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Abstract  
We introduce a class of Multigrid based temporal 
difference algorithms for reinforcement learning 
with linear function approximation. Multigrid 
methods are commonly used to accelerate  
convergence of iterative numerical computation 
algorithms. The proposed Multigrid-enhanced  
TD(λ) algorithms allows to accelerate the 
convergence of the basic TD(λ) algorithm while 
keeping essentially the same  per-sample 
computational cost. We propose two versions of 
the algorithm, a sequential and synchronous one, 
establish the convergence of the latter, and 
provide a simulation example that demonstrates 
the potential performance benefits. 

1.  Introduction 

Reinforcement Learning (RL) is concerned with on-line 
computation of effective control policies, based on 
interaction with the controlled environment (Bertsekas & 
Tsitsiklis, 1996; Sutton & Barto, 1998).  Special emphasis 
is placed on techniques for handling large and complex 
problems, in particular models with a large state space. 
Parameterized function approximators are commonly 
invoked to provide compact representations and learning 
generalization.  

Temporal difference algorithms for evaluating the value 
function of a given policy are a central component in 
many RL schemes. The basic TD(λ) algorithm was 
introduced in Sutton (1988), and its convergence with 
linear function approximation was analyzed in Tsitsiklis 
and Van Roy (1997). Recently, two new classes of related 
algorithms were introduced, LSTD(λ) (Boyan, 2002; Xu,  
He & Hu, 2002) and λ-LSPE (Nedić & Bertsekas, 2003; 
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Bertsekas, Borkar & Nedić, 2004). These algorithms are 
essentially of a least-squares nature, and compared to 
TD(λ) offer faster convergence in terms of the data 
sample count, while the computational complexity per 
sample increases from ( )O K  to 2( )O K  at least, where 
K  is the number of parameters to be learned. 
Consequently, when K  is large these algorithms may not 
be feasible. In this paper we propose a Multigrid-based  
enhancement of the TD(λ) algorithm, which aims to 
improve the convergence rate while retaining the same 

( )O K  complexity per iteration.  

Multigrid (Briggs, Henson and McCormick, 2000; 
Trottenberg, Oosterlee & Schüller, 2001) is a well-
established approach to accelerate iterative solutions of 
large sets of linear equations, such as those arising  in the 
numerical solution of partial differential equations. 
Essentially, an iterative relaxation scheme at a fine 
resolution level is augmented by a coarse-grid correction 
which reduces the so-called "smooth" error components, 
which are otherwise slow to converge. Applying this 
correction recursively over several resolution levels leads 
to a Multigrid scheme. When applied to value iteration or 
TD(λ) with linear function approximation, this approach 
leads to algorithms that operate with different sets of basis 
functions, each  intended to capture a different resolution 
level of the problem. We shall focus in particular on the 
Algebraic Multigrid (AMG) variant of Multigrid, which 
allows the automatic construction of the coarse grid 
hierarchies based on the system matrices. This opens up 
interesting possibilities for the automatic construction of 
basis function hierarchies.  

We shall propose two variants of a Multigrid learning 
algorithm. The Sequential Multigrid TD(λ) algorithm, or 
SeqMGTD(λ), operates on each grid level sequentially, 
similar to standard Multigrid, with only one level active at 
a time. In Simultaneous Multigrid TD(λ), or 
SimMGTD(λ), computations at all resolution levels are 
performed simultaneously as soon as a new data point is 
available. As will be shown, the latter algorithm 



 

 

converges to the exact (fine-level) solution of the 
problem. The analysis of this algorithm will further point 
to some possible enhancements of the standard TD(λ) 
algorithm by modifying its eligibility trace vector.  

An extensive literature exists on hierarchical and 
multiscale methods in Dynamic Programming and RL, 
pointers to which may be found in (Boutillier, Dean, & 
Hanks, 1999; Barto & Mahadevan, 2003). In the context 
of iterative policy evaluation, the aggregation-
disaggregation algorithm of Schweitzer, Puterman & 
Kindle (1985) (see also Shweitzer, 1991) uses coarse 
level corrections over fixed state aggregates, but with 
"aggregation directions" (or inter-level operators as 
defined below) that are re-computed at each iteration, 
while Bertsekas & Castañon (1989) propose a related 
scheme with adaptive state aggregates. The Multigrid 
framework, on the other hand, essentially relies on a fixed 
multi-level structure, an approach which facilitates its 
incorporation in the TD(λ) algorithm with little overhead. 
An application of Multigrid methods to Q-learning for 
controlled diffusion processes is reported in Pareigis 
(1997), where the focus is on the relation between time 
and space discretization.    

The paper is structured as follows. Sections 2 and 3 
provide the necessary background on Multigrid and 
TD(λ), respectively. Section 4 outlines the 
(straightforward) application of Multigrid to value 
iteration for policy evaluation in a non-learning scenario. 
Section 5 presents the Multigrid learning algorithms are 
their analysis, while Section 6 presents a basic simulation 
experiment, followed by concluding remarks.  

2.  Multigrid Basics 

We consider the efficient solution of the system of linear 
equations =Ax b , where A  is a square matrix and 
typically sparse. Standard iterative methods are of the 
form ( )1: −= + −x x Q b Ax , where Q  stand for a scaled 
identity matrix (Richardson iteration), the diagonal of A  
(Jacoby relaxation), or its lower-triangular part (Gauss-
Seidel). When the smoothing matrix ( )-1I - Q A  has 
eigenvalues close to the unit circle, the corresponding 
error components are slow to converge. Such error 
components are referred to as "smooth", and typically 
correspond to "low frequency" components in a geometric 
context. Multigrid uses coarse-level corrections to reduce 
these smooth error components.  

A multigrid structure comprises of: (a) A sequence of 
subsequent resolution levels indexed by 

max{0,1, , }∈A … A , with 0=A  the finest; (b) A 
corresponding set of equations =A x bA A A  of dimensions 
nA , where 0 0,A b  are the primary (fine-resolution) system 

matrices, ,A bA A  represent the system equations at 
resolution level A , and 1n +A  is several times smaller than 
nA  (a factor of 4 is common for 2D problems); (c) 
Restrictor operators 1+IAA  which turn a solution xA  into an 
approximate solution 1

1
+

+ =x I xA
A A A   of the next-coarser 

level; and (d) Interpolators 1+IAA  ( 1n n +×A A   matrices), 
which do the opposite. 

A basic two-level coarse grid correction at level max<A A  
proceeds as follows. Starting with a vector  xA , an 
approximate solution to the equation =A x rA A A   (with rA  
to be defined shortly) is obtained as follows:   

1. Presmoothing: Apply a (small) number of 
iterative relaxations ( )1: −= + −x x Q r A xA A A A A A  

2. Compute the residual res = −r A xA A A A , and 
restrict to the next level: 1

1 res+
+ =r IAA A A  

3. Approximately solve 1 1 1+ + +=A x rA A A  

4. Apply correction:  1 1: + += +x x I xA
A A A A  

5. Postsmoothing: Similar to presmoothing. 

By recursively applying this procedure at step 3 we obtain 
a multi-grid scheme. A standard V-cycle starts at level 0 
with 0 0=r b  and proceeds all the way down to level maxA  
and back up. Note that the system vectors bA  (for 1≥A ) 
do not play any role here as they are replaced by the 
interpolated residuals rA . At the coarsest level max=A A  
the dimension is typically chosen to be sufficiently small 
so that the equation =A x rA A A  may be solved exactly. We 
note that other, more involved cycles are often used as 
well. The whole scheme is usually initialized with some 
"coarse to fine" procedure which does utilize the system 
vectors ( )bA .    

In classical (geometric) Multigrid, the system equations at 
the different levels are typically obtained by discretizing 
the original (continuous) problem over a regular grid at 
different resolutions. The inter-level (restriction and 
interpolation) operators are then constructed. A judicious 
choice of these operators is critical for the efficiency of 
the method, especially in the presence of discontinuities 
and other spatial irregularities, and is highly problem 
dependent. 

2.1  Algebraic Multigrid (AMG) 

AMG (Brandt, McCormick & Ruge, 1984; Stüben, 2001) 
takes a different approach. Here the multigrid structure is 
constructed automatically in a setup phase from the initial 
system matrices 0 0,A b , based only on the algebraic 



 

 

structure of  0A  and without any “higher level" 
information on the problem. This makes AMG attractive 
as a "black box" solver for sparse linear equations, 
whether of geometric origin or not.   

The AMG setup phase proceeds recursively, starting at 
0=A . First the inter-level operators 1+IAA  and 1+IAA  are 

constructed based on AA . The system matrices for the 
next level are then defined, typically via the Galerkin 
operator 1

1 1
+

+ +=A I A IA A
A A A A , and 1

1
+

+ =b I bA
A A A . This 

proceeds until the dimension of AA  is sufficiently small 
for a direct solution. 

Several procedures exist for the definition of the inter-
level operators at the setup phase. The guiding principle is 
to allow any algebraically smooth error vector to be well 
approximated over the next level, namely by some 
interpolated vector of that level. For concreteness we 
briefly describe a simple scheme (Ruge-Stüben algorithm 
with direct interpolation) which applies to matrices 

( )ija=AA  with predominantly non-positive off-diagonal 
elements (the diagonal is always taken to be positive). 
Full details and generalizations can be found in (Stüben, 
2001; section A.7). A variable i  is said to be strongly 
coupled  to a variable j  if 

{ }maxij k i ika aε ≠− ≥ −  

where (0,1)ε ∈  is a design parameter, with typical values 
around 0.25. We start by a coarsening process which 
splits the variables (1, , )nA…  into two disjoint sets C  and 
F , with the 1n +A  variable in C  are the next-level coarse 
variables. The general objective is to ensure a strong 
connectivity of each F -variable to C -variables; in 
particular, a simple one-pass algorithm can ensure that 
each F -variable is strongly coupled to some C -variable. 
Given this partition, the interpolation operator is defined 
by 

( )1

               :  

   :  
i

i

iki
i k

k P ii
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−
+

∈
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⎪= ⎨− ∈⎪
⎩

∑
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where 0a− ≤  denotes the negative part of a , iP C⊂  is 
the set of C -variables to which i  is strongly coupled, 
and  

i

ijj
i

ijj P

a

a
α

−

−
∈

=
∑

∑
. 

Finally, the restriction operator is defined as 
1

1 ( )T+
+ =I IA A
A A . 

Simpler interpolators are used in a (strict) aggregation 
scheme, where each F -variable is interpolated from 
exactly one F -variable. The variables are thus effectively 
partitioned into disjoint aggregates, each represented by a 
single coarse variable. Here we may define 

( ) { }
1

1 for a single  for which max

0   :  otherwise

ik ijj i
ik

k a a
≠

+

⎧ − = −⎪= ⎨
⎪⎩

IAA  

Aggregation schemes often result in inferior performance, 
but are somewhat simpler to implement. 

Multigrid theory aims to establish convergence of the 
iterative algorithm and, more importantly, to provide 
bounds on the convergence rate and guidelines for 
algorithm improvement. A well developed theory 
currently exists mainly for problems in which the system 
matrix A  is symmetric and positive-definite (s.p.d.), and, 
in particular, when A  is also an M-matrix (namely s.p.d. 
with negative off-diagonal elements) and diagonally 
dominant. In practice, properly planned algorithms (and 
AMG in particular) are robust with respect to violation of 
these assumptions. 

3.  MDPs and the TD(λ) Algorithm 

Consider a Markov Decision Process (MDP) with state  S  
and action space A . We assume here a finite state space 
(but note that the proposed learning algorithms are 
applicable to more general state spaces due to the use of 
basis functions). Given the state ts  and action ta  at time 
t ,  a reward ( , )t t tg g s a=  is obtained, and the next state 

1ts +  is determined according to the stationary transition 
probability ( )1 | ,t t tp s s a+ . 

A stationary policy π  is a mapping [ ]: 0,1π × →S A , 

where ( ),s aπ  is the probability of taking action a  at 
state s . Fixing the policy π , the state process becomes a 
Markov chain with  transition probabilities 

( )' |p s s = ( ) ( ), ' | ,
a

s a p s s aπ∑ , and  expected rewards 

( ) ( ) ( ), ,
a

g s s a g s aπ= ∑ . We shall assume that the 
induced Markov chain is irreducible, a-periodic, with a 
unique stationary distribution ( )q s . For future reference 
we denote by P  the transition matrix with 

( ), ' ' |s s p s s=P , the reward vector g  with elements 

( )s g s=g , and the diagonal matrix D  with ( )ss q s=D .  
We consider the discounted cost functional with a 
discount factor (0,1)γ ∈ , namely 

00
v( ) ( | )t

tt
s E g s sγ∞

=
= =∑ . The function v( )s  of the 



 

 

stationary policy π  is well known to be the unique 
solution of the Bellman equation 

( )γ− =I P v g  (1) 

where I  denotes the identity matrix and v  is a vector of 
state values, i.e. ( )vs s=v . The value function is 
approximated as a linear combination of K  basis 
functions { : }K

k Sφ → ℜ , namely 

( ) ( ) ( )1
v K T

k kk
s s sφ θ φ θ

=
≈ =∑  

where 1( , , )Kφ φ φ= … , and Kθ ∈ℜ  is the parameter 
vector to be tuned. The TD(λ) algorithm iteratively 
applies the following update rule 

( ) ( )( )( )1 1 1
T

t t t t t t t tg s sθ θ α φ γφ θ− + −= + − −z  ; 

( )1t t tsλγ φ−= +z z    

where ( ( ), )t tz s s S= ∈z  is the eligibility trace vector, 
initialized by 0 =z 0 . [ ]0,1λ ∈  is the algorithm 
parameter, and tα  is a positive gain sequence.  

Theorem 1 (Tsitsiklis & Van Roy, 1997). Assume that  
     (i) The gain sequence satisfies 

                             
0 tt
α∞

=
= ∞∑ , 2

0 tt
α∞

=
< ∞∑     

    (ii) The basis functions are linearly independent. 
Then TD(λ) converges with probability 1 to the  unique 
vector *θ  that satisfies 

*θ =A b  (2) 

where A  is a K×K matrix and b  a K×1 vector defined 
as follows 

( ) ( )1T γλ γ−= − −A Φ I P D I P Φ  

( ) 1T γλ −= −b Φ D I P g . 

(3) 
 

Φ  is the N×K matrix with basis functions as its columns, 
namely ( )sk k sφ=Φ . 

4.  AMG for Value Iteration 

In this section we briefly consider value iteration for the 
known model case. Here the application of AMG as a 
“black box” solver to (1) is straightforward, by defining 

γ= −A I P  and =b g . Observe that standard value 
iteration, namely : γ= +v Pv g , is equivalent to a 
Richardson relaxation of the corresponding linear system.  
It is well known that standard value iteration is slow to 
converge when γ P  has an eigenvalue close to the unit 

disk, namely γ  is close to 1, and this is exactly when that 
we expect AMG (and Multigrid in general) to provide a 
significant improvement. 

Similarly, we can apply AMG to solve (2), with A and b 
as defined in (3). This is the starting point for the 
multigrid learning algorithms of the next section.  

In the special case when the transition probability matrix 
P is symmetric, the matrix γ= −A I P   turns out to be an 
M-matrix with strictly dominant diagonal, a case to which 
AMG theory nicely applies. Note also that P is typically  
sparse in practical problems, hence so is A, a property 
which is important for Multigrid efficiency. However, 
since P is hardly ever symmetric, theoretical performance 
bounds are not readily available. Nonetheless, standard 
AMG algorithms can be applied to the non-symmetric 
case without modification, and practical experience shows 
that they perform well even when symmetry is violated 
(e.g., Stüben, 2001, p. 518). It should also be noted that 
convergence to the exact solution can always be enforced, 
simply by “turning off” the coarse grid corrections at 
some point, or by monitoring the error reduction as done 
in other hierarchical schemes (Schweitzer et. al., 1985; 
Bertsekas & Castañon, 1989). For the problems we tested, 
unforced convergence was always obtained.    

5.  Multigrid Temporal Difference Learning 

To motivate the proposed Multigrid enhancement to 
TD(λ), we briefly consider the convergence of the mean 
of the parameter vector { }tθE , denoted tθ . The 
stochastic dynamics of the TD(λ) algorithm, as derived in 
(Tsitsiklis & Van Roy, 1997), may be asymptotically 
approximated by ( )1t t t tθ θ α θ+ = + −b A , where A  and 

b  are defined in (3). The error *
t tθ θ= −e  relative to the 

fixed point * 1θ −= A b  satisfies 1 ( )t t tα+ = −e I A e . TD(λ) 
may thus be interpreted as a stochastic smoother of the 
error. Multigrid is therefore a natural candidate for 
speeding up its convergence.   

5.1  The SeqMGTD(λ) algorithm 

Oyr first algorithm mimics the V-cycle of the Multigrid 
algorithm as described in Section 2. We assume that we 
are given an initial (fine-level) set of K  basis functions, 
with corresponding feature vectors ( ) ( )0 s sφ φ= , as well 

as a set of interpolators 1+IAA  and restrictors 1+IAA . We then 
recursively define feature vectors for all levels by 

( ) ( )1 1
T Ts sφ φ+ += IAA A A  (4) 

The algorithm is started by the function call 
( )0 0:=seqMTD , 0θ θ =A , where 0θ  is an initial guess. The 



 

 

algorithm requires some switching criterion for the pre 
and post iterates. In the reported experiments we used the 
simplest rule of switching after a fixed number of 
iterations. Another reasonable option would be to increase 
the iteration count per level as the gain parameter 
decreases. The algorithm is started by the function call 

( )0 0:=seqMTD , 0θ θ =A , where 0θ  is an initial guess. The 
estimated value function at the end of a complete cycle is 
given by ( ) ( )0 0v Ts sφ θ= . The value function for 
intermediate times while level A  is completed is given 
more accurately by ( ) ( )0

v T
m mm

s sφ θ
=

= ∑ A . 

Table 1: Sequential Multigrid TD(λ)  at level A  

( )0
0 1 1SeqMGTD , , , , ,θ θ θ θ −A AA …  

1. Initialize level correction: 0:θ θ=A A , :=z 0A  
2. Pre-iterate at level A  with residual rewards: 

2.1. Observe the transition 1t ts s +→  and the reward 

tg  at time t . 
2.2. Update the eligibility traces ( ): tsλγ φ= +z zA A A  
2.3. Sample the residual  

( ) ( )( )1
10

:
T

t m t m t mm
r g s sφ γφ θ−

+=
= − −∑ A

A   

2.4. Calculate the temporal difference  

( ) ( )( )1
T

t td r s sφ γφ θ+= − −A A A A A  

2.5. Update ,: t dθ θ α= + zA A A A A  
2.6. If the switching criterion is met then continue, 

otherwise repeat from 2.1. 
3. Apply coarse grid correction: If max≠A A , 

3.1. Recursive call  
( )1

0
1 0 1: MG-TD , 1, , , ,θ θ θ θ θ

++ = = +0
AA AA …  

3.2. Correction using the interpolated error  
1 1:θ θ θ+ += + IAA A A A  

4. Post-iterate: repeat step 2 until meeting the 
switching criterion. 

5. Return θA . 

 
To understand the proposed algorithm, note that the 
Multigrid algorithm (as presented in Section 2) at level A  
aims at the solution of the equation =A x rA A A , where rA  
is defined recursively via 1 1 1 1( )− − − −= −r I r A xA

A A A A A . In the 
RL context, this equation cannot be represented explicitly 
since the AA  and rA  are unavailable. We resolve this 
problem by using an appropriate TD(λ) type iteration that 
serves as the iterative smoother for that level. First, the 
interpolated residual rA  is sampled as step 2.3, and serves 
as the driving reward signal for that stage. The  TD(λ) 

algorithm then proceeds with the level- A  basis functions. 
A transition to level 1+A  then takes place for the purpose 
of coarse grid correction, intended to accelerate the 
convergence of the smoothed error at level A .  

At the coarsest level  ( max=A A ) step 3 and 4 should be 
skipped. Alternatively, the TD(λ) iteration at that stage 
may be replaced by another learning algorithm such as 
LSTD(λ) or λ-LSPE.   

The algorithm is sequential in nature, as the different 
levels operate on non-overlapping time intervals. This 
implies, in particular, that to make full use of data points 
at each level requires data reuse, or experience replay. 
Resetting of the eligibility traces at the beginning of each 
stage is not necessary if temporal continuity of the data 
samples is maintained in subsequent activations of the 
same level.    

 The following claim demonstrates that each level in 
isolation approaches the solution of the desired equation 
at that level.  I 

Proposition 1. Assume that the conditions of Theorem 
1 are satisfied with the level-0 basis functions ( )0 sφ , and 
that all interpolator operators ( 1+IAA ) are full rank.  If at 
some point the SeqMGTD(λ) algorithm is kept indefinitely 
at level A , then θA  converges (w.p. 1) to the solution of 
the  equation θ =A rA A A . Here AA  is defined as in (3) with 
Φ  replaced by ΦA , and satisfies the recursion  

1
1 1

−
− −=A I A IA A

A A A A ; while rA  is defined recursively via    
1 1 1 1( )θ− − − −= −r I r AA

A A A A A , with 0r  defined as b  in (3) with 
Φ  replaced by 0Φ .  

The proof (details of which we omit here) follows from 
Theorem 1 by substituting rA  for the reward signal, 
computing its expected value with respect to the invariant 
distribution, and some algebra. 

Convergence of the overall algorithm cannot be 
established in general, as even the basic AMG algorithm 
is not guaranteed to converge without further restrictions 
on the system matrices or inter-level operators. However, 
with a bounded number of smoothing iterates per level 
and diminishing gain, more complete results may yet be 
obtained. We demonstrate that for the following  variant 
of the algorithm. 

5.2  The SimMGTD(λ) algorithm 

We next consider a variant of the last algorithm which 
proceeds simultaneously at all levels, thereby eliminating 
the requirement for data reuse. Moreover, for this variant 
a convergence analysis of overall algorithm is provided. 

The algorithm is shown in the next table. To highlight the 
similarity with the previous algorithm is has been written 
in recursive from, but can easily be written more 



 

 

explicitly as will be seen shortly. The SimMGTD(λ) 
algorithm has the following distinctive features:  

1. All parameters except 0θ  are reset to 0 before 
each TD(λ)  iteration.   

2. The same temporal difference signal 0d  is used 
at all levels.  

Thus, the temporal difference updates at all levels  level 
are carried out simultaneously and instantaneously, and 
no coarse-level parameters need to be retained for the 
next iteration.  As before, the value function estimate is 

( ) ( )0 0v Ts sφ θ= . 

Table 2: Simultaneous Multigrid TD(λ) 

A.   Basic loop: 
1. Initialize 0θ , : 0=zA for all A  
2. Observe the transition 1t ts s +→  and the reward 

tg  at time t . 
3. Calculate the level-0 temporal difference:  

( ) ( )( )0 0 0 1 0:
T

t t td g s sφ γφ θ+= − −  

4. Update 0θ : 0 0: MGTD( , 0)θ θ= =A  
5. : 1t t= + ; goto A2. 

 
B.  0MGTD( , )θA A   (recursive function) 

1. Update eligibility trace:    ( ): tsλγ φ= +z zA A A  
2. TD(λ) iteration:    , 0: t dθ θ α= + zA A A A  
3. Coarse grid correction: 

3.1. Recursive call: 
( )1

0
1 : MGTD , 1θ θ

++ = = +0
AA A  

3.2. Correction:        1 1:θ θ θ+ += + IAA A A A  
4. Return θA . 

 

 

An equivalent form of the algorithm is given next. 

Lemma 1. The SimMGTD(λ) algorithm is equivalent to 
the following iteration 

0 0 0 0: t dθ θ= + Λ z  

where 0 0, dz  are as defined in Table 2, and   
max 0 0

0, 0 ,1
( )T

t t tα α
=

= + ∑Λ I I IA
A A AA

. 

Here 0I  is the 0 0n n×  unit matrix, and 0 0 1 1
1 2

−=I I I IAA A" .  

This claim is easily verified by direct algebra, after noting 
that the definition of ( )sφA  in (4) together with the 

definition of zA  imply that 1 1( )T
+ +=z I zA
A A A .  

We note that this equivalent form not efficient for the 
purpose of implementation, as  tΛ  is an 0 0n n×  matrix. 
However, its does shed some light on the effect of the 
coarse grid corrections in this algorithm, which is 
equivalent to modulating the eligibility trace 0z  by the  
(positive definite) matrix tΛ . Moreover, this form will 
leads us to the main convergence result of this section. 

Theorem 2. Assume that the SimMGTD(λ) 
algorithm is implemented with proportional gains, namely 

,t tα β α=A A  
for some non-negative constant βA , with 0 0β > . Assume 
further that the conditions of Theorem 1 hold with respect 
to the level-0 basis functions ( ) ( )0s sφ φ=  and the above 
gain factors tα .  Then θA  converges (w.p. 1)  to the same 
limit point as that the standard TD(λ) algorithm at the 
finest level,  namely to the solution of equation (3).  

Proof (outline). For the assumed gains, it follows from 
Lemma 1 that the algorithm is described by 

0 0 0 0: t dθ θ α= + Cz , where max 0 0
0 0 1

( )Tβ β
=

= + ∑C I I IA
A A AA

, a 
symmetric positive definite matrix. Following the analysis 
of Tsitsiklis & Van Roy (1997), it may be established that 
the algorithm asymptotically follows the trajectories of 
the ODE 0 0θ θ= − +CA Cb� , where 0A   is known to be a 
Hurwitz-stable matrix. It is now easily established (using 
a Lyapunov equation argument) that stability of 0A  
together with positive-definiteness of the symmetric 
matrix  C  imply stability of 0CA , which implies stability 
of the ODE and its convergence to the its equilibrium 
point * 1 1

0 0 0 0( ) ( )θ − −= =CA Cb A b . This, in turn, implies 
the convergence (w.p. 1) of the learning algorithm to the 
same point. � 

6.  An Illustrative Simulation Experiment 

We next present some simulation experiments, which are 
meant to illustrate in an idealized problem setting the 
potential benefits of the proposed algorithms. The test-bed 
problem we consider is a 1-D random walk described in 
Figure 1. This Markov chain has N  states, ordered on a 
1-D line. Transition probabilities and rewards from inner 
states and edge states are defined in the figure, and a 
discount factor of 1 0.5Nγ −=  is chosen, so that the 
effective discount factor for a complete sweep of the state 
is space 0.5. This problem is similar to the hop-world 
problem in Xu et. al. (2002), and should provide favorable 
conditions for performance improvement by multigrid 
methods, due to the local and linear nature of the 
transition structure.    
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Figure 1 . The 1-D random walk problem

 

 

 

 

In the setup phase of AMG we used two interpolation 
methods, as described in Section 2: the Ruge-Stüben 
method and state aggregation. In Figure 2 we show results 
for the (non-learning) value iteration scheme of Section 4.  
One computational unit equals the number of 
mathematical operations required for a single sweep of 
standard value iteration. The computational effort 
required to reach a residual error norm of 1010−  was 
38203 for standard value iteration, 19103 for the Gauss 
Seidel variant, 1174 for AMG with state aggregation, and 
23 for AMG with Ruge-Stüben interpolation.  

We next consider the Multigrid learning algorithms for 
the same problem, this time with 256 states. The trivial 
basis functions were used in the first level (namely 

0Φ = I ). For the purpose of the setup phase the full 
model was made available, Ruge-Stüben interpolation 
was employed. We used  TD(0) at all levels (including the 
coarsest one) and a constant gain of 0.1α =  throughout. 
In SeqMGTD, we switched levels every 5000 samples 
(which accounts for the periodic ripple of the 
corresponding graph). The norm of the error in the 
parameter  vector (relative to its target value) is plotted in 
Figure 3 as a function of the number of iterations. The 
number of iterations (in thousands) required for reducing 
the error norm by half is 654 for standard TD, 76 for 
SeqMGTD, and 62 for simMGTD.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In both cases, AMG shows at least order of magnitude 
improvement relative to standard iteration methods.  

7.  Concluding Remarks 

Multigrid is currently a major tools major tool in 
computational mathematics for speeding up the 
convergence of iterative methods. As such, its interaction 
with dynamic programming, and with RL in particular, 
seems natural. In this paper we have outlined some 
specific ways in which  Multigrid might be combined 
with temporal difference learning, in order to speed up its 
convergence. 

Several issues remain concerning the possible application 
of the proposed algorithms. A central question is how to 
set up an effective multigrid hierarchy, namely the coarse 
level equations and inter-level operators, especially when 
the model is unknown. In many cases the state space 
possesses enough structure, for example geometric, to 
guide a reasonable selection of state aggregates. A notable 
feature of AMG is the automatic creation of the multigrid 
hierarchy at the setup phase, even when no such structure 
is available. In the known model case, the implementation 
of a setup phase of AMG is straightforward, with many 
methods available in AMG literature. In the learning case, 
the required data on the relevant system matrix may not 
be available beforehand. One way to obtain the required 
information is to compute an estimate of the matrix 0A ,  
as carried out in the LSTD algorithm (Boyan, 2002). 
Clearly this might be an expensive process when this 
matrix is large; however, a crude or even qualitative 
estimate should suffice for the setup phase. An interesting 
alternative would be to develop methods that form 
effective aggregates directly from the observed state 
process, based on the observed temporal proximity 
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Figure 2. Convergence curves for the 1-D random walk 
problem with 1000 states. The AMG methods use 6 grid levels, 
with one pre-  and  post-smoothing iteration for seqMGTD.  

Figure 3. Learning curves for the random walk problem with 
256 states. AMG methods use 6 grid levels. Each curve is an 
average of 5 Monte-Carlo runs.. 



 

 

between states, and relying on the AMG guidelines for 
relating  states that have strong connections in the 
(effective) transition matrix (see Kretchmar & Anderson, 
1999, for some related ideas).  

Other issues concern the optimization of various parts the 
algorithms themselves, such as the choice of setup 
method, relative gains at the different levels, and 
switching rules between levels. Clearly, additional 
experimental work is required to evaluate these issues, as 
well as the overall efficacy of these algorithms. Further 
theoretical results concerning convergence and 
performance bounds are equally of interest.   

From another perspective, one should note that AMG is a 
bottom up approach which builds coarse basis from finer 
ones. Applying this process to the full state space, for 
example, may lead to a scheme for constructing effective 
basis functions, based on the considerable theoretical and 
practical insight of AMG research. 

Finally, we point out the result in Lemma 1, which 
implies that the coarse grid corrections in the SimMGTD 
algorithm are equivalent to a certain modification of the 
eligibility traces at the basic (fine) level. This might point 
to other possibilities for accelerating TD(λ) (and related 
algorithms) by modifying the eligibility trace, an issue 
which seems worthy of further study.  
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