
Deformation Aware Image Compression

Tamar Rott Shaham and Tomer Michaeli
Technion—Israel Institute of Technology, Haifa, Israel

{stamarot@campus,tomer.m@ee}.technion.ac.il

Abstract

Lossy compression algorithms aim to compactly encode
images in a way which enables to restore them with minimal
error. We show that a key limitation of existing algorithms
is that they rely on error measures that are extremely sen-
sitive to geometric deformations (e.g. SSD, SSIM). These
force the encoder to invest many bits in describing the exact
geometry of every fine detail in the image, which is obvi-
ously wasteful, because the human visual system is indif-
ferent to small local translations. Motivated by this obser-
vation, we propose a deformation-insensitive error measure
that can be easily incorporated into any existing compres-
sion scheme. As we show, optimal compression under our
criterion involves slightly deforming the input image such
that it becomes more “compressible”. Surprisingly, while
these small deformations are barely noticeable, they enable
the CODEC to preserve details that are otherwise com-
pletely lost. Our technique uses the CODEC as a “black
box”, thus allowing simple integration with arbitrary com-
pression methods. Extensive experiments, including user
studies, confirm that our approach significantly improves
the visual quality of many CODECs. These include JPEG,
JPEG 2000, WebP, BPG, and a recent deep-net method.

1. Introduction
The last decades have seen an exponential rise in the

popularity of mobile devices equipped with high-resolution
cameras. To accommodate the numerous amounts of pic-
tures captured by those devices on a daily basis, there is a
crucial need for high quality compression algorithms. In-
deed, while 20 megapixel images are becoming common
(requiring 60 megabytes to store uncompressed), transmis-
sion and storage is often limited to less than 1 megabyte per
image. At such high ratios, commonly used compression
methods tend to discard important information from the im-
age and produce visually unpleasing results.

In this paper, we propose a generic approach for boosting
the visual quality of any image compression method, by in-
troducing deformations to the input image (see Fig. 1). Our
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Figure 1. Deformation aware image compression. Our algo-
rithm seeks to minimize a deformation-insensitive error measure.
This boils down to determining how to best deform the input im-
age (a) so as to make it more compressible (c). By doing so, we
trade a little geometric integrity with a significant gain in terms of
preservation of visual information (d) compared to regular com-
pression (b). Note that images (b) and (d) were obtained by com-
pressing images (a) and (c), respectively, with the same JPEG 2000
CODEC using the same compression ratio of 150:1.

algorithm uses the CODEC as a “black box” and is thus ex-
tremely simple to incorporate into arbitrary methods. Yet,
it has a pronounced effect: At the same bit rate, we are able
to achieve significantly better visual results.

Lossy compression schemes attempt to compactly en-
code images in a way which allows to restore them with
minimal error. Over the years, most efforts to improve com-
pression methods focused on seeking better image mod-
els. Examples include sparsity of image blocks in the
DCT domain [35], recurrence of patches across differ-
ent scales of the image [3], sparsity in the wavelet do-
main [28], and smoothness (as exploited e.g. by PDE based



approaches [8, 25]). However, the impact of new image
models seems to be slowing down. Indeed, newer and more
sophisticated priors now outperform their predecessors by
small margins and only at high compression ratios [1, 4].

Here, we take a different route. Rather than focusing on
the image prior, we focus on the error criterion. Specif-
ically, most compression methods seek to minimize some
per-pixel distance (typically `2) between the input image
and the decoded image. Several attempts were also made to
incorporate the SSIM index [39] as a fidelity criterion, lead-
ing to only modest improvement in visual quality [21, 10].
We claim that the main limitation of most existing distance
measures (including perceptual ones) is that they are very
sensitive to slight misalignment of shapes and objects in the
two images. Therefore, excelling under those criteria re-
quires encoding the precise geometry of every fine detail in
the image. But this is clearly wasteful, as the human visual
system is not distracted by small geometric deformations,
as long as the semantics of the scene is preserved.

Motivated by this insight, in this paper we propose a new
error measure, which is insensitive to small smooth defor-
mations. Our measure has two key advantages over other
criteria: (i) it is very simple to incorporate into any com-
pression method, and (ii) in the context of compression, it
better correlates with human perception (as we confirm by
user studies), and thus leads to a significant improvement in
terms of detail preservation.

As we show, optimal compression under our criterion
boils down to determining how to best deform the input
image such that it becomes more “compressible”. This is
illustrated in Figs. 1 and 2 for the JPEG 2000 [28] and the
Global Thresholding [29] compression methods. As can be
seen, by introducing very minor deformations, we are able
to make the compression scheme preserve delicate features
that are otherwise completely lost. Note that this effect is
achieved without increasing the bit rate. In other words,
rather than discarding textures and small objects to meet the
bit budget, we geometrically modify them such that they can
be better encoded with the same number of bits.

The surprising success of our approach can be attributed
to an interesting phenomenon recently observed in [23].
That is, by introducing small geometric deformations, it
is usually possible to significantly increase the likelihood
of any natural image under any given prior. The implica-
tion of this effect on compression is striking. For example,
compression algorithms that exploit sparsity in the wavelet
domain (e.g. JPEG 2000), discard the small wavelet coeffi-
cients of the image. At high compression ratios, this causes
fine details to fade, as demonstrated in Fig. 3 for the Sub-
band Thresholding compression method [29]. However, as
can be seen in Fig. 3(b),(d), it takes only a small deforma-
tion to make the wavelet transform of the image signifi-
cantly sparser. Thus, by slightly sacrificing geometric in-
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Figure 2. The effect of deformation. When compressing the input
image (a) using the Global Thresholding method [18] at a ratio of
40:1, delicate structures are completely lost (b). Interestingly, by
making those structures a bit wiggly (c) they can be significantly
better preserved during compression (d).

tegrity, we substantially improve the ability of the compres-
sion algorithm to preserve details, as seen in Fig. 3(f).

2. Related Work
The most popular error measure in image compression

is the squared `2 distance. This criterion is mathematically
convenient, being convex and differentiable, but is unar-
guably not well correlated with subjective human percep-
tion of image quality [38, 14, 42].

There exist many fidelity criteria that are better cor-
related with human perception. A few examples are
SSIM [39], MS-SSIM [40], CW-SSIM [24], IFC [27],
VIF [26], and FSIM [41]. Recently, several perceptual
loss functions have been proposed, which measures the
similarity between deep feature maps (mostly of the VGG
net). These measures were shown to lead to pleasing vi-
sual results in a variety of low-level vision tasks, including
super-resolution [13, 11] and style transfer [16]. Percep-
tual losses were also incorporated with generative adver-
sarial networks (GANs), allowing to achieve high-quality
super-resolution [13] and compression [22] results.

While these criteria better match human perception, their
majority lack a crucial property for perceptual compression:
deformation invariance. Namely, they do not tolerate small
misalignment of objects, and thus necessitate the encoder
to invest many bits in encoding the fine geometry of every
feature in the image. Indeed, several attempts to incorpo-
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Figure 3. Deformation aware compression via Subband
Thresholding. The input image (a) contains many strong curved
edges, so that its wavelet transform (c) is not very sparse. This
causes Subband Thresholding compression [29] at a ratio of 25:1,
to produce a very blurry result (e). However, by introducing a mi-
nor geometric deformation (b), we are able to make the wavelet
transform of the image much sparser (d). This allows the com-
pression algorithm to preserve most of the structures in the image,
at the same bit budget (f). This principle applies to arbitrary image
priors, and not only those based on wavelet sparsity.

rate the SSIM criterion into JPEG and JPEG 2000 [21, 10]
and into video coding [36, 20, 37], led to rather modest im-
provements in visual quality.

Another drawback of existing error measures is that
they are difficult to incorporate into arbitrary compression
schemes. Namely, as opposed to the `2 distance, rate-
distortion optimization under those measures cannot be
done analytically and thus requires various approximations.
Thus, even when solutions exist [21, 10, 20], they are quite
specific and cannot be easily extended to other compression
standards. Furthermore, from an end-user viewpoint, those
solutions require a specialized CODEC. Our solution, on
the other hand, can work with any existing CODEC. Specif-
ically, we use the CODEC as a “black box”, to generate a
preprocessed (deformed) image. This image can then be
compressed and decompressed using the original CODEC,
without any modification.

Our method is related to a recent line of work on using
deformations for idealizing images [5, 33, 23]. These pa-
pers introduced the idea of deforming images as a means
for making them better comply with some prior model.
Here, we harness this idea for improving image compres-

sion. Namely, we propose an error criterion which measures
similarity up to small deformations. Thus, compression un-
der our criterion, reduces to determining how the input im-
age should be deformed so that it is more compressible.

Note that the idea of measuring image similarity up to
deformation has been proposed in the context of image
recognition [19] and face recognition [34]. However, this
approach has never been exploited for image compression.

3. Deformation Aware Compression
Modern compression schemes involve a procedure

known as rate-distortion optimization. Namely, during
compression, the algorithm adaptively selects where to in-
vest more bits so as to minimize the distortion between the
input image y and its compressed version x, while conform-
ing to a total bit rate constraint of ε bits per pixel. This can
be formulated as the optimization problem

min
x
d(x, y) s.t. R(x) ≤ ε, (1)

where d(·, ·) is some distortion measure that quantifies the
dissimilarity between x and y, and R(x) is the rate required
to encode x.

The most popular distortion measure is the sum of
squared differences (SSD), i.e. the square `2 error norm

dSSD(x, y) = ‖x− y‖2. (2)

The SSD is a per-pixel criterion, and is therefore extremely
sensitive to slight misalignment or deformation of objects.
For that reason, when the bit budget ε is low (i.e. high
compression ratio), the compression process completely re-
moves or blurs out certain structures in the image.

As human observers are indifferent to slight local trans-
lations, here we propose a deformation insensitive version
of the SSD measure. We consider two images x and y to
be similar, if there exists a smooth deformation T such that
x and T {y} are similar. More concretely, we define the
deformation aware SSD (DASSD) between x and y as

dDASSD(x, y) = min
T
‖x− T {y}‖2 + λψ(T ), (3)

where the term ψ(T ) penalizes for non-smooth deforma-
tions. Note that computing the DASSD requires solving an
optical-flow problem [9] to determine how to best warp y
onto x. Once the optimal deformation is determined, the
DASSD is defined as the SSD between x and the warped y,
plus a term that quantifies the roughness of the flow field.
The parameter λ controls the tradeoff between the two
terms. Therefore, the DASSD is large if the best warped y
is not similar to x, or if the deformation required to make y
similar to x is not smooth (or both).

To allow for complex deformations, we use a nonpara-
metric flow field (u, v), namely

T {y}(ξ, η) = y(ξ + u(ξ, η), η + v(ξ, η)). (4)
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Similarity scores (higher = similar) Dissimilarity scores (lower = similar)
SSIM MS-SSIM CW-SSIM IFC VIF FSIM VGG2,2 VGG5,4 SSD DASSD (our)

JPEG 2000 0.696 0.837 0.999 1.216 0.124 0.857 0.173 2.023 545 328
Our 0.685 0.810 0.996 1.014 0.104 0.848 0.252 2.347 639 284

Figure 4. Comparison between error criteria. We measured the similarity between the input image (a) and the compressed images (b)
and (c), according to various fidelity criteria. We indicate in bold which compression result has been ranked more similar: our deformation
aware compression (c), or the regular JPEG 2000 compression (b) (both compressed at a ratio of 200:1). As can be seen, all error criteria
other than DASSD rank our result as less similar to the input image. This is despite the fact that it preserves much more visual information.

We define the penalty ψ(T ) to be a weighted Horn and
Schunk regularizer [9],

ψ(T ) =
∫∫

w(ξ, η)
(
‖∇u(ξ, η)‖2 + ‖∇v(ξ, η)‖2

)
dξdη,

(5)
where ∇ = ( ∂∂ξ ,

∂
∂η ) and w(ξ, η) is a weight map that puts

higher penalty on salient regions (see Sec. 4).
Figure 4 illustrates the advantage of our DASSD cri-

terion over other similarity criteria. In this example, our
method clearly preserves more details than the original
JPEG 2000 compression. This is captured by our DASSD
measure, which ranks our compressed image as more sim-
ilar to the input image than the regular JPEG 2000 result
(here we used a constant regularization map w(ξ, η) = 1).
However, the other similarity measures are very sensitive to
misalignment of objects, and thus all of them rank our result
as less similar to the input image. Please see a comparison
of all similarity measures on all the images in this paper in
the Supplementary Material.

Our measure is obviously the least sensitive to smooth
deformations. But why should deformation invariance im-
prove compression? Lossy image compression schemes are
usually not translation invariant. That is, compressing a
shifted version of an image, gives an entirely different result
than shifting the compressed image. This is demonstrated in
Fig. 5 for the JPEG 2000 standard. While the input image
and its shifted version look perfectly identical to a human
observer, their compressed versions look very different. In
one of them the small square in the middle is preserved, and
in the other it is not. As opposed to SSD, our deformation
aware criterion prefers the result in which the small square
is preserved: The DASSD between (a) and (d) is 3% lower

(a) Input (b)  Shifted Input

(c) Compressed Image (d) Compressed Shifted Image

Figure 5. The effect of global translation. Compressing the im-
age (a) using JPEG 2000 at a ratio of 75:1, causes the small square
in the middle to disappear (c). However, by shifting the image
only two pixels to the left (b), compression at the same ratio keeps
the small square intact (d).

than the DASSD between (a) and (c), while the SSD be-
tween (a) and (d) is 16 times larger than the SSD between
(a) and (c). This intuition can be extended to local transla-
tions. For example, to preserve the pattern of the Mandala
in Fig. 2, it is necessary to make lines a bit wiggly. These
small translations make the image more compressible, thus
leading to better visual quality at the same bit rate.

4. Algorithm
Substituting dDASSD of (3) into (1), we obtain the opti-

mization problem

min
x,T
‖T {y} − x‖2 + λψ(T ) s.t. R(x) ≤ ε. (6)

That is, we need to simultaneously determine a compressed
image x (represented with no more than ε bits per pixel)
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Figure 6. Pixel-wise compression error. Our algorithm deforms
images so as to make them more compressible in the `2 sense.
The effect is that the error obtained in compressing the deformed
image (b) is significantly lower than the error obtained in com-
pressing the original image (a). These results correspond to the
Lizard images of Fig. 1(c) and Fig. 1(a), respectively.

and a geometric deformation T , such that x is similar to
the deformed image T {y} rather than to y itself. In other
words, we seek how to deform the input image y, such that
T {y} can be compressed with smaller SSD error under the
same bit budget. This is illustrated in Fig. 6.

To solve problem (6) we alternate between minimizing
the objective w.r.t. x while holding T fixed and vice versa.

x-step: When T is fixed, ψ(T ) can be discarded, so that (6)
simplifies to

min
x
‖x− T {y}‖2 s.t. R(x) ≤ ε. (7)

This is a standard rate distortion problem, but for compress-
ing the deformed image T {y} rather than the input image y.

T -step: When x is fixed, the bit rate R(x) is constant,
and (6) reduces to

min
T
‖x− T {y}‖2 + λψ(T ). (8)

This is an optical flow problem [9] for determining how
to best warp the input image y onto the compressed im-
age x. Here we use the iteratively re-weighted least-squares
(IRLS) algorithm proposed in [15].

Thus, as summarized in Alg. 1, our algorithm iterates be-
tween two simple steps: Compressing the current deformed
input image T {y} to obtain x, and computing the optical
flow between x and y to update T . Note that the x-step
can be done with any CODEC. This allows integrating our
algorithm with arbitrary compression methods.

To prevent the algorithm from getting trapped in a bad
local minimum, we start with a large bit budget ε, and grad-
ually decrease it along the iterations until we reach the de-
sired budget. This helps to avoid the following situation.
Suppose that at some stage, the compression (x-step) re-
moves some structure from the image, so that it appears
in T {y} but not in x. In that case, the optical flow (T -step)
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Figure 7. The effect of gradual bit rate decrease. Our algorithm
iterates between compression and optical flow estimation. When
the compression step is performed with the final desired bit rate
(red box), the algorithm fails to restore all the fine structures on
the Dragonfly’s wing, that are lost with regular compression (blue
box). However, when starting with a large bit rate and progres-
sively decreasing it, our algorithm manages to preserve most of the
wing’s delicate textures (yellow box). This is correlated with the
final DASSD value, which is 10% lower when using the gradual
scheme (yellow line), compared to the direct scheme (red line). We
used the JPEG 2000 standard with a compression ratio of 150:1.

Input: Image y, bit budget ε
Output: Compressed image x
Initialize T to the identity mapping and ε̃ to be large
Compute the local regularization weight map w
while ε̃ > ε do

x ← Compress(T {y}, ε̃) /* bit budget of ε̃ */
T ← OpticalFlow(y, x) /* with weight map w */
decrease ε̃

end
Algorithm 1: Deformation Aware Compression.

cannot determine how to best deform this structure so as to
encourage the compression to preserve it in the next itera-
tion. Our gradual process overcomes this issue by allowing
the deformation to gradually adapt to the small structures
before they disappear. Therefore, as we show in Fig. 7, this
process leads to better detail preservation. Indeed, with the
gradual scheme, the algorithm converges to a DASSD value
which is 10% lower than without the gradual scheme. Note
that the low DASSD values at early iterations are a result of
using a high bit rate. As the bit rate decreases, the DASSD
values increase (but reach a lower value at the final bit rate,
than without the gradual process).

Constructing the regularization weight map To ensure
good visual quality, we need to prevent extreme distortions
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Figure 8. The effect of the regularization weight map. Applying our scheme (with WebP compression at a ratio of 250:1) on image (a)
without adaptive regularization (constant w(ξ, η)), results in image (d) in which the the hat’s texture is better preserved, compared to the
regular WebP compression (c), but the woman’s lips are distorted unrealistically. Using the local regularization weight map (b), results in
image (e) in which the boundaries of the lips are not distorted, yet the texture on the hat is still sharper than with the regular compression (c).

at regions which capture the observer’s attention. In partic-
ular, humans are very sensitive to the outline of objects. We
therefore construct the weight map w(ξ, η) in (5) as

w(ξ, η) = 1 + α · G(ξ, η) ∗ E(ξ, η), (9)

where E is an edge map obtained by applying the edge de-
tector of [6] on the input image y, G is a Gaussian filter
with σ = 20, ‘∗’ denotes convolution, and α is a parameter
that controls the strength of the varying regularization. As
can be seen from Fig. 8, using local regularization is essen-
tial for avoiding distracting artifacts. With a global regu-
larization (constant w), object boundaries are distorted un-
realistically (e.g. the woman’s lips). By introducing a spa-
tially varying regularization, lines and boundaries are not
distorted, yet textures (e.g. the hat) are still allowed to de-
form and are thus better preserved during compression.

5. Experiments
We tested our approach with JPEG [35],

JPEG 2000 [28], WebP [1], BPG [4], the deep-net
based CODEC of [32], Subband Thresholding [29] and
Global Thresholding [18], on images from the Berkeley
segmentation dataset [17], the Kodak dataset [7] and the
Web (please see many more results in the Supplementary
Material). For the gradual process, we kept the compression
ratio fixed for the first 10 iterations, then increased it every
5 iterations for the next 25 iterations, and then increased
it every single iteration until reaching the desired rate.
For JPEG 2000, we started at a compression ratio of 20:1
and increased it by steps of 5. For Subband Thresholding
and Global Thresholding we started at a ratio of 5:1 and
increased it by steps of 1. For the deep coding algorithm,
we started with a bit rate of 0.75 bits per pixel (BPP), and
then decreased it by steps of 0.125 BPP. In JPEG, BPG and
WebP, the user specifies a quality parameter rather than the
desired compression rate. Thus, for JPEG and WebP, we

started at a quality of 50 and decreased it by steps of 1. For
BPG we started at a quality index of 30 (here a lower index
corresponds to better quality) and increased it by steps
of 1. In each optical flow step, we used the flow from the
previous iteration as initialization. We found this leads to
better convergence. All warped images were produced with
bicubic interpolation (this induces negligible blur which
does not affect the visual quality).

The local geometries preferred by different compression
schemes are of different nature. In some cases, those pre-
ferred structures look quite unnatural to the human eye (e.g.
blockiness effects in JPEG). To prevent our approach from
generating unpleasant images, we tuned the parameter α of
the regularization map (9) differently for different compres-
sion schemes. For JPEG we used α = 20, for JPEG 2000
and Global and Subband thresholding we used α = 3, and
for WebP, BPG and Deep Coding we used α = 6. For all
compression methods we used λ = 65 (for color images
with 8 bits per pixel per channel).

The running time of our algorithm is given by
T = K × (TCODEC + Tflow), where K is the number of it-
erations and TCODEC, Tflow are the running times of the
CODEC and optical flow, respectively. Typically, K is on
the order of a few tens, Tflow ≈ 0.5 sec and TCODEC ≈
0.15 sec for a 1 megapixel image.

Figures 2 and 3 depict results produced by our algorithm
with the Subband Thresholding [29] and the Global Thresh-
olding [18] compression methods, respectively. These two
simple approaches produce unpleasing visual results al-
ready at moderate compression ratios. However, by using
our approach, we are able to improve their performance.
This demonstrates that the choice of the error criterion is
not less important than the choice of the image prior. In-
deed, even simple models can lead to good visual results
when used with a deformation indifferent error criterion.

Figures 1, 9 and 10 show several results produced by our
algorithm with the JPEG and JPEG 2000 schemes. As can
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Figure 9. JPEG 2000 [28]. Compression of Houses at a ratio of 50:1.
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Figure 10. JPEG [35]. Compression of Leaf at a ratio of 50:1.

(a) Input (b) Regular Compression (c) Deformation Aware Compression

Figure 11. WebP [1]. Compression of the New York Stock Exchange building at a ratio of 110:1.

(a) Input (b) Regular Compression (c) Deformation Aware Compression

Figure 12. BPG [4]. Compression of Girl at a ratio of 220:1.

(a) Input (b) Regular Compression (c) Deformation Aware Compression

Figure 13. Deep Coding [32]. Compression of Dragonfly’s wings at a ratio of 48:1.



be seen, our algorithm has a very pronounced visual effect:
It manages to preserve a lot of the content that is completely
lost in regular compression. In particular see the house’s
roof and windows and the threads on the leaf.

Next, we applied our algorithm on the newer compres-
sion methods WebP and BPG. Generally, we found that the
improvement for those methods is moderate and sometimes
even unnoticeable. However, in some cases (e.g. Figs. 11
and 12) the contribution of our approach is extremely mean-
ingful. Note how our algorithm restores fine details like the
words ‘NEW YORK’ and the texture on the sweater, that
are otherwise completely dissolved.

Recently, several neural net based lossy compression
methods have been proposed [22, 32, 12, 2, 30, 31]. To
test the effect of deformation awareness on this family of
techniques, we experimented with the CODEC of [32]. As
illustrated in Fig. 13, our approach significantly boosts the
visual quality of this method. This suggests that our method
is also of great relevance to the recent trend of deep-net
based compression.

As demonstrated in Fig. 4, since our method introduces
deformations, most error criteria tend to rank our results as
less similar to the input image than the regular compres-
sion. Therefore, to quantify the perceptual effect of our ap-
proach, we conducted a user study on the Kodak dataset [7].
For each of the 24 uncompressed images in this dataset, the
participants were asked to choose which of its two com-
pressed versions looks better: the one with regular compres-
sion (with JPEG or JPEG 2000) or our deformation aware
variant of the same compression method. For JPEG 2000,
the two compared images were compressed with the same
ratio (we tested ratios of 75, 125 and 175) and for JPEG
both images were compressed with the same quality factor
(we tested qualities of 20, 15 and 10). In the case of JPEG,
our method resulted in a minor decrease in the compres-
sion ratio (∼ 5% on average). The JPEG 2000 and JPEG
surveys were completed by 57 and 59 Amazon Mechanical
Turk workers, respectively. As can be seen in Fig. 14, the
vast majority of the subjects chose our compressed images
well above 50% of times. According to the Wilson test with
confidence level of 95%, the mean percentage of prefer-
ence for our method is 58.3% ∈ [51.7%, 79.9%], 65.9% ∈
[60.4%, 87.6%], 66% ∈ [60.5%, 87.7%] for JPEG2000
with compression of ratios of 75, 125, 175, respectively,
and 59.7% ∈ [53.3%, 80.8%], 62.4% ∈ [56.3%, 83.5%],
56.9% ∈ [50.2%, 78.0%] for JPEG with quality indices of
20, 15, 25, respectively. This supports the conclusion that
the average percentage of preference to our method is well
above 50%, with very high confidence. This indicates that
our deformation aware framework indeed leads to a mean-
ingful improvement in visual quality over the original com-
pression methods.
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Figure 14. User Study. For each human subject, we recorded
the percentage of times he/she preferred the image that was com-
pressed with our deformation aware (DA) versions of JPEG 2000
and JPEG, over that which was compressed with the original meth-
ods (see text for details). For each compression ratio in JPEG
2000 and quality factor in JPEG, we plot the median percentage
of preference (red line), the 25% and 75% percentiles (blue box),
the extreme values (black lines), and outliers according to the in-
terquartile ranges (IQR) (red marks). As can be seen, well above
75% of the subjects preferred our deformation aware version for
more than 50% of the images.

6. Conclusions

We proposed a generic approach for improving the vi-
sual quality of lossy image compression schemes. Our
method relies on a new error criterion, which is insensitive
to smooth deformations. The advantages of our criterion
are twofold. First, as opposed to other criteria, it can be
easily incorporated into any existing compression scheme.
Second, to excel under our criterion, the encoder need not
invest bits in describing the exact geometries of fine struc-
tures. The effect is that more bits are invested in the impor-
tant parts, leading to greatly better detail preservation. User
studies confirmed that our approach significantly improves
the visual quality of existing compression techniques.

Acknowledgements This research was supported in part
by an Alon Fellowship, by the Israel Science Foundation
(grant no. 852/17), and by the Ollendorf Foundation.



References
[1] WebP: A New Image Format For The Web.

https://developers.google.com/speed/webp/, 2015. 2, 6,
7
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