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Abstract— We study the convergence rate of average con-
sensus algorithms in networks with stochastic communication
failures. We show how the system dynamics can be modeled
by a discrete-time linear system with multiplicative random
coefficients. This formulation captures many types of random
networks including networks with links failures, node failures,
and network partitions. With this formulation, we use first-
order spectral perturbation analysis to analyze the mean-
square convergence rate under various network conditions.
Our analysis reveals that in large networks, the effect of
communication failures on the convergence rate is similar to
the effect of changing the weight assigned to the communication
links. We also show that in large networks, when the probability
of communication failure is small, correlation in communication
failures plays a negligible role in the convergence rate of the
algorithm.

I. INTRODUCTION

In the distributed average consensus problem, each node
in the network has an initial value, and the goal is for the
nodes to reach consensus at the average of these values using
only communication between neighbors. Average consensus
algorithms have a wide variety of applications including
distributed optimization [1], sensor fusion [2], load balancing
[3], [4], and vehicle formation control [5], [6], [7]. A topic
of recent interest is the performance of consensus algorithms
in networks with unreliable communication. Messages may
be lost due to wireless network interference or hardware
or software failures, and it is desirable to understand the
effect of these communication failures on the algorithm
convergence behavior.

Several works have presented necessary and sufficient
conditions for convergence in many variants of stochastic
networks [8], [9], [10], [11], [12], [7], [13]. However, the
study of convergence rates in such networks is a less mature
area. Our aim in this paper is to analytically quantify
the relationship between the probability of communication
failure and the mean-square convergence rate of consensus
algorithms in stochastic networks.

We consider a class of stochastic networks that can be rep-
resented by a discrete-time linear system with multiplicative
random coefficients. This formulation can be used to model
a wide variety of network scenarios including link failures,
node failures, and network partitions. With this formulation,
it is possible to compute the convergence rate for any
network in a simulation-free manner. This formulation is
also amenable to spectral perturbation analysis to produce
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a closed form expression for the convergence rate when the
probability of link failure is small. Through this analysis,
we are able to draw several interesting conclusions about
the effects of communication failures on convergence rates
in large networks.
• The probability of link failure plays a similar role in

algorithm performance as the weights assigned to the
to the links. An increase in the probability of failure
causes a comparable change in convergence rate to a
decrease in edge weight.

• Correlation in communication failures is of little sig-
nificance in the convergence rate. In large networks,
while the probability of link failure has a large effect
on convergence rate, the effect is essentially the same,
regardless of whether links fail independently or simul-
taneously.

Details on these observations are given in Section IV.
In the remainder of this section, we briefly review related

work on consensus in stochastic networks and then describe
our problem setting. In Section II, we formalize the dy-
namics of the consensus algorithm in a general stochastic
network, and we illustrate how this general form can be
used to model several network scenarios. In Section III, we
present perturbation analysis for the general model and the
specific cases of link failures, node failures, and network
partitions. Section IV contains two examples that highlight
the relationship between the convergence rate, the probability
of link failures, and the correlation of these failures. Finally,
we conclude in Section V.

A. Related Work

The distributed consensus has been studied in switching
networks, where it has been shown that the convergence rate
of the algorithm can be defined in terms of the number
of bounded intervals for which the network satisfies some
connectivity property [14], [15]. The recent work by Fagnani
and Zampieri has addressed the convergence rate of con-
sensus algorithms in directed stochastic networks [16], [17].
This work uses a similar method to model such networks
to the one presented in this work. The authors derive lower
and upper bounds for the convergence rate of the consensus
algorithm, and present analytical results for these bounds for
several special networks.

In our previous work [18], we addressed the problem of
convergence rates in networks where links fail independently,
and presented analysis for the convergence rate in tori
networks. In this paper, we generalize the model presented in
[18] to include both correlated and uncorrelated link failures.
This generalization also encompasses some of the scenarios

49th IEEE Conference on Decision and Control
December 15-17, 2010
Hilton Atlanta Hotel, Atlanta, GA, USA

978-1-4244-7746-3/10/$26.00 ©2010 IEEE 6608



studied in [17]. With our general model, we derive tight
upper bounds for the convergence rate as well as analytical
expressions for the convergence rate for any undirected,
stochastic network.

B. Preliminaries

We consider a network of n identical nodes with a
fixed, underlying communication structure. The network is
modeled by an undirected, connected communication graph
G = (V,E), where V is the set of nodes, with |V | = n,
and E is the set of bi-directional communication links, with
|E| = m. Let A = [aij ] be the weighted adjacency matrix
of G, with aij > 0 if and only if (i, j) ∈ E. We also assume
that for every i,

∑n
j=1 aij < 1. The weighted Laplacian

matrix of G is defined as L := D−A, where D = [dij ] is a
diagonal matrix with each dii =

∑n
j=1 aij . It is well-known

that L has an an eigenvalue of 0 with eigenvector 1 (the
vector of all ones). Since G is a connected graph, all other
eigenvalues of L are strictly positive.

Each node has an initial state xi(0), and the objective is for
all nodes to reach consensus at the average of the node states,
xave := 1

n

∑
i∈V xi(t), using only communication with

neighboring nodes. Communication takes place in discrete
rounds, and in each round, some subset of links E(t) ⊆ E
may fail, meaning no communication takes place across these
links in either direction. A link that does not fail in a round
is called active. Let Ni(t) denote the neighbor set of node i
in round t, i.e. the set of nodes that share an active link with
node i in round t. Each agent updates its state according to
the following nearest neighbor averaging rule,

xi(t+ 1) = xi(t) +
∑

j∈Ni(t)

lij(xj(t)− xi(t)).

The dynamics of the entire system are

x(t+ 1) = (I − L(t))x(t), (1)

where L(t) is the weighted Laplacian of the graph of active
links at time t.

We measure how far the system is from consensus by the
deviation from average vector, with each component defined
as

x̃i(t) := xi(t)− xave.

Let Q be the orthogonal projection operator Q := I− 1
n11∗.

The vector x̃(t) is the projection of x(t) onto the subspace
orthogonal to span (1),

x̃(t) = Qx(t).

In a network with a fixed topology, the dynamics of x and
x̃ are given by

x(t+ 1) = (I − L)x(t) (2)
x̃(t+ 1) = (Q− L)x̃(t). (3)

The vector x converges asymptotically to xave, or equiva-
lently, the vector x̃(0) converges asymptotically to 0 at a
rate that depends on the second largest eigenvalue of I − L
by magnitude, equivalently, the largest eigenvalue of Q− L

by magnitude. Let λ be the eigenvalue value of L that
maximizes the expression

max(1− λ2(L), λn(L)− 1),

where λ2(L) and λn(L) are the second smallest and the
largest eigenvalues of L, respectively. The eigenvalue of Q−
L with largest magnitude is then 1− λ.

In the case of stochastic networks, we are interested in
the second order statistics of the system (1). We say that the
system converges in mean square if for all i ∈ V ,

lim
t→∞

E
{
x̃i(t)2

}
= 0.

Our aim in this work is to characterize how quickly the
system converges in mean square, a concept that will be
made precise the next section. In particular, we are interested
in how the convergence rate scales with the size of the net-
work. For a given set of edge weights, if, the maximum node
degree of the network is fixed, λ2(L) will grow closer and
closer to one as the network size increases. However λn(L)
is bounded above by twice the maximum node degree (see
[19]). Therefore, the interesting case, in terms of asymptotic
analysis of convergence rates, is that where λ = 1− λ2(L).
We assume that the edge weights are such that this is true.

II. PROBLEM FORMULATION

We study the consensus algorithm in class of stochastic
networks which can be modeled by a linear recursion with
multiplicative noise. The general form of the dynamics of
such systems is

x(t+ 1) =

I −∑
j

δj(t)LEj

x(t), (4)

where δj(t) are (not necessarily independent) Bernoulli ran-
dom variables with

δj(t) :=
{

0 with probability pj

1 with probability 1− pj .

Each LEj is a weighted Laplacian of the graph Gj =
(V,Ej), where Ej ⊆ E is a subset of edges that fail
simultaneously with probability pj . For compactness, we
also use Lj to mean LEj . We assume that

⋃
iEi = E

and Ej ∩ Ek = ∅ for every j and k. We note that if
Ej ∩ Ek 6= ∅, there is always an equivalent expression with
non-intersecting edge sets. When δj(t) = 0, the links in
Ej have failed; when δj(t) = 1, the links are active. For
example, if the network has one unreliable link (i, j) that
fails with probability p in each round, the dynamics of the
system are given by the following,

x(t+ 1) =
(
I − LE\{(i,j)} − δ(i,j)(t)L(i,j)

)
x(t),

where δ(i,j) = 0 with probability p and 1 with probability
1− p.

This general model (4) encompasses a variety of network
scenarios, including the three that we describe below.
Link Failures. In this scenario, each edge (i, j) ∈ E fails
independently with probability p(i,j) in each round. When
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a link fails, no communication takes place across that link
in either direction. The recursion that describes the network
dynamics is

x(t+ 1) =

I − ∑
(i,j)∈E

δ(i,j)(t)L(i,j)

x(t), (5)

where δ(i,j) are Bernoulli random variables with δ(i,j) =
0 with probability p(i,j), meaning the link has failed, and
δ(i,j) = 1 with probability 1 − p(i,j), meaning the link is
active. Here, L(i,j) is the weighted Laplacian of the graph
G(i,j) = (V, {(i, j)}), the graph the containing the single
edge (i, j).
Node Failures. We assume that each node i fails with inde-
pendent probability pi. When a node fails, no communication
takes place across the links adjacent to that node in either
direction. The recursion on x is the same as given in (5).
However the definition of δ(i,j) is different. In the node
failure case, link (i, j) fails when either node i or node j
fails. To capture this property, we define each δ(i,j) as

δ(i,j)(t) = µi(t)µj(t)

where µi, i ∈ V are Bernoulli random variables with µi(t) =
0 with probability pi, meaning node i failed, and µi(t) = 1
with probability 1−pi, meaning node i is active. When either
µi or µj (or both) is 0, δ(i,j) is 0, and link (i, j) is not used
in that round of the algorithm.
Network Partitions. In a network partition, some subset of
edges fail simultaneously, isolating a group of nodes from
the rest of network. Communication still takes place between
the nodes within the partition. Let P ⊆ E be the set of edges
that fail simultaneously with probability p. The dynamics of
the system are given by

x(t+ 1) =
(
I −

(
LE\P + δP (t)LP )

))
x(t), (6)

with δP (t) = 0 with probability p and 1 with probability
1 − p. This formulation can easily be extended to include
multiple, uncorrelated partitions by adding additional multi-
plicative noise terms.

In each of these scenarios, at each time step, I − L(t)
is a doubly stochastic matrix. It has been shown that if
|λ2 (E {I − L(t)})| < 1, then the system converges in
mean square to xave (see [13]). Our aim is to quantify the
relationship between the probability of link failure and the
mean-square convergence rate of consensus algorithms of
the general form (4). As we will show, the per node variance
of the deviation from average decays geometrically.

Problem Statement: Consider a distributed consensus
algorithm over a connected, undirected graph with stochas-
tic communication failures as modeled by the system with
multiplicative noise (4). For a given failure probability p,
determine the worst-case rate (over all initial conditions,
over all nodes) at which the variance of the deviation from
average E

{
x̃i(t)2

}
, i ∈ V, converges to 0 as t→∞.

In the following section, we present analysis of the con-
vergence rate of the general system (4) and give analytical

forms for the convergence rate for each of the scenarios listed
above.

III. CONVERGENCE RATE ANALYSIS
In order to study the evolution of x̃, we define the

autocorrelation matrix of x̃,

M(t) := E {x̃(t)x̃∗(t)}
= E {Qx(t)x∗(t)Q}

Each diagonal entry Mii is the variance at node i, x̃i(t)2. For
the general system (4), the recursion of the autocorrelation
matrix is

M(t+ 1) = (Q− E {L}) M(t) (Q− E {L})
+
∑

i

∑
j

cov (δi, δj)Li M(t) Lj , (7)

where E {L} =
∑

i(1 − pi)Li. The derivation of this
recursion can be found in [20].

We define the matrix-valued operator L(·),

L(X) := (Q− E {L}) X (Q− E {L})
+
∑

i

∑
j

cov (δi, δj)Li X Lj , (8)

and note that (7) is equivalent to M(t+ 1) = L(M(t)). The
mean-square convergence rate of (4) depends on the spectral
radius of L as follows (see [18], [20] for proof).

Theorem 3.1: The system (7) converges in mean square
if and only if ρ(L) < 1, and the per node variance decays,
in worst case, as

x̃i(t)2 = ρ(L)tx̃i(0)2.
While the L operator is Lyapunov-like, there is no straight-

forward way to derive the eigenvalues and eigenvectors of
L from those of of the matrices Q,E {L}, and Li. One
can compute these eigenvalues using an n2 × n2 matrix
representation of L,

L = (Q−E {L})⊗(Q−E {L})+
∑

i

∑
j

cov (δi, δj)Li⊗Li.

However, this computation may be prohibitively expensive
when considering large networks, and so it is desirable to
find an analytical expression for the convergence rate. For
the case where links have identical probability of failure, an
analytical form can be obtained using spectral perturbation
analysis [21]. We first briefly review this technique and then
present convergence rate analysis for the link failure, node
failure, and network partition scenarios.

A. Perturbation Analysis

Let L(X, p) be a matrix-valued function of a scalar p ∈ R
and a matrix X of the form

L(X, p) = L0(X) + pL1(X) + p2L2(X) + . . . . (9)

For p ∈ (−ε, ε), each eigenvalue of L(·, p) is also a function
of p, denoted γ(p), and this function is well-defined and
analytic for p ∈ (−ε, ε). γ(p) has the power series expansion

γ(p) = γ0 + γ1p+ γ2p
2 + . . .
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where γ0 is an eigenvalue of L0 with eigenmatrix V . To find
the value of γ(p) up to first order in p, we must calculate
the value of γ1. This is given by

γ1 =
〈V,L1(V )〉
〈V, V 〉

.

Note that the inner product on matrices is

〈X,Y 〉 := tr (X∗Y ) .

Therefore, if we can write L in the form (9), the value of
the spectral radius of L, up to first order in p, is

ρ(L) = ρ(L0) +
〈V,L1(V )〉
〈V, V 〉

p+O(p2),

where V is the eigenmatrix of L0 corresponding to ρ(L0).

B. Network Scenarios

We now show how spectral perturbation analysis can be
used to obtain the mean-square convergence rate with respect
to small, uniform probability of failure.
Link Failures. For the system with stochastic link failures
(5), if each link has probability p of failing, the matrix-valued
operator L is

L(X, p) = (Q− (1− p)L)X(Q− (1− p)L)

+(p− p2)
∑

(i,j)∈E

L(i,j)XL(i,j).

Note that var (δi) = p−p2 for all i ∈ V and cov (δi, δj) = 0
if i 6= j.
An equivalent representation of this operator is

L(X, p) = L0(X) + p L1(X) + p2 L2(X),

where

L0(X) = (Q− L)X(Q− L)
L1(X) = LX(Q− L) + (Q− L)XL

+
∑

(i,j)∈E

L(i,j)XL(i,j)

L2(X) = LXL−
∑

(i,j)∈E

L(i,j)XL(i,j).

The spectral radius of L0 is ρ(L0) = (1− λ)2. Let v be the
eigenvector of L with eigenvalue λ with ‖v‖ = 1. Then vv∗

is an eigenmatrix of L0 associated with ρ(L0). The value of
γ1 is then

γ1 = tr (vv∗L1(vv∗))
= tr (vv∗Lvv∗(Q− L) + vv∗(Q− L)vv∗L)

+ tr

vv∗ ∑
(i,j)∈E

L(i,j) vv
∗L(i,j)


= 2λ(1− λ) +

∑
(i,j)∈E

(v∗L(i,j)v)2

= 2λ(1− λ) +
∑

(i,j)∈E

(
lij(vi − vj)2

)2
(10)

The summation term can be bounded as follows [19],

∑
(i,j)∈E

(
lij(vi − vj)2

)2 ≤
 ∑

(i,j)∈E

lij(vi − vj)2

2

= λ2.

Therefore, for a system with stochastic link failures the
spectral radius of L is

ρ(L) = 1− (1− p)2λ+ λ2 + pO(λ2) +O(p2). (11)

Node Failures. For a system with stochastic node failures,
we note that

cov (δi, δj) =

 (1− p)2 if i = j
(1− p)3 if (i, j) ∈ E
(1− p)4 otherwise.

The matrix-valued operator associated with this system is

L(X, p) = (Q− (1− p)2L)X(Q− (1− p)2L)

+
(
(1− p)2 − (1− p)4

) ∑
(i,j)∈E

L(i,j)XL(i,j)

+
(
(1− p)3 − (1− p)4

) ∑
(i,j)∈E

∑
k∈Ni\{j}

L(i,j)XL(i,k)

+
(
(1− p)3 − (1− p)4

) ∑
(i,j)∈E

∑
k∈Nj\{i}

L(i,j)XL(j,k).

In order to perform the first-order perturbation analysis,
we must first rewrite this operator in the form (9). The
operators of this expansion that are relevant to the first-order
perturbation are L0 and L1. They are

Lo(X) = (Q− L)X(Q− L)
L1(X) = 2LX(Q− L) + 2(Q− L)XQ

+
∑

(i,j)∈E

L(i,j)XL(i,j)

+
∑

(i,j)∈E

∑
k∈Ni

L(i,j)XL(i,k)

+
∑

(i,j)∈E

∑
k∈Nj

L(i,j)XL(j,k).

From this, we compute the value of γ1, where, as in the link
failure case, (λ, v) is the eigenvalue, eigenvector pair of L
with ‖v‖ = 1.

γ1 = 4λ(1− λ) +
∑

(i,j)∈E

(lij(vi − vj))2 (12)

+
∑

(i,j)∈E

∑
k∈Ni

lij lik(vi − vj)2(vi − vk)2 (13)

+
∑

(i,j)∈E

∑
k∈Nj

lij ljk(vi − vj)2(vj − vk)2 (14)

The summation term in (12) is identical to that in (10) and
thus can be bounded above by λ2. The summation terms in
(13) and (14) combined are bounded above by∑

(i,j)∈E

∑
(r,s)∈E

lij lrs(vi − vj)2(vr − vs)2 = λ2.
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This gives the following expression for the spectral radius of
L in a network with stochastic node failures,

ρ(L) = 1− (1− 2p)2λ+ λ2 + pO(λ2) +O(p2). (15)

The difference between this expression and ρ(L) for the link
failure scenario given in (11) is in the first order term in p
and λ. We reason that this term is twice as large in the
node failure scenario because each link has a probability of
failure that depends on its the probabilities of failure of its
two adjacent nodes.
Network Partitions. For a network where a subset of
edges P ⊆ E fails simultaneously with probability p, the
corresponding operator L is

L(X, p) = (Q− (L− pLP )) X (Q− (L− pLP ))
+ (p− p2)LP X LP

= L0(X) + pL1(X),

where

L0(X) = (Q− L)X(Q− L)
L1(X) = LPX(Q− L) + (Q− L)XLP + LPXLP .

Again, let v be an eigenvector of L with eigenvalue of λ.
The value of γ1 for the network partition model is

γ1 = 2(1− λ)v∗LP v + (v∗LP v)2

= 2(1− λ)
∑

(i,j)∈EP

lij(vi − vj)2

+
∑

(i,j)∈EP

lij
2(vi − vj)4.

The spectral radius of L is then

ρ(L) = (1− λ)2 + p

2(1− λ)
∑

(i,j)∈EP

lij(vi − vj)2

+
∑

(i,j)∈EP

lij
2(vi − vj)4

+O(p2). (16)

Since v is an eigenvector of L but not an eigenvector of LP ,
in general, there is no straightforward simplification for the
above expression. However, for certain types of networks, the
entries of v have a closed form, and thus, for these networks,
it is possible to find an analytical bound for L.
As an example, we consider a d-dimensional torus network
over Zd

N where Nd = n. We assume that all edge weights
lij are equal to β, with 0 < β < 1/(2d). In this case, L
is a circulant operator and its eigenvalues and eigenvectors
can be determined analytically using the Discrete Fourier
Transform. The eigenvalue λ has multiplicity d with d
independent eigenvectors. Without loss of generality, we
consider one of these eigenvectors. The difference between
each component of the eigenvector is (see [20])

vj − vk =
1√
n

(
e−i 2π

N j1 − e−i 2π
N k1

)
.

If nodes j and k share an edge in the first dimension, then
|j1 − k1| = 1. Otherwise, |j1 − k1| = 0. Therefore, for all
(j, k) ∈ E,

vj − vk ≤
1√
n

2π
n1/d
|j1 − k1|.

With this fact, γ1 can be bounded as follows,

γ1 ≤ 2β(1− λ)
(
|P |
n

)(
4π
n2/d

)
+ β2

(
|P |
n2

)(
2π2

3n4/d

)
.

For a d-dimensional torus, the eigenvalue 1− λ also has an
analytical expression,

1− λ = 1− 2βπ2

n2/d
+O

(
1

n4/d

)
.

Substituting these expressions into the expression for the
spectral radius of L given in (16), we obtain the spectral
radius for L for a network partition in a torus,

ρ(L) = 1−
(

1− |P |
n
p

)
2β

4π2

n2/d

+
(

1 +
|P |
n2

p

)
O

(
1

n4/d

)
+O(p2).

This expression shows that, for large networks, the fraction
of edges that fail in the partition is directly related to the
decrease in the decay factor.

IV. SPECIAL CASES

In this section, we highlight several special formulations of
the consensus algorithm in stochastic networks that provide
a deeper intuition into the effects of the probability of link
failure on the algorithm performance.

A. Stochastic Link Failures with Uniform Edge Weights

One well-studied version of the consensus algorithm is
that in which every edge has identical weight β. In a network
with no communication failures, the dynamics of this system
are

x(t+ 1) = (I − βL̄)x(t),

where L̄ is the unweighted Laplacian matrix. This system
converges if the graph is connected and β < 1

∆ , where ∆ is
the maximum node degree of the graph. Let λ2(L̄) denote
second smallest eigenvalue of L̄. We assume that β < 1

2∆
and therefore, the second largest eigenvalue of (I − βL̄) is
1− βλ2(L̄).

In a network where links fail with independent probability
p and where all edge weights are equal to β, the expression
(11) for the spectral radius of the L operator can be simplified
as follows,

ρ(L) = 1− 2(1− p)βλ2(L̄) + β2λ2(L̄)2

+ p O(β2λ2(L̄)2) +O(p2).

Note that, if links do not fail, the spectral radius of L is
precisely

ρ(L) = 1− 2βλ2(L̄) + β2λ2(L̄)2.
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Therefore, for large networks (networks where λ2(L̄) is
small), link failures decrease ρ(L) by a factor of 1 − p.
In fact, a change in p has the same effect as a change in
the edge weight β. In an informal sense, one can consider
(1− p)β to be the expected edge weight over time.

B. Correlated vs. Uncorrelated Failures

We consider an extreme version of the network partition
scenario where all links fail simultaneously with probability
p. In other words, EP = E. We call this a blinking network
because all links “blink” on and off. Note that in this
scenario, E {L(t)} = (1 − p)L which is precisely the same
as E {L(t)} for the stochastic link failure scenario. However,
one expects the convergence rate in a network where links
fail simultaneously to differ from the rate in a network where
links fail independently. This leads to the question of the
significance of correlation in link failures on the convergence
rate of the consensus algorithm.

To investigate this question further, we examine the spec-
tral perturbation of L for the blinking network model,

L(X) = (Q− (1− p)L)X(Q− (1− p)L)
+ (p− p2)LXL

= (1− p)(Q− L) X (Q− L) + pQ X Q.

Since the Q and L matrices have the same eigenvectors, ρ(L)
for the blinking network can be derived as follows,

ρ(L) = (1− p)ρ ((Q− L) X (Q− L)) + p ρ(Q X Q)
= (1− p)(1− λ)2 + p

= 1− (1− p)2λ+ (1− p)λ2.

Recall that, for a network with stochastic link failures,

ρ(L) = 1− (1− p)2λ+ λ2 + pO(λ2) +O(p2).

We observe that the difference between ρ(L) for the blinking
network and ρ(L) for the network with link failures oc-
curs in the term of order λ2. Therefore, for small p and
large networks, where λ2 is negligible with respect to λ,
the convergence behavior for the two network models is
the same. This result indicates that in such networks, the
probability with which links fail plays an important role in
the convergence rate, but the correlation of these failures
does not.

V. CONCLUSION

We have presented a discrete-time linear system repre-
sentation of consensus algorithms in stochastic networks in
which communication failures are modeled by multiplicative
noise terms. With this formulation, we have used first-order
spectral perturbation analysis to study the convergence rate
of the consensus algorithm under various network conditions
including links failures, node failures, and network partitions.
Our analysis has revealed that in large networks, the effect of
communication failures on the convergence rate is similar to
the effect of changing the weight assigned to the communi-
cation links. We have also shown that in large networks,
correlation in link failures plays a negligible role in the

convergence rate of the consensus algorithm. Although the
analysis presented in this work applies to scenarios where
the probability of failure is small, we have observed through
computations that these results also hold for larger failure
probabilities.
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