM = N = 5.

Fig. 12. Spectrum of the sequencey (n) in Fig. 7 withM = N = 5.

system under these conditions, it is essential that we design the
fractional delay filters in such a way that they need not
be redesigned when change values since it is not practical
to design filters on line. If are in the form of (20), i.e.,

, then are fractional delay filters,
whereas is a conventional lowpass filter. In this case, it
suffices to make sure that need not be redesigned since

can be kept fixed.
Online design of can be avoided if we employ so-called

Farrow structures [16]. The transfer functions are, in this
case, expressed as

(99)

where

(100)

After optimizing in the form of (99), will be
kept fixed. It thus suffices to adjust the values ofand . To
make sure that meets their specifications when the values
of and are allowed to vary, one must, of course, take
care of this in the optimization. Optimization of FIR filters with
adjustable fractional delay has been considered in, e.g., [17] and
[18]. Here, we also have adjustable gain constants, but this is
easily handled when only vary slightly. Finally, we note that
when , all , in (99) can
be made equal. This reduces the number of distinct subfilters
required in an implementation.

X. CONCLUSION

This paper has introduced a synthesis system composed
of digital fractional delay filters for reconstructing a class of
nonuniformly sampled bandlimited signals. The overall system
can be viewed as a generalization of time-interleaved ADC
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systems to which the former reduces as a special case. By
generalizing these systems, it is possible to eliminate the errors
at the output that are introduced in practice due to time-skew
errors. We showed how to obtain perfect reconstruction by
selecting the (ideal) fractional delay filters properly. Further,
we provided error analysis that is useful in the analysis of the
quantization noise as well as when designing practical filters
approximating the ideal ones. We also gave some expressions
for the average quantization noise at the output of the overall
system. Finally, we provided an example and briefly discussed
fractional delay filter structures suitable for real-time applica-
tions.

The main reason for introducing the new system is that it is
very attractive from an implementation point of view. In partic-
ular, it has two major advantages. One is that we can approx-
imate PR as close as desired by properly designing the digital
fractional delay filters. The second advantage is that, if properly
implemented, the fractional delay filters need not be redesigned
in case the time skews are changed. It suffices to adjust some
multiplier coefficient values that are uniquely determined by the
time skews . The price to pay for these facilities is that we
need to use a slight oversampling. The oversampling factor is,
however, always less than two as compared with the Nyquist
rate; it is thus a small oversampling factor. In addition, using
our system to correct errors in time-interleaved ADCs, the indi-
vidual ADCs in each channel will still work at a lower sampling
rate compared with a single ADC working at the Nyquist rate
(except when ). In our case, we have a reduction of the
sampling rate requirements of some instead of .
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