
 1

Multigrid Methods for Policy Evaluation and

Reinforcement Learning

Omer Ziv

 and Nahum Shimkin,

 Senior Member, IEEE

Abstract – We introduce a new class of multigrid temporal-difference learning algorithms for speeding up

the estimation of the value function related to a stationary policy, within the context of discounted cost

Markov Decision Processes with linear functional approximation. The proposed scheme builds on the multi-

grid framework which is used in numerical analysis to enhance the iterative solution of linear equations. We

first apply the multigrid approach to policy evaluation in the known model case. We then extend this ap-

proach to the learning case, and propose a scheme in which the basic TD(λ) learning algorithm is applied at

various resolution scales. The efficacy of the proposed algorithms is demonstrated through simulation ex-

periments.

1. INTRODUCTION

Reinforcement Learning (RL) [6, 13] encompasses a set of methods and algorithms for learning an optimal con-

trol policy in a stochastic dynamic environment, modeled as a Markov Decision Process (MDP). One of the basic

algorithms in RL is TD(λ). This family of algorithms is intended for learning the value function of a fixed stationary

policy, and may be considered an on-line version of the value iteration method of dynamic programming (DP). For

large state spaces, the value function typically needs to be represented by some parametric function approximator in

order to provide size tractability and learning generalization. Convergence of TD(λ) with linear function approxi-

mation was proven in [15]. Recently, two new algorithms of a least-squares nature were introduced, namely

LSTD(λ) [3, 16] and λ-LSPE [9, 4]. They offer considerably faster convergence (in terms of data samples) at the

expense of an increase from ()O K to ()2
O K in computational complexity per sample and in memory resources,

where K is the number of variables to be learned. Consequently, for complicated applications, K may be too

large for these algorithms to be feasible. It is therefore of interest to study intermediate algorithms with ()O K

A common approach to speed up convergence of dynamic programming algorithms is state aggregation (see

[1, 5, 10] and complexity that enhance the converge rate of TD(λ).references within), while various hierarchical ap-

proaches, often heuristic, have been used in the RL context (see [2] for a recent survey). In this paper we apply the

multigrid framework to the policy evaluation problem. Multigrid is a family of multiscale numerical methods for

solving large sparse system of linear equations [14]. Geometric multigrid relies on a hierarchy of discretizations of a

continuous problem on regular meshes. Algebraic multigrid (AMG) is a more recent variant that starts with the al-

gebraic equation =Ax b and constructs all coarser levels fully automatically during a setup phase, based only on

algebraic information contained in A [11, 7]. This makes AMG attractive as a “black-box” solver of numerical prob-

lems, and a promising technique for constructing hierarchies in dynamic programming problems even when the

state space does not possess an obvious geometric structure. In this paper we apply the multigrid approach to speed

up iterative and on-line policy evaluation. We focus on AMG, although the basic scheme is applicable irrespec-

 Submitted to the 2005 International Symposium on Intelligent Control; January 9, 2005.
 O. Ziv is with the Department of Electrical Engineering, Technion, Haifa 32000, Israel.
 N. Shimkin is with the Department of Electrical Engineering, Technion, Haifa 32000, Israel (phone: 972-4-8294734; fax: 972-

4-8295757; e-mail: shimkin@ee.technion.ac.il)

 2

tively of the origin of the multigrid structure. This results in a Multigrid-TD(λ) algorithm of comparable computa-

tional complexity to TD(λ), with faster convergence rate.

The necessary background on multigrid is given in the next section, while section 3 presents the TD(λ) algo-

rithm. The straightforward application of multigrid to value iteration in the know model case is discussed in section

4, leading to the multigrid TD(λ) algorithm in section 5. Section 6 presents some experimental results, followed by

concluding remarks.

2. ALGEBRAIC MULTIGRID

The objective of multigrid is to efficiently solve a sparse system of linear equations, namely =Ax b . The basic

principle is to use two complementary procedures: one nullifies fast-to-converge, oscillatory ("high frequency")

error components using standard iteration such as Richardson (value iteration) or Gauss-Seidel; the other eliminates

smooth ("low frequency") error components that are slow-to-converge under iteration, by applying an additive cor-

rection. The correction is calculated by mapping the smooth error at the fine level to a coarser level, solving the

mapped problem at the coarse level, and interpolating the error correction back to the fine level. Applying this two-

level scheme recursively to solve the mapped problem results in a multilevel scheme, where at the coarsest level the

number of the variables is sufficiently small so that the problem can be solved directly (see Figure 2).

Figure 1 – V-cycle for 3 levels

()=V-cycle ,x b
l l

l

1. Unless on the finest grid (0=l), set :=x 0
l

 as the initial correction for level 1−l .

2. Pre-iterate ()1: −= + −x x Q b A x
l l l l l l

, where Q determines the iteration method.

(Common iteration methods are synchronous value iteration (Richardson) for which =Q I
l

, and Gauss-

Seidel for which Q
l
 is the lower triangular part of A

l
 including the diagonal [14]).

3. Coarse grid correction step:

 3.1. Let = −res b A x
l l l l

. Solve the approximated residual equation 1

1 1

+

+ + =A e I resl

l l l l
, either directly if

on the coarsest grid, or via recursion ()1

1:=V-cycle , 1+

+ +e I resl

l l l
l .

 3.2. Correct using the interpolated error 1 1: + += +x x I e
l

l l l l
.

4. Post-iterate ()1
:

−= + −x x Q b A x
l l l l l l

 to reduce interpolation errors.

Figure 2 – Solve phase at level l

A common implementation of the multigrid scheme described above uses the V-cycle function presented in

Figure 2. It is initiated by calling (): =V-cycle , 0=x b l . Resolution levels are indexed by max0,1, ,∈l K l , with

0=l being the finest level and maxl the coarsest. V-cycle at level l solves =A x b
l l l

, where x
l
,b

l
 are 1N ×

l

vectors, and A
l
 is a predefined matrix. In addition, multigrid uses two predefined inter-level operators: an

1N N+ ×l l
 restrictor matrix, denoted by 1+

I
l

l
 that maps solution or error vectors from level l to level 1+l ; and an

1N N +×
l l

 interpolator matrix that maps from level 1+l to l .

Correct

Interpolate

Solve

Correct

Interpolate

Restrict residual

 Iterate

Restrict residual
Iterate

0=l

1=l

0=l Fine grid:

Coarse grid: :

 3

In AMG, the matrices A
l
, 1+I

l

l
, 1+Il

l
 for all levels are automatically built during a setup phase using only the ma-

trix A . The interpolator 1+I
l

l
 is built based on A

l
 and theoretically motivated guidelines that balance accuracy of

smooth error representation and computational complexity. The basic idea is to interpolate a variable i on the fine

grid only from coarse variables j that are strongly connected, i.e. if || ijA is relatively large. For brevity we omit

the details here, and refer the reader to [11] and [17] for a full description. The interpolator also determines the re-

duction in size between consecutive levels, which is typically moderate (4 being a typical ratio). The restrictor 1+
I
l

l

calculates coarse grid variables as linear combinations of fine grid variables, and is often taken as the transpose of

1+I
l

l
. 1+A

l
 is defined as the Galerkin operator 1

1 1

+

+ +=A I A I
l l

l l l l
, and 1+lb is calculated as a restriction of the resid-

ual = −res b A x
l l l l

, namely)xA(bIb 1 lll

l

ll
−= +

+
+

1
1 .

A particular case to which we refer as strict state aggregation is obtained when the interpolator is defined by di-

viding the set of variable into disjoint groups denoted{ }
1

K

k k=
G , and setting

 ()1 1
ik

+ =I
l

l
 if ki∈G , and 0 otherwise (1)

More general inter-level operators use fractional weights with overlapping ranges, such as those constructed by the

Ruge-Stüben scheme [11]. Borrowing the terminology of [12], we refer to this general case as soft state aggrega-

tion.

Asymptotic convergence of AMG is guaranteed for any choice of inter-level operators if A is a symmetric

M-matrix with a strictly dominant diagonal [14]. However, the rate of convergence highly depends on the construc-

tion of appropriate inter-level operators. Furthermore, its efficiency in terms of computational operations to reach a

certain level of accuracy depends on A being sparse, and a balance between the computational cost of inter-level

operators and their approximation properties of smooth errors. While convergence for a non-symmetric A is not

guaranteed, ample empirical results indicate the effectiveness of AMG in this case as well.

3. THE MDP MODEL AND TD(λ)

An MDP is defined by a 4-tuple { }, , ,P gS A . S and A are the state and action spaces respectively. We as-

sume here a finite or countably infinite state space (but note that the algorithms in this paper are essentially applica-

ble to general state spaces). P defines the Markovian dynamics via the transition probabilities ()1 | ,t t tp s s a+ from

state ts to state 1ts + given that the action taken is ta . The reward received for such a transition is

),,(1 tttt assgg += . For a finite MDP we denote the number of states by N.

A stationary policy π is a mapping []: 0,1π × →S A , where (),s aπ is the probability of taking action a at

state s . Applying a stationary policy to an MDP induces a Markov chain, with the transition probabilities

() () ()
()

' | , ' | ,
a s

p s s s a p s s aπ
∈

=∑ A
, and rewards () () () ()

() '
, ' | , , ',

a s s S
g s s a p s s a g s s aπ

∈ ∈
=∑ ∑A

. We

henceforth fix the control policy, and assume that the induced Markov chain is irreducible, aperiodic, with a unique

stationary distribution ()q s that satisfies () () ()' ' |
s

q s p s s q s
∈

=∑ S
. For future use we denote the transition ma-

trix P with (), ' ' |s s p s s=P , the reward vector g with elements ()s g s=g , and the diagonal matrix D with

()ss q s=D . We consider the discounted cost functional with a discount factor [)0,1γ ∈ , namely

∑
∞

=
==

0 0)|()(
t t

t ssgEsv γ . It is well known that the value function of a stationary policy π is the unique solu-

tion of the Bellman equation

 ()γ− =I P v g , (2)

 4

where I denotes the identity matrix and v is a vector of state values, i.e. ()s v s=v . The value function is approxi-

mated as a linear combination of K basis functions

 () ()
T

v s sφ θ≈ (3)

where Ks ℜ∈)(φ is a vector valued function and Kℜ∈θ is a weight vector to be learned. The k th element of

()sφ is known as a feature or basis function and denoted by ()k sφ . The TD(λ) algorithm [15] iteratively applies

the following update rule

 () ()()()1 1 1

T

t t t t t t t tg s sθ θ α φ γφ θ− + −= + − −z ; ()1t t tsλγ φ−= +z z (4)

where tz is a vector of eligibility traces, initialized by 1 1K− ×=z 0 . []0,1λ∈ is an algorithm parameter, and tα is

a non-increasing positive step size sequence. Under certain technical assumptions [15], TD(λ) converges with prob-

ability 1 to a unique fixed point
*θ that satisfies

*θ =A b , (5)

where A is a K×K matrix and b a K×1 vector defined as follows

 () ()
1T γλ γ
−

= − −A Φ I P D I P Φ ; ()
1T γλ
−

= −b Φ D I P g (6)

and Φ is an N×K matrix ()sk k sφ=Φ , with basis functions as its columns.

4. AMG FOR VALUE ITERATION

In this section we assume the MDP model is fully known. In this case, the application of AMG as a “black box”

solver to solve (2) is straightforward, by defining γ= −A I P and =b g . Similarly, we can apply AMG to solve

(5) where A and b are defined in (6), which is the basis for the multigrid TD algorithm in the next section.

We remind that in order to guarantee convergence of the basic multigrid algorithm, A should be a symmetric

M-matrix with a strictly dominant diagonal. It may be shown that the last two properties follow from P being a

probability matrix and [)0,1γ ∈ . However, since P is in general not symmetric, neither is A. Thus, the general the-

ory of AMG convergence applies here only in the special case of a symmetric transition matrix. It should however

be noted that convergence can always be enforced, simply by “turning off” the coarse grid corrections at some

point, or by monitoring the error reduction as done in other hierarchical schemes [5 10]. For the problems we tested,

convergence was always observed for the unmodified algorithm. We note that since P is often sparse in practical

problems so is A, which is important for AMG efficiency.

An interesting question is whether the Markov chain structure is preserved at the coarse levels. Recall that AMG

uses the Galerkin operator 1

1 1

+

+ +=A I A Il l

l l l l
 to define coarse grid equations. Suppose we choose #

1
1)(l

l

l

l +
+ = II ,

the Moore-Penrose pseudo inverse of l

l 1+I (this choice is equivalent to the standard choice of

T)(1
1 l

l

l

l +
+ = II mentioned above, as it may be readily seen that multiplying 1+l

l
I from the left by a nonsingular ma-

trix merely scales the algorithm). With γ= −A I P
l l

, this results in 1 1γ+ += −A I P
l l

. For the special case of strict

state aggregation defined in Section 2,
1+Pl
 turns out to be a probability matrix (see Lemma 1 in [5]). This enables

to interpret the coarse grid equations as resulting from a reduced state Markov chains. General inter-level operators

such as Ruge-Stüben, do not generally posses this property.

5. A MULTIGRID TD ALGORITHM

To motivate the proposed multigrid approach, we consider the convergence of the mean of the parameter vector

{ }tθE , denoted by
tθ . The stochastic dynamics of the TD(λ) algorithm are expressed in [4] leads to the following

approximate mean dynamics

 5

 ()1t t t tθ θ α θ+ = + −b A . (7)

where A and b were defined in (6). Subtracting both sides of (7) from the convergence point
*θ and denoting the

mean error as *

t tθ θ= −e , we obtain 1 1t t t tα− −= −e e Ae . It is easy to realize that convergence is slow if τe is an

eigenvector of A with an eigenvalue close to zero. More important is that convergence rates of error components

are not uniform, so the error eventually aligns with slow-to-converge eigenvectors, which limit the convergence

rate. TD(λ) therefore may be interpreted as a stochastic smoother of the error, and its performance may be enhanced

by the multigrid approach.

Based on this observation we propose a multigrid TD algorithm in Algorithm 1 that follows similar steps to the

V-cycle in Figure 2. We assume that the interpolators
1+I

l

l
 are available beforehand. Starting with () ()0 s sφ φ= ,

we recursively define feature vectors for all levels by

 () ()1 1

T T
s sφ φ+ += Il

l l l
. (8)

The algorithm requires some criterion to determine when to switch between resolution levels. In the experiments

section, we use a simple criterion, switching levels after a fixed number of iterations. The algorithm is initiated by

iteratively applying ()0 0:=MG-TD , 0θ θ =l , where 0θ is an initial guess. The approximated value function at the

end of a complete cycle is given by () ()0 0

T
v s sφ θ= . The value function for intermediate times before a cycle

completes may be computed as () () ()
1

0

T T

m mm
v s s sφ θ φ θ

− −

=
= +∑

l

l l
.

Algorithm 1: Multigrid-TD algorithm at level l

()0 1 1MG-TD , , , , ,ϑ θ θ θ− − −

−l l
l K

1. Initialize level correction :θ ϑ=
l l

, :=z 0
l

2. Pre-iterate at level l with residual rewards:

 2.1. Observe the transition
1t ts s +→ and the reward

tg at time t .

 2.2. Update the eligibility traces (): tsλγ φ= +z z
l l l

 2.3. Sample the residual () ()()
1

10
:

T

t m t m t mm
r g s sφ γφ θ

− −

+=
= − −∑

l

l

 2.4. Calculate the temporal difference () ()()1

T

t td r s sφ γφ θ+= − −
l l l l l

 2.5. Update
,

:
t

dθ θ α= + z
l l l l l

 2.6. If the switching criterion is met then continue, otherwise repeat from 2.1.

3. Apply coarse grid correction:

 3.1 Set :θ θ− =
l l

 3.2. Recursive call ()1 1 0 1: MG-TD , 1, , , ,ϑ ϑ θ θ θ− − −

+ += = +0
l l l

l K

 3.3. Correction using the interpolated error
1 1:θ θ ϑ−

+ += + Il
l l l l

4. Post-iterate: repeat step 2 until meeting the switching criterion.

Return θ
l

Similarly to the V-cycle function, the MG-TD procedure at level l is used to solve equations of the form

θ =A b
l l l

, with 0 =A A , 0 =b b at level 0=l defined in (6). At level l , TD(λ) is applied to smooth the error

(step 2). However, its convergence rate deteriorates as the error becomes smooth. Based on the multigrid approach

we would like to apply a correction of the form
1 1:θ θ ϑ+ += + Il

l l l l
, where

1ϑ +l is the solution of the residual equa-

tion

 () ()1 1

1 1ϑ θ+ +

+ + = −I A I I b A
l l l

l l l l l l l l
. (9)

In the learning context, this equation cannot be solved directly nor represented explicitly since the model of the

Markov chain is not known, hence A
l
 and b

l
 are unavailable. We circumvent this obstacle by using a TD(λ) vari-

ant that converges to the solution of (9). Proposition 1 below states that TD(λ) applied at level 1+l , with the fea-

 6

ture vector ()1 sφ +l and the sampled residual r
l
 replacing the one step reward converges to the solution of (9).

Keeping θ
l
 frozen (step 3.1) the error in θ

l
 is approximated via a TD(λ) variant applied at level 1+l (step 3.2).

The error is interpolated and used to correct θ
l
 (step 3.3). Finally, TD(λ) is applied again to smooth interpolation

errors (step 4).

The validity of each level in this algorithm, when operated in isolation, is verified as follows.

Proposition 1 Consider a Markov chain with either a finite or countable infinite state space, with discounted

cost. Let the assumption set in [15] be satisfied at level 0=l . If MG-TD is kept indefinitely at level 1+l , then

1 1ϑ θ+ +=
l l

 converges to the solution of the coarse grid equations (9).

We omit the proof which may be found in [17].

6. SIMULATION RESULTS

We present here preliminary simulation results for two test-bed problems: one is a 1-D random walk problem de-

scribed in Figure 3 on the left. The Markov chain has N states, ordered on a 1-D line. Transition probabilities and

rewards from inner states and edge states are defined in Figure 3, and the discount factor is 1 0.5Nγ −= . This prob-

lem is similar to the hop-world problem in [16]. The second test-bed is the Mountain car problem. The objective is

to bring an underpowered car positioned at the bottom of a valley to the top of the mountain at zero speed (see

Figure 3, right side). Since its engine is too weak, it cannot drive straight up the mountain, but has to back up to

gain momentum. We descretized the continuous problems on a 100x100 grid resulting in a 10,000 state MDP. Fur-

ther details of the problem and the discretization scheme are found in [8].

Figure 3 – Left: 1-D random walk problem. Right: Mountain car task

In the setup phase of AMG we used two interpolation methods: the well-known Ruge-Stüben method [11] and

the strict state aggregation (1), with state groups formed as in [11].In Figure 4, we show results for policy evalua-

tion for the problems above. One computational unit equals the number of mathematical operations in a single value

iteration. In both problems, AMG methods show superior convergence rates to standard iteration methods.

In Figure 5 we applied TD learning algorithms to the 1-D random walk Markov chain. For AMG algorithms, we

switched levels every 5000 samples and used 6 resolution levels. Based on Algorithm 1, we include a "one way"

coarse to fine variant that starts at level 5 and interpolates its result up to level 0, and remains in this level thereafter.

Its convergence rate is fast at first, but deteriorates due to smooth error caused by interpolation. As expected, its

asymptotic convergence rate is similar to that of TD(λ). However, the Multigrid-TD(0) algorithm converges 10

times faster than TD(0).

1 2 N N-1

1, 10p g= = +

0.5, 1p g= = −

0.5, 1p g= = −

1, 10p g= = + Goal

 7

0 1 2 3 4 5

x 10
4

10
-15

10
-10

10
-5

10
0

10
5

|R
e
s
id
u
a
l| 2

computational units

Value iteration

Gauss-Seidel

AMG:strict state aggregation

AMG:Ruge-Stuben

0 500 1000 1500 2000 2500 3000 3500

10
-15

10
-10

10
-5

10
0

|R
e
s
id
u
a
l| 2

computational units

Value iteration

Gauss-Seidel

AMG:strict state aggregation

AMG:Ruge-Stuben

Figure 4 – Convergence curves of policy evaluation. Left: for the 1-D random walk

with N=1000 states. Right: for the mountain car task. In AMG methods, 9 resolution levels are used.

0 2 4 6 8

x 10
4

10
1

10
2

10
3

10
4

| θ
 b
ia
s
| 2

τ=Σα
t

TD

Coarse to Fine TD

Multigrid-TD (V-cycle)

Figure 5 – Convergence curves of TD algorithms for the 1-D random walk problem with N=256 states. In AMG methods, 6

resolution levels are used. Each curve is an average of 5 Monte-Carlo runs. A constant learning step αt=0.1 was used.

7. CONCLUSION

In this paper, the AMG approach is used to speed up policy evaluation for the known model case and temporal

difference learning. A new temporal difference learning algorithm with a complexity per step similar to TD(λ),

called Multigrid-TD, is proposed. Separate convergence of each level is shown, providing rational for the scheme.

Preliminary experimental results on two test-bed problems show that AMG for policy evaluation speeds up conver-

gence. Similarly, Multigrid-TD shows a considerable speed up relative to TD(λ). During our experiments, we ob-

served that increasing number of states in this problem makes Multigrid-TD more superior to TD, suggesting that

multigrid-TD is less susceptible to scalability. This property is well known in multigrid literature. Experimenting

with Multigrid-TD on more complex problems is currently an undergoing work.

Several aspects of the proposed algorithm need to be examined for possible improvement. For example, in our

tests, we used a simple criterion to switch between levels. An improved criterion may estimate the residual conver-

gence rate, and switch between levels when it deteriorates. More importantly, the presented multigrid algorithm is

sequential in nature, with each grid level is updated in turn. In the on-line leaning context of TD(λ), an alternative

scheme may be developed which updates all levels simultaneously, thus making more efficient use of data samples.

Full details of this scheme and its convergence analysis will be reported elsewhere.

A notable feature of AMG is the automatic creation of the multigrid structure at the setup phase. In the known

model case, the implementation of a setup phase of AMG is straightforward, with many methods available in AMG

literature 14]. In the learning case, the required data on the relevant system matrix may not be available beforehand.

One way to obtain the required information is to compute an estimate of the matrix A by

 8

() () ()()10

Tt

t t t tk
s s sφ φ γφ +=

= −∑A , as done in the LSTD algorithm [9]. As the setup phase is not sensitive to

inaccuracies A, this holds the potential of using rough or even qualitative estimators to evaluate only the significant

elements of A. More broadly, the considerable theoretical and practical insight of AMG research may hopefully be

applied to address the open question of how to form aggregation hierarchies automatically in complex learning

problems. .

ACKNOWLEGMENT

We thank Irad Yavne for his invaluable guidance and advice regarding Multigrid methods.

REFERENCES

[1] M. Akian and J. P. Chancelier. Dynamic Programming Complexity and Application. Proceedings of the 27
th

Converence on Decision and Control, pp. 1551-1558, 1988.

[2] A. G. Barto and S. Mahadevan. Recent Advances in Hierarchical Reinforcement Learning. Discrete Event Dy-

namic Systems: Theory and Applications, Vol. 13, pp. 41-77, 2003.

[3] J. A. Boyan. Technical Update: Least Squares Temporal Difference Learning. Machine Learning, 49, pp. 233-

246, Kluwer Academic, 2002.

[4] D. P. Bertsekas, V. S. Borkar, and A. Nedić. Improved Temporal Difference Methods with Linear Function

Approximation. Report LIDS-2573, December 2003.

[5] D. P. Bertsekas and D. A. Castañon. Adaptive Aggregation Methods for Infinite Horizon Dynamic Program-

ming. IEEE Transactions on Automatic Control, Vol. 34, No. 6, 1989.

[6] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dyanmic Programming. Athena Scientific, 1995.

[7] S. F. McCormick. Multigrid Methods, Frontiers in Applied Mathematics. SIAM, 2000. See. Chapter 4, J.W.

Ruge and K. Stüben. Algebraic Multigrid.

[8] R. Munos and A. Moore. Variable Resolution Discretization in Optimal Control. Machine Learning, Vol. 49,

pp. 291-323, Kluwer Academic, 2002. Parameters for the Mountain Car problem can be found in http://www-

2.cs.cmu.edu/~munos/variable/

[9] A. Nedić and D. P. Bertsekas. Least Squares Policy Evaluation Algorithms with Linear Function Approxima-

tion. Discrete Evenet Dynamic Systems: Theory and Applications, Vol. 13, pp. 79-110, 2003.

[10] P. J. Shweitzer. A Survey of Aggregation-Disaggregation in Large Markov Chains. In: W. Stewart (Ed.), Nu-

merical Solution of Markov Chains, Marcel Dekker, New York, 1991

[11] K. Stüben, An Introduction to Algebraic Multigrid. Appendix in [14], 2001.

[12] S. P. Singh, T. Jaakkola, and M. I. Jordan. Reinforcement Learning with Soft State Aggregation. Advances in

Neural Information Processing Systems, Vol. 7, pp. 361-368, MIT Press, 1995.

[13] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA, 1998.

[14] U. Trottenberg, C. Oosterlee, and A. Schüller. Multigrid. Academic Press, 2001.

[15] J. N. Tsitsiklis and B. Van Roy. An Analysis of Temporal-Difference Learning with Function Approximation.

IEEE Transactions on Automatic Control. Vol. 42, No. 5, pp. 674-690, 1997.

[16] X. Xu, H. He and D. Hu. Efficient Reinforcement Learning Using Recursive Least-Squares Methods. Journal

of Artificial Intelligence Research, Vol. 16, pp. 259-292, 2002.

[17] O. Ziv, Algebraic Multigrid for Reinforcement Learning, Master’s Thesis, Technion, January 2005.

