

ALGEBRAIC MULTIGRID FOR
REINFORCEMENT LEARNING

Omer Ziv

ALGEBRAIC MULTIGRID FOR
REINFORCEMENT LEARNING

Research Thesis

Submitted in Partial Fulfillment of the

Requirements for the

Master of Science in Electrical Engeeniring

Omer Ziv

Submitted to the Senate of

the Technion - Israel Institute of Technology

CHESHVAN 5765 HAIFA NOVEMBER 2004

Acknowledgements

The Research Thesis was done under the supervision of Professor Nahum Shimkin in the

Faculty of Electrical Engineering. I gratefully acknowledge the constant support and encour-

agement of my thesis advisor Professor Nahum Shimkin.

I am also indebt to Professor Irad Yavneh for his invaluable advice and support and for ex-

posing me to field of Algebraic Multigrid.

The generous financial help of the Technion, the Fund for Promotion Research at the Tech-

nion and the Forchhiemer Foundation Fellowship are gratefully acknowledged.

Contents

1. Introduction ...4

2. Literature Survey ..9
2.1 Aggregation for Dynamic Programming..9

2.2 Multilevel approaches for Reinforcement Learning ..10

2.3 TD learning algorithms - recent advances..11

2.4 Algebraic Multigrid...12

3. Scientific Background...14
3.1 Problem modeling and the MDP framework ...15

3.2 Dynamic Programming...17
3.2.1 The Bellman equations ..18
3.2.2 Policy Evaluation ...19
3.2.3 Policy Iteration...19
3.2.4 Value Iteration..20
3.2.5 Asynchronous Value Iteration...20
3.2.6 Modified Policy Iteration...21

3.3 Introduction to Reinforcement Learning ..21
3.3.1 What is Reinforcement Learning?...21
3.3.2 Temporal Difference Update – basics...22
3.3.3 TD(λ) ..22

3.4 TD Methods for Linear Function Approximation..23
3.4.1 Linear Function Approximation..23
3.4.2 Temporal Difference using Function Approximation ..24
3.4.3 TD(λ) with Function Approximation ..24
3.4.4 Least-Squares based methods..27
3.4.5 Comparison of TD and Least Squares methods..29

3.5 Algebraic Preliminaries...29

3.6 Algebraic Multigrid Review ...31
3.6.1 What is Algebraic Multigrid?..31
3.6.2 General AMG Routine...33

3.6.3 Grid Refinement.. 35
3.6.4 Full Multigrid .. 36
3.6.5 Convergence Issues... 37
3.6.6 Practical Issues .. 38

3.7 Technical notes on the setup phase.. 38
3.7.1 A few words on motivation .. 38
3.7.2 Notations and Definitions ... 40
3.7.3 Construction of Interpolators .. 41
3.7.4 Coarsening... 43

4. AMG for Policy Evaluation and Iteration... 45
4.1 AMG for Policy Evaluation ... 46

4.1.1 A deficiency of standard iterative methods.. 46
4.1.2 AMG as a "black box" solver for PE.. 47
4.1.3 AMG for policy evaluation - review of assumptions... 48
4.1.4 Imposing symmetry... 49
4.1.5 Preservation of the Markov chain interpretation under strict state aggregation 50

4.2 AMG for Modified Policy Iteration... 54

5. Multigrid Temporal Difference Algorithms.. 56
5.1 Analysis of TD(λ) dynamics .. 57

5.1.1 Analytic derivation.. 57
5.1.2 Empirical demonstration... 60

5.2 A level-based Multigrid TD algorithm .. 62
5.2.1 The Main Algorithm ... 62
5.2.2 Algorithm description ... 64
5.2.3 Analogy to the classical Multigrid algorithm... 66
5.2.4 Fast TD solvers for the coarsest level... 67
5.2.5 Convergence of the coarse level algorithms... 68

5.3 A simultaneous Multigrid TD algorithm ... 74
5.3.1 Main idea and purpose .. 74
5.3.2 Algorithm presentation ... 74
5.3.3 Level-based as a special case of simultaneous Multigrid TD............................ 76
5.3.4 S-MGTD(λ) - finest grid formulation... 79
5.3.5 Convergence analysis for proportional learning steps 80

5.4 A Few Words on On-Line Grid Construction ... 85

6. Experiments and Results ... 87
6.1 Problem Definitions ... 87

6.1.1 A simple example: 1-D random walk ...87
6.1.2 The Mountain Car application...89

6.2 Notations and Conventions ...90
6.2.1 Known model case - technical details for sections 6.3-6.4.................................90
6.2.2 Learning case - technical details for section 6.5 ...91

6.3 Policy Evaluation - known model case...92
6.3.1 Results for the 1-D random walk problem..92
6.3.2 Policy evaluation in the mountain car problem ..95
6.3.3 What do grids look like?..97

6.4 Modified Policy Iteration ..100

6.5 Multigrid Temporal Difference Algorithms...102
6.5.1 Grid level convergence ..102
6.5.2 Results for Multigrid TD methods ..103

6.6 Concluding Remarks...107

7. Conclusions...109

Bibliography...111

List of Figures

Figure 3.1: Schematics of Grid Refinement (left) and V-cycle (right) 36

Figure 3.2: Schematics of a Full Multigrid cycle .. 36

Figure 5.1: 1-D random walk Markov chain ... 60

Figure 5.2: Convergence curves for TD(0), starting from different initial values.................. 61

Figure 6.1: 1-D random walk Markov chain ... 88

Figure 6.2: 1-D random walk value function for N=256 states... 88

Figure 6.3: Mountain Car Task .. 89

Figure 6.4: Value function and optimal policy for the mountain car task. 90

Figure 6.5: Convergence curves for the 1-D random walk problem....................................... 94

Figure 6.6: Computational effort in iterations(left)/computational units(right) to reach a

residual of 10-10 as a function of the number of grid levels. 94

Figure 6.7: Computational effort in iterations(left)/computational units(right) to reach a

residual of 10-10 as a function of the number of states. ... 95

Figure 6.8: Convergence curves for the mountain car problem on a 100×100 grid. 96

Figure 6.9: Convergence curves for the mountain car problem generated on a 30×30 grid. . 97

Figure 6.10: Grid points for the 1-D random walk problem. .. 98

Figure 6.11: Basis functions for the 1-D random walk problem at different grid levels........ 99

Figure 6.12: Grid points for the mountain car problem using the optimal policy. 99

Figure 6.13: Basis functions for the mountain car problem for the optimal policy (left) and

for a random choice policy (right). .. 100

Figure 6.14: Curves of the fraction of states in which policy differs from the optimal, in the

mountain car problem. ... 101

Figure 6.15: Curves of the residual error norm, in the mountain car problem. 101

Figure 6.16: Curves of the bias in θ for TD(0) applied at different grid levels. 103

Figure 6.17: Active grid for the grid refinement (top) and V-cycle (bottom) schemes........ 105

Figure 6.18: Curves of different Multigrid TD algorithms. TD(λ) is used as the coarsest level

solver. ..106

Figure 6.19: Curves of LB-MGTD with a grid refinement scheme for different coarsest level

solvers..106

Figure 6.20: Curves of LB-MGTD with a V-cycle scheme for different coarsest level solvers.107

List of Algorithms

Algorithm 3.1: General AMG routine.. 34

Algorithm 3.2: Split into C-variables and F-variables... 44

Algorithm 3.3: Enforce (C1) .. 44

Algorithm 4.1: AMG for Policy Evaluation .. 48

Algorithm 4.2: AMG for Policy Evaluation - detailed scheme... 54

Algorithm 4.3: AMG for Policy Iteration .. 55

Algorithm 5.1: Level-based Multigrid-TD(λ) at level A (LB-MGTD) 64

Algorithm 5.2: Simultaneous Multigrid-TD(λ) (S-MGTD)... 75

Algorithm 5.3: S-MGTD - equivalent algorithm... 80

 1

Abstract

Many control optimization applications in real life are well modeled within the Markov De-

cision Processes framework (MDP). Reinforcement Learning is an evolving research domain

that offers tools to improve control on-line via interaction using a trial and error approach, in

problems where an explicit MDP model is unavailable. The well known TD(λ) and the re-

cently introduced LSTD(λ) and λ-LSPE algorithms became standard tools in reinforcement

learning. However, in applications with more than a few hundreds of unknowns, TD(λ) is

often too slow to converge and LSTD(λ) and λ-LSPE become too computationally demand-

ing. In this dissertation we show how TD(λ) can be speeded up while keeping computational

complexity comparable.

We start with the application of a numerical scheme called Algebraic Multigrid (AMG)

to speed up policy evaluation when the MDP model is fully known. We then use this ap-

proach to fix a deficiency in TD(λ) that causes its convergence rate to deteriorate over time.

This is achieved in our proposed level-based Multigrid TD(λ) algorithm (LB-MGTD) by ap-

plying TD(λ) at various resolution scales. This algorithm further enables to combine either

LSTD(λ) or λ-LSPE applied on a coarse resolution state space with TD(λ) applied on finer

resolution levels. The second algorithm we propose is the simultaneous Multigrid TD(λ) al-

gorithm (S-MGTD), which applies updates at different resolution levels simultaneously. We

show this algorithm to be equivalent to a TD(λ) variant that uses modified eligibility traces.

Experiments show substantial speedup both in the known model case and in the learning

case. The main contributions of this dissertation are

• Two novel algorithms that speed up TD(λ) based on the Multigrid approach.

• Convergence proof of S-MGTD for the non-symmetric case. This is surprising

since the convergence proof for standard AMG is limited to the symmetric case.

• A proof of TD(λ) convergence when used with modified eligibility traces. The

linkage of this variant with S-MGTD suggests that this is expected to speed up

convergence.

 2

Notations and Abbreviations

t Discrete time step
γ Discount factor

tα Learning step

tz Eligibility trace vector
g Scalar reward
g Vector of one step rewards

\ Real numbers

E Expectation operator

s State

a Action

S State space

()sφ Vector of basis functions

Φ Matrix of basis functions. (),i k k s iφ= =Φ

π Policy
q Stationary distribution of a Markov Chain

D Stationary distribution diagonal matrix. ()diag π=D

I Identity matrix

P Transition probability matrix. (), 1 |i j t tp s j s i+= = =P

p Probability

K Number of basis functions

k Basis function index

A ,B Matrices defined in least-squares based TD methods

b Vector defined in least-squares based TD methods

θ Linear coefficient vector

e Error vector of θ

 3

rA Scalar residual at level A

res Residual vector

A Resolution level index. The finest resolution is indexed

0=A . The coarsest is indexed maxA .

()V s Cost-to-go value of state s

V Vector of cost-to-go values

λ TD learning parameter

d Temporal difference
,n m Time indices
,i j State indices

^ Notation for approximation
T Transpose

MDP Markov Decision Process

DP Dynamic Programming

RL Reinforcement Learning

TD Temporal Difference

LS Least Squares

RLS Recursive Least Squares

LSPE Least Squares Policy Estimation

MG Multigrid

AMG Algebraic Multigrid

FMG Full Multigrid

SPD Symmetric positive definite

 4

C h a p t e r 1

Introduction

Reinforcement learning (RL) [BT95] is an active area of machine learning research with the

purpose of deriving methods for seeking optimal control in stochastic dynamic environ-

ments. Most RL algorithms relate to standard stochastic dynamic programming (DP) meth-

ods, adapting them to work on-line. TD(λ) is a well known family of algorithms within RL

research [S88] [TVR97], inspired by the value iteration method in DP [BT95]. It is of gradi-

ent descent nature and serves to evaluate a stationary control from measured samples. Re-

cently, two new algorithm families of a least-squares nature known as LSTD(λ) [B02]

[XHH02] and λ-LSPE [NB03] [BBN03] were introduced and comprehensively analyzed.

They offer considerably faster convergence at the expense of an increase from O(K) to O(K2)

in computational complexity per sample and memory resources, where K is the number of

unknown variables to be learned. The algorithms above were successful for solving problems

that pose significant challenge for standard methods [T92]. Still, for complicated applications

having more than hundreds of unknowns the λ-LSPE and LSTD(λ) algorithms are not feasi-

ble due to high complexity and TD(λ) due to slow convergence. It is therefore of interest to

seek intermediate algorithms with O(K) complexity that converge faster than TD(λ).

Extensive research in the DP and RL fields has been directed to speeding up convergence

by using aggregations and state space decompositions which enable processing at various

resolution scales (see literature survey). The underlying idea is to generate a low dimensional

approximation of the problem that is cheaper to solve, interpolate its solution, and use it as

an approximated solution of the original problem. Major questions are how to approximate

the problem and how to interpolate the solution.

In [HA98] a one way coarse-to-fine scheme was combined with value iteration. In order

to do so, the continuous state space was disecretized at various resolutions, interpolating the

 5

solution linearly between geometrically adjacent states. It is important to notice the underly-

ing assumption of solution smoothness between adjacent states. To achieve small interpola-

tion error requires a-prior guarantees on the solution smoothness and structure, which poses a

heavy limitation for practical problems.

In this dissertation we take a different approach called Multigrid to speed up the conver-

gence of standard algorithms in DP and RL. Multigrid is a family of multilevel numerical

methods for accelerating the iterative solution of large sparse linear equation systems [S01].

It is well known in Multigrid literature that the convergence of standard iterative methods

that operate locally is slowed down by errors of global nature. The Multigrid idea is to elimi-

nate error components at various resolution scales: local components are removed by stan-

dard iterative methods that operate locally, and global error components are eliminated after

they are approximated on a coarser grid [TOS01]. It turns out that the above deficiency of

standard iterative methods well explored in Multigrid literature, has much in common with

deficiencies in standard iterative methods of DP and inherited by TD(λ). It is therefore natu-

ral to ask if the solution offered by Multigrid can be applied to speed up DP methods or

TD(λ).

The Multigrid approach transfers residual errors and solution corrections between grid

levels and uses coarse grids to approximate the error. This differs from the approach in

[HA98] described above, which transfers approximated solutions between grid levels, and

uses the coarse grid to approximate the solution. rations,

This is a significant conceptual difference. Standard iteration methods eliminate local in-

consistencies in the error of the current solution, guaranteeing smoothness of the error in

some sense [TOS01]. It therefore makes more sense to interpolate the error resulting after

iterations rather than the solution. The potential of applying this Multigrid principle to DP

was recognized in [AC88]. However, the applicability of such methods remains limited by

the need to manually construct transfer operators between resolution levels. Such construc-

tions are natural when discretizing a continuous problem [MM02] [HA98]. This approach is

difficult if not impossible for complex unstructured meshes, especially for applications in

which no physical grid or geometrical information exists (see for example [T92]). In particu-

 6

lar, such information usually does not exist in the learning case for which advance knowl-

edge of the model is unavailable.

For a solution to this problem, we turn to an extension of (geometric) Multigrid, known

as Algebraic Multigrid (AMG) [B86] [MC87] [S01]. It automates the construction of transfer

operators between levels of different scale. This is done by exploiting algebraic relations be-

tween unknown variables as reflected by the equation system. The fact that AMG makes no

use of any geometrical information and requires no physical grid makes it suitable as a

"black box" solver. We note that all the algorithms proposed in this dissertation can be ex-

tended to work with geometric Multigrid, when ordered meshes are natural to the problem at

hand.

This dissertation has two main parts: in the first we apply AMG to the field of dynamic

programming, and in the second to TD learning. In the field of DP, we use AMG to speed up

standard methods for policy evaluation and for seeking optimal control. It turns out that

AMG is natural to speed up the well-known value iteration and its variations. In addition,

standard AMG literature provides systematic theoretical basis and tools to automate the con-

struction of aggregates. This offers some insight and tools to address a key open question of

how to form aggregation or task hierarchies automatically. We propose an AMG scheme for

policy evaluation and discuss convergence issues. We show conditions for which aggrega-

tion forms a low dimensional Markov chain. Potentially this may be used to seek optimal

control for a reduced state MDP. This approach is kept for future work.

Inspired by the analysis and the positive results of AMG application to DP, we apply

similar tools to TD learning. We analyze the dynamics of TD(λ) to reveal a deficiency which

limits its asymptotic convergence rate. Based on this observation, we propose a novel Multi-

grid-TD algorithm which speeds up TD(λ) and has a comparable computational complexity.

Based on this algorithm, we show that TD(λ) with an over-complete basis, may have an im-

proved convergence rate over standard TD(λ). Our research suggests how this basis should

be selected.

The contributions of this dissertation are

 7

• An anlysis of the dynamics of TD(λ) reveals a deficiency that limits its asymp-

totic convergence rate.

• Two novel algorithms that speed up TD(λ) based on the Multigrid approach,

named LB-MGTD and S-MGTD. To our knoweledge, this is the first time the

link between the Multigrid approach and TD(λ) has been established.

• The LB-MGTD algorithm enables to apply the computationaly cheap TD(λ) on

fine grids combined with the fast LSTD or λ-LSPE algorithms applied on the

coarsest grid. Experimental results show that this is efficient in bottom-up initiali-

zation, however it less practical in a V-cycle scheme due to noise amplification.

• Seperate convergence of each level in LB-MGTD was established.

• Convergence proof of S-MGTD for the non-symmetric case was established. This

is surprising since the convergence proof for standard AMG is limited to the

symmetric case.

• A proof of TD(λ) convergence when used with modified eligibility traces. The

linkage of this variant with S-MGTD suggests that this is expected to speed up

convergence.

Chapter Layout
The dissertation is organized as follows. Chapter 2 provides a review on previous related

work. Chapter 3 gives background on Reinforcement Learning and on Algebraic Multigrid.

The review is rather detailed, since it is not common for researchers from one field to be fa-

miliar with the other. A reader familiar with either RL or AMG may skip the corresponding

sections. In chapter 4, we propose and investigate the application of AMG to accelerate algo-

rithms within the Dynamic Programming domain. The problem addressed in this chapter as-

sumes complete knowledge of the MDP model. In chapter 5, we consider approximate pol-

icy evaluation for the unknown model case. We propose a Multigrid algorithm for TD(λ) and

discuss its convergence. This algorithm shows how to combine TD(λ) and least squares

based TD methods, such as LSTD(λ) or λ-LSPE. Our algorithm benefits from the advantages

of each, enabling the acceleration of TD(λ) or dually, the refinement of least squares TD

 8

methods. Experiments demonstrating issues discussed in chapters 4-5 are given in chapter 6.

Chapter 7 concludes our dissertation. A graphical layout is given below.

Ch. 3: Scientific Background

• Dynamic Programming

• Reinforcement Learning and TD

algorithms

• Algebraic Multigrid

background

motivation

theory & experiment

Ch. 2: Literature Survey

Ch. 1: Introduction

Ch. 7: Conclusions

Ch. 4: Algebraic Multigrid for DP

• AMG for Policy Evaluation

• AMG for Modified Policy Iteration

Ch. 6: Experiments and Results

• Policy Evaluation-known model case

• Modified Policy Iteration

• Multigrid TD Algorithms

Ch. 5: Multigrid TD Algorithms

• Analysis of TD(λ) dynamics

• Level based Multigrid TD

• Simultaneous Multigrid TD

Bibliography

 9

C h a p t e r 2

Literature Survey

2.1 Aggregation for Dynamic Programming

Markov decision processes (MDPs) have proven very useful for modeling sequential control

problems in a stochastic environment [BT95] [B99] [FS02]. Though well based theoretically,

traditional iterative methods of dynamic programming, which have a complexity polynomial

in the number of states, remain computationally intractable for problems with very large state

spaces.

It has long been realized that one of the reasons these methods are slow to converge is

that they apply corrections of local nature only. For this reason several authors proposed the

use of aggregation-disaggregation ideas to accelerate these iterative methods. A description

of the aggregation technique is presented [CM82]. The idea is to partition the state space into

disjoint groups called aggregates, and apply the same additive value correction to all the

states in an aggregate. This allows for corrections of global nature along with local ones. The

two-level scheme presented in [CM82] was extended in [AC88] to a Multigrid scheme.

These papers do not however state how to construct the aggregates in practice and do not

address convergence issues.

Several attempts were made to answer the question of how to form aggregates [SPK84],

[FD02] [BC89]. In [SPK84] it was suggested to group states of similar one step rewards,

with the hope that this will exploit some natural structure of the MDP. This heuristic fails in

many applications, especially with delayed reward for which the one step reward is the same

for all but a few goal states. In [FD02] value functions, which we define later in section 3.1,

are used to reveal MDP structure. Aggregation is based on exploiting similarity between

 10

value functions of different MDPs defined on the same state space. This is natural in maze

navigation applications for which various goals are defined for the single maze. The main

idea is to use correlations between various solutions to identify states that are likely to share

similar values in a new MDP problem. This approach however does not suit aggregation for

speeding up the evaluation of a single MDP. In [BC89] it is proposed to group states of simi-

lar residual into an aggregated state sharing the same value correction. Since residuals

change during iterations, this approach results in a dynamic formation of aggregations. The

paper motivates this aggregation method, as it minimizes one of two terms, whose sum de-

termines a bound on the error (see equation (18) in [BC89]). Unfortunately, it is hard to jus-

tify the neglect of the second term. Moreover, the methods reviewed above lack strong theo-

retical grounds to guide aggregation construction. Still, a theory that links the iteration opera-

tor to aggregate formation has been well known in the Multigrid community since the early

1980s with the introduction of Algebraic Multigrid, which we review in section 2.4.

2.2 Multilevel approaches for Reinforcement Learning

Most RL algorithms are related to standard stochastic dynamic programming methods,

adapting them to work on-line. By focusing computational effort along trajectories of high

interest and applying function approximation, RL methods succeeded to solve complex prob-

lems, for which DP methods proved infeasible [T92]. Unfortunately, RL methods suffer

from the same curse of dimensionality as DP methods, making the computational time re-

quired to solve real life problems with increasingly large state spaces, impractical.

To cope with this problem, much of the research during the last decade has been directed

toward the exploitation of temporal abstraction, where the original problem is decomposed

into a sequence of simpler tasks. We refer the reader to [DH92] [D00] and a comprehensive

review of such principled methods in [BM03]. The methods presented are well based within

the framework of semi-Markov decision processes (SMDP). However, in order to exploit

temporal abstraction, the developer is required to manually decompose the problem based on

prior knowledge. Though natural for some problems, a manual decomposition may be diffi-

 11

cult if not impossible in many practical problems. This is especially true for learning in

which problem structure may be unavailable. A few attempts have been made to automate

the decomposition process [D98], [MMS02]. These methods focus on the automatic

identification of sub-goal states, splitting the problem into the task of reaching the sub-goal,

and reaching the goal state from the sub-goal state.

A different approach which adapts aggregates during learning was taken in [SJJ95],

[KA99], [MMS03]. Instead of aggregates formed by disjoint partitioning of the state space, a

"soft" aggregation is introduced in which a state may belong to several aggregates [SJJ95].

Weights determine how much each state belongs to every aggregate. This defines a linear

mapping from a low dimensional space (aggregates) to the original state space. The mapping

from an aggregate to its states is known as a basis function. The weights defining the basis

functions are adapted using gradient descent in [SJJ95] [MMS03], and cross-entropy in

[MMS03]. The approach closest to the one we use is given in [KA99]. Weights are adapted

so that if the transition probability from one state to another is high, they are adapted to share

an aggregate. Algebraic Multigrid analysis shows that standard iterations cause such states to

share a common error [S01], so that applying the same correction makes sense.

2.3 TD learning algorithms - recent advances

Among TD learning algorithms, TD(λ) originally introduced by Sutton [S88] is probably the

simplest and most popular one. The original algorithm used a "look up" table to represent the

value function (see section 3.3.3). It was extended to adapt a parametric approximation of the

value function as a linear combination of basis functions (see section 3.4.3). This extension

offers tractability for problems with a large state space. The TD(λ) algorithm is a gradi-

ent-descent like algorithm. Its convergence with probability 1 was established in [TVR97] by

rewriting it as a stochastic approximation. It was also shown that on-line sampling, that is

sampling states according to the stationary probabilities of the Markov chain, and the linear-

ity of the value approximator, are important to establish convergence, with counter examples

included.

 12

TD(λ) has two major drawbacks: it might make inefficient use of data, and it requires a

handcrafted step-size schedule that heavily effects both convergence and performance. Based

on the theory of least-squares estimation, two algorithm families were recently introduced.

They overcome the above deficiencies of TD(λ) at the expense of increased computation per

time-step from O(K) to O(K3) and of memory resources from O(K) to O(K2), where K is the

number of parameters. The first is Least-Squares TD(λ) (LSTD(λ)) proposed by Boyan in

[B02] and proved to converge with probability 1 in [NB03]. It uses data to generate an em-

pirical equation system and solves it directly. Though this algorithm converges much faster

than TD(λ) (see [B02]) it does not enable to incorporate a-prior solution. An efficient imple-

mentation of LSTD(λ) with a complexity of O(K2) per time-step was introduced in [KXZ03].

The inversion of the matrix is circumvented by using a recursive least-squares like algorithm.

As in other RLS methods, this RLS-TD(λ) algorithm enables to incorporate an initial solu-

tion, and has a forgetting factor which may be used to adapt to a slowly varying Markov

chain.

The second algorithm family is the λ-Least Squares Policy Evaluation (λ-LSPE) intro-

duced in [NB03]. This algorithm family combines a gradient-like algorithm involving least-

squares sub-problems. Its convergence with probability 1 for a diminishing size-step is

proven in [NB03] and extended to a fixed size-step in [BBN03]. Its efficient implementation

of O(K2) complexity is given in [NB03] including an analysis showing equivalence of per-

formance to the LSTD(λ) algorithm. As it is a gradient-like algorithm, it requires an initial

solution. We present technical detail on both LSTD(λ) and λ-LSPE later on in section 3.4.4.

2.4 Algebraic Multigrid

The Multigrid method was originally introduced by Fedorenko [F61]. The actual efficiency

of Multigrid was first realized by Brandt [B72]. Independently, Multigrid methods have been

introduced by Hackbusch [H76]. The original motivation for Multigrid was the efficient nu-

merical solution of large systems of discretized elliptic partial differential equations, which

requires algorithms to effectively reduce error components of both local and global nature.

 13

This is achieved by (geometric) Multigrid, which is a family of methods that operate on a

hierarchy of grids. Grids are defined a-priori by discretizing the continuous space at different

scales. Though straightforward for many applications, the definition of a grid hierarchy may

be highly difficult for complex, unstructured meshes. The Achilles heel is the use of geomet-

ric relations between grid points to define two inter-level operators: interpolation and restric-

tion. In the 1980s Brandt [B86] introduced Algebraic Multigrid (AMG) further developed by

McCormick, Ruge and Stüben in [MC87]. AMG combines operator-dependent interpolation

and the Galerkin based coarse grid correction with Multigrid. The main idea is that a reason-

able interpolator and the Galerkin operator can be derived directly from the underlying ma-

trices, without any reference to a physical grid. Increased interest in AMG has risen in the

1990's with an increase in the complexity of geometrical applications such as computational

fluid dynamics, and the need for efficient "plug-in" solvers [TOS01]. Consequently, there are

now many different algebraic approaches, which mainly differ in the construction of inter-

level operators [S01] [VH99]. We leave the technical presentation of AMG to section 3.6.

 14

C h a p t e r 3

Scientific Background

This chapter reviews Dynamic Programming, Reinforcement Learning, and Algebraic Mul-

tigrid: the first two provide methods for addressing problems formulated as Markov Deci-

sion Problem (MDPs); and the latter is a family of efficient numerical solvers. In the first

section we described the MDP framework used to model our problem. Next, we review

Dynamic Programming (DP) techniques, which are often used when the MDP model of the

problem is fully known. We state the Bellman equation, which is a set of equations that de-

fine the solution of the MDP, and provide the basis for the subsequent methods. We con-

tinue by describing a method for evaluating any fixed policy and methods for finding an

optimal policy.

Next, we review Reinforcement Learning (RL) techniques, which although inspired by

DP methods, do not require an explicit model of the MDP. Instead, RL methods use

measured data while exploring the policy space in a trial-and-error approach. We start

with a general description of RL and continue with a review of a popular family of RL

algorithms known as Temporal-Difference (TD) methods. We review TD methods that

use linear function approximation. Approximation is used to circumvent a representa-

tional difficulty arising in complex real life problems. We provide detail on three popular

algorithms in this family and compare their advantages and disadvantages.

The last two sections review Algebraic Multigrid (AMG). This is a family of multi-

level numerical methods that speed-up iterative solution of large linear equation systems.

The first of these two sections reviews AMG algorithms without going into technical de-

tail, and addresses theoretical and practical issues regarding convergence. The last sec-

tion covers technical detail of the setup phase in AMG.

 15

For comprehensive reviews of Dynamic Programming and Reinforcement Learning we

refer the reader to [BT95], [SB98], and [P94]. Comprehensive reviews on Multigrid and

AMG are given in [TOS01] [BHMC00], and [MC87]. A basic tutorial on AMG is provided

in [VH99] and an in-depth tutorial is given in [W99].

3.1 Problem modeling and the MDP framework

Consider an interaction between an agent and a dynamic environment. Interaction takes

place at discrete time decision points, denoted 0,1,2,t = … , in which the agent selects an

action ta ∈A causing a change in the environment state and consequently receiving some

reward signal. In many applications the environment may be modeled as a Markov Deci-

sion Process (MDP).

Formally, an MDP is defined by a 4-tuple { }, , ,P gS A . S and A are the state and ac-

tion spaces respectively. For brevity, we excluded the dependence of ()sA on the current

state. P defines the environment dynamics via transition probabilities ()1 | ,t t tp s s a+ , from

state ts to state 1ts + given the action taken is ta . The (scalar) immediate reward sent fol-

lowing such a transition is denoted ()1, ,t t tg s s a+ or tg for short. The Markov property

states that given the current state and action, the dynamics of the environment and the im-

mediate reward are statistically independent of previous events. For future use we note that

an MDP is said to be finite if its state space S is finite, and is called an infinite MDP if the

number of states in S is infinite.

Following the agent's action ta , the agent receives two signals: the new environment

state 1ts + and the reward tg . The agent chooses actions based on a policy, denoted by π ,

which is a mapping from the history of observations and actions up to time t , denoted tH ,

to the action to be taken, denoted ta , i.e.

 : tπ →H A (3.1.1)

 16

where { }0 1 0 1 1 0 1 1, , , , , , , , , , ,t t t ts s s a a a g g g− −≡ … … …H .

In some cases, the policy is stochastic, giving the probability for taking each action

 (): tπ → ∆H A (3.1.2)

where ()∆ A is the set of probablilty distributions over the action set A .

The objective of the agent is given in the form of a utility function, denoted ()v sπ ,

measuring the quality of any policy π when the agent starts from state s . This function is

named the value function or cost-to-go function. The goal of the agent is to find an optimal

policy denoted *π that maximizes the value function for all states

 ()* arg max ,v s sπ

π
π = ∀ ∈S . (3.1.3)

A popular value function to be maximized is the expected total reward gained in a finite

number of steps, denoted T ,

 ()
1

0
0

|
T

t
t

v s g s sπ π
−

=

⎛ ⎞= =⎜ ⎟
⎝ ⎠
∑E , (3.1.1)

where the expectation is taken with respect to all trajectories of length T starting at state s

and following the (random) policy π . This value function is appropriate when the number

of steps pre-defined. If the number of steps is unknown or random, such as in the case of

termination upon reaching a goal state, an infinite-horizon value function is better suited

 () 0
0

|t
t

v s g s sπ
∞

=

⎛ ⎞= =⎜ ⎟
⎝ ⎠
∑E . (3.1.2)

For this value function to be bounded, certain technical conditions must be met [BT95].

Other popular value functions with infinite-horizon are the discounted reward

 () 0
0

|t
t

t

v s g s sπ γ
∞

=

⎛ ⎞= =⎜ ⎟
⎝ ⎠
∑E (3.1.3)

where [)0,1γ ∈ is known as the discount factor, and the average reward

 17

 ()
1

0
0

1lim inf |
T

tT t

v s g s s
T

π
−

→∞
=

⎛ ⎞= =⎜ ⎟
⎝ ⎠
∑E . (3.1.4)

The first emphasizes rewards at the beginning of the process while the latter emphasizes

long-term revenues.

In this dissertation, we address either finite or infinite MDPs with infinite-horizon dis-

count cost, i.e. (3.1.3). We address finite MDPs in the context of dynamic programming

and infinite MDPs in the context of learning with function approximation both to be intro-

duced later. We note that our approach applies to infinite MDPs in the dynamic program-

ming context as well when introducing function approximation.

It is well known, that for such MDPs with discounted cost there exists a deterministic

stationary policy which is optimal [BT95]. A Markov policy selects an action based solely

on the current state. If the rule for selecting an action in a Markov policy does not change

over time, the policy is said to be stationary. A deterministic policy specifies a single action

()a sπ= , whereas a randomized policy defines a probability for selecting each action

() ()| ,p a s s aπ= as a mapping ():π → ∆S A . Applying a stationary policy to an MDP

induces a Markov chain, with the transition probabilities

 () () ()
()

' | , ' | ,
a s

p s s s a p s s aπ
∈

= ∑
A

. (3.1.5)

We assume henceforth that this Markov chain is irreducible, aperiodic and has a unique

distribution denoted ()q s , that satisfies

 () () ()' ' |
s

q s p s s q s
∈

= ∑
S

. (3.1.6)

3.2 Dynamic Programming

Stochastic Dynamic Programming (DP) algorithms are methods for finding optimal poli-

cies when a complete model of the MDP is known. The optimal policy is known to satisfy

 18

the Bellman optimality equations [BT95]. Dynamic Programming methods efficiently solve

these equations by using two processes: one evaluating the cost-to-go function of the cur-

rent policy, and the other improving the current policy based on the current cost-to-go esti-

mate. After introducing the Bellman equation, we review the two processes above, and the

various ways in which they are combined.

3.2.1 The Bellman equations
Consider a stationary policy π . We note that (3.1.3) can be used to write the cost-to-go of

π for any state s∈S in terms of the values of its potential successive states 's ∈S via the

Bellman equation [BT95]:

 () () () () ()
() '

, ' | , , ', '
a s s

v s s a p s s a g s s a v sπ γ
∈ ∈

⎡ ⎤= +⎣ ⎦∑ ∑
A S

p p (3.2.7)

The value function of a given policy is the unique solution of this linear equation system. It

will turn out convenient to write this equation system in vector notation

 πγ= +v g P vp p p (3.2.8)

where vp is a vector of values of each state, gp a vector of the one step rewards, and πP is

the transition probability matrix, all defined below.

 () () ()1 2
T

v v v Nπ π π⎡ ⎤= ⎣ ⎦v "p (3.2.9)

 () () ()1 2
T

g g g Nπ π π π⎡ ⎤= ⎣ ⎦g " (3.2.10)

 () () () ()
() '

, ' | , , ',
a s s S

g s s a p s s a g s s aπ π
∈ ∈

= ∑ ∑
A

 (3.2.11)

 () ()
()

, ' , ' | ,s s
a s

s a p s s aπ π
∈

= ∑P
A

 (3.2.12)

The value function of the optimal policy is known to be the unique solution of the set of

nonlinear equations named the Bellman optimality equation [BT95]:

 19

 ()
()

() () ()
'

max ' | , , ', '
a s s

v s p s s a g s s a v sγ
∈ ∈

⎡ ⎤= +⎣ ⎦∑
A S

* * (3.2.13)

where v* denotes the optimal value function. Given v* , an optimal policy is derived by

 ()
()

() () ()* *

'
arg max ' | , , ', '

a s s
s p s s a g s s a v sπ γ

∈ ∈

⎡ ⎤= +⎣ ⎦∑
A S

. (3.2.14)

We now turn to methods for efficiently solving the Bellman equation.

3.2.2 Policy Evaluation
In this section, we review a method for evaluating the cost-to-go of a given stationary pol-

icy denoted by π . This method is beneficial when the number of states is too large, making

the direct solution of (3.2.7) intractable. Starting with an arbitrary function ()0v sπ , we up-

date all the states simultaneously by applying the iteration

 () () () () ()
()

1
'

, ' | , , ', 'n n
a s s

v s s a p s s a g s s a v sπ ππ γ+
∈ ∈

⎡ ⎤= +⎣ ⎦∑ ∑
A S

 (3.2.15)

or in vector notation

 1n n
π π π πγ+ = +v g P v . (3.2.16)

This iteration converges asymptotically to the value function of π .

3.2.3 Policy Iteration
The next two schemes find the optimal policy and value function. Policy Iteration separates

the policy evaluation and policy improvement processes. Iterations are done in the space of

deterministic policies. Starting with some arbitrary policy 0π , each iteration is carried out

in two steps. The first evaluates the value function nvπ of the current policy nπ by solving

(3.2.7). In the second step, the current policy is improved using

 ()
()

() () ()1
'

arg max ' | , , ', 'n
n a s s

s p s s a g s s a v sππ γ+ ∈
∈

⎡ ⎤= +⎣ ⎦∑
A S

. (3.2.17)

 20

It is well known that Policy Iteration for finite MDPs converges to the optimal policy in a

finite number of iterations [BT95]. A drawback of this method is the high computational

effort needed for solving (3.2.7) exactly.

3.2.4 Value Iteration
Value Iteration replaces the policy evaluation step, which is computationally expensive, by

a single execution of (3.2.15). This can be compactly written as

 ()
()

() () ()1
'

max ' | , , ', 'n na s s
v s p s s a g s s a v sγ+ ∈

∈

= +⎡ ⎤⎣ ⎦∑
A S

 (3.2.18)

Starting from an arbitrary initial function ()0v s , Value Iteration asymptotically converges

to the optimal cost-to-go function. The greedy policy g
nπ defined below converges to the

optimal policy after a finite number of iterations.

 ()
()

() () ()
'

arg max ' | , , ', 'g
n na s s

s p s s a g s s a v sπ γ
∈

∈

= +⎡ ⎤⎣ ⎦∑
A S

 (3.2.19)

3.2.5 Asynchronous Value Iteration
In Value Iteration described above, the values of all the states are updated simultaneously.

In Asynchronous Value Iteration, states are updated according to some predefined order

1 2 3, , ,s s s … , using the most up-to-date values in each update. The update process takes the

form

 () ()
() () ()

()
'

1

max ' | , , ', ' if

otherwise

n na s s
n

n

p s s a g s s a v s s s
v s

v s

γ
∈

∈
+

⎧ + =⎡ ⎤⎣ ⎦⎪= ⎨
⎪⎩

∑
A S . (3.2.20)

It is proven in [BT95], that this procedure converges to the optimal cost-to-go for arbitrary

state ordering, as long as every state is updated infinitely often.

We mention Gauss-Seidel methods as a special case, in which states are swept in cyclic

lexical order, i.e. 1 2 3 1 21, 2, 3, , 1, 2,s s s s s= = = = =… … , while applying (3.2.15) for policy

 21

evaluation and (3.2.18) for optimal policy search. In practice, this iteration usually con-

verges faster than the one defined in (3.2.15) and (3.2.18).

3.2.6 Modified Policy Iteration
We conclude this review of Dynamic Programming methods by mentioning a blend of

Value Iteration and Policy Iteration named Modified Policy Iteration or Generalized Policy

Iteration [BT95]. It is an intermediate mixture of the policy evaluation and policy im-

provement processes, which applies (3.2.15) several times between executions of (3.2.17).

Empirical evidence suggests it has faster convergence than either VI or PI when computa-

tional aspects are taken into account.

3.3 Introduction to Reinforcement Learning

3.3.1 What is Reinforcement Learning?
Reinforcement Learning (RL) is a branch of machine learning research, specialized for

learning optimal control in an unknown environment using a trial-and-error approach. In-

stead of assuming that the MDP model is fully known, learning is done by measuring the

outcomes of actions. After taking an action ta ∈A , the agent observes the state transition

1t ts s +→ and the measured reward tg , which are samples of the stochastic MDP. The

agent then uses this information to update its current representation of either the cost-to-go

function or the optimal policy. RL algorithms are designed to converge in some probabilis-

tic sense, when the update rule is applied iteratively.

In this dissertation, we address a popular family of RL algorithms known as Tempo-

ral-Difference (TD) learning. TD learning is often used to replace the policy evaluation

step of DP, in order to learn the value function of a fixed policy, π . In this section, we re-

view algorithms that represent the estimated value function using a "lookup table" (that is,

the estimated value of each state is stored separately). We address the use of function ap-

proximation for the value function in the next section. We first introduce the basic TD(0)

 22

algorithm, followed by the extension to the TD(λ) algorithm family. For ease of notation,

we omit the explicit indication of the dependency of the value function on π , and write v

instead of vπ .

3.3.2 Temporal Difference Update – basics
Temporal-Difference (TD) methods use data obtained from simulated trajectories to esti-

mate the value function of a stationary policy π . A trajectory is a series of states

0 1 2, , ,s s s … , dictated by transition probabilities of the MDP when actions are taken accord-

ing to π , and the corresponding single step rewards () ()0 1 1 2, , , ,g s s g s s … . After each

transition, the temporal-difference

 () () () ()1 1 1ˆ ˆ ˆ, ; ,t t t t t td s s v g s s v s v sγ+ + += + −⎡ ⎤⎣ ⎦ (3.3.21)

is calculated, with ()v̂ s being an estimate of value function. The first term in (3.3.21) is a

sample of the estimation of ()tv s using a one-step look ahead. Therefore, the temporal dif-

ference is a stochastic sample of the one-step inconsistency of our current estimation in the

Bellman equation. We note that the mean of (3.3.21) is zero for all states, only if ()v̂ s

equals the true value function.

3.3.3 TD(λ)
TD(0) is a simple algorithm that iteratively applies the update rule

 () () ()1: , ;t t t t tv s v s d s s vα += + (3.3.22)

where tα is a sequence of learning steps. The state transition 1t ts s +→ is used to update the

estimation at state ts only, while keeping the estimation at other states fixed. This can be

regarded as applying local corrections, making the value of each state more consistent with

its one-step look ahead estimation. TD(0) is inefficient in the sense that it uses each meas-

urement to update a single state.

 23

TD(λ) is a family of algorithms that use each measured temporal difference to update

all the states simultaneously using

 () () () ()1: , ;t t t tv s v s d s s v z sα += + (3.3.23)

where the weight ()tz s determines the relevance of the temporal difference at time t to the

updated state. The weights ()tz s , named eligibility traces, provide more weight to recent

states over states that were not visited for a long time. A common way for defining the eli-

gibility traces is

 ()
()
()

1

1

1 if
:

otherwise
t t

t
t

z s s s
z s

z s

γλ

γλ
−

−

+ =⎧⎪= ⎨
⎪⎩

 (3.3.24)

where ()tz s is initialized as zero for all states. It is easy to see that ()tz s is relatively large

when s is visited often, and state ts is reached from s using a small number of steps. The

weight ()tz s decays exponentially with the number of steps from the last time state s was

visited, where the parameter []0,1λ∈ defines the decay rate (beyond γ , the reward dis-

count factor). As λ approaches 1, more states are influenced by each sample. For 0λ = we

obtain TD(0) as a special case.

TD(λ) converges with probability one to the true value function, under technical condi-

tions discussed in [BT95]. The relation between λ and the convergence rate was studied in

[SD98], where it was shown that an intermediate value of λ is optimal.

3.4 TD Methods for Linear Function Approximation

3.4.1 Linear Function Approximation
The number of states in practical problems may be very large, rendering the representation

of the value function using a "lookup table" impractical. As an example we note that in Te-

sauro’s TD-Gammon application [T92] the number of states is estimated at over than 2010 .

 24

One way to tackle this problem is to approximate the value function using some parametric

form. An approximation method that proved stable, both in theory and in practice

[TVR97], is a linear combination of the form

 () ()ˆ Tv s sθ φ θ= (3.4.25)

where () Ksφ ∈\ is a vector valued function, with its elements weighted by the elements

of the vector Kθ ∈\ . The elements ()k sφ of ()sφ are known as basis functions or fea-

tures. Applying approximation provides tractability and generalization at the expense of

possible solution accuracy.

3.4.2 Temporal Difference using Function Approximation
When substituting (3.4.25), the temporal difference element of (3.3.21) takes the form

 () () () ()()1 1 1, ; ,
T

t t t t t td s s g s s s sθ φ γφ θ+ + += − − (3.4.26)

where θ is the parameter vector of the current estimate. The temporal differences are used

to improve our current estimate tθ to obtain a new estimate 1tθ +

3.4.3 TD(λ) with Function Approximation
Sutton’s TD(λ) [S88] extends the tabular TD(λ) to the case of linear function approxima-

tion. The parameter vector tθ is updated every time step using the recent temporal differ-

ence. The update rule is:

 ()1t t tsλγ φ−= +z z (3.4.27)

 ()1 1 1, ;t t t t t t td s sθ θ α θ− + −= + z (3.4.28)

Similar to the tabular case, tz is a vector of eligibility traces that measure the relevance of

the recent temporal difference to each element of tθ . It is initialized as 1 1K− ×=z 0 .

[]0,1λ∈ is an algorithm parameter, and tα is a non-increasing positive step size sequence.

 25

Under the assumption set stated below, TD(λ) with linear function approximation con-

verges with probability one [TVR97] to a unique fixed point *θ , which satisfies

 *θ =A b (3.4.29)

 ()T
λ γ= −A Φ DM I P Φ (3.4.30)

 T
λ=b Φ DM g (3.4.31)

 () 1
λ γλ −= −M I P (3.4.32)

where I is the identity matrix, Φ is a matrix of basis functions, and D a diagonal matrix

of stationary distributions, all defined below. For the definitions of g and P see (3.2.10)-

(3.2.12).

 () () ()1 2

| | |

| | |
K

N K

s s sφ φ φ

×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Φ " ,

()
()

()

0 0

0 0

0

0 0

1

2

N N

q

q

q N ×

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

D

"

"

%

"

 (3.4.33)

()q i is the steady state (stationary) distribution probability of being in state i∈S .

As opposed to TD(λ) in the tabular form that converges to the same unique value func-

tion for all values of λ, the convergence point of TD(λ) with function approximation de-

pends on λ. We rewrite (3.4.29) as

 () ()()()*T
λ γ θ− − =Φ DM g I P Φ 0 . (3.4.34)

The second term is the residual of the Bellman equation (3.2.8), where θΦ is the approxi-

mated value function. We observe that the algorithm projects the residual on a lower di-

mensional subspace, and equates the projection to zero. Since the projection depends on λ,

so does the convergence point. In [TVR97] the following projection matrix is defined

 () 1T T−
Π =Φ Φ DΦ Φ D . (3.4.35)

 26

For the special case of 0λ = it may be seen that this projection of the residual equals zero

 ()()*γ θΠ − − =g I P Φ 0 (3.4.36)

and for the case of 1λ = convergence is to the projection of the true value function

 *θ = Πv (3.4.37)

where () 1γ −= −v I P g .

For completeness, we state the assumptions used in [TVR97] to prove the convergence

of TD(λ). We stress that assumptions 1(b), 2(b) and 3 are needed in the case of infinite

(countable) state space, and are automatically satisfied for finite MDPs [TVR97].

 27

TD(λ) assumption set

1(a). The Markov chain ts is irreducible, aperiodic, and has a unique stationary distribu-
tion, q satisfying T T=q P q . ()0 ⋅E denotes the expectation with respect to q .

1(b). One step rewards satisfy ()()2
0 1,t tg s s + < ∞E

2(a). The matrix Φ is full rank

2(b). Basis functions satisfy ()()2
0 k sφ < ∞E

3. The effects of the initial state are bounded by a function :f +→\S satisfying the fol-
lowing requirements:

3(a). For all 0s and 0m ≥ ,

 () ()() () ()() ()0 0 0 0
0

|T T
m ms s s s s f sτ τ

τ

φ φ φ φ
∞

+
=

− ≤∑ E E

 () ()() () ()() ()1 0 0 0 1 0
0

, | ,m m m ms g s s s s g s s f sτ τ τ
τ

φ φ
∞

+ + + +
=

− ≤∑ E E

3(b). For any 1n > , there exists a constant nµ such that for all 0s , t ,

 ()() ()0 0|n n
t nf s s f sµ≤E

4. The step-size sequence tα is positive, non-increasing, predetermined, and satisfies

0
t

t
α

∞

=

= ∞∑ and 2

0
t

t
α

∞

=

< ∞∑ .

Throughout this dissertation, ⋅ without a subscript denotes the Euclidean norm for vectors

and the Euclidean-induced norm for matrices.

3.4.4 Least-Squares based methods
When the number of unknowns K is small, it may be feasible to approximate and directly

solve equation (3.4.29). In the LSTD(λ) algorithm, the matrix A and vector b in (3.4.30)

and (3.4.31) respectively, are sampled by

 () ()()1
0

t T
t n n n

n
s sφ γφ +

=

= −∑A z and ()1
0

,
t

t n n n
n

g s s +
=

= ∑b z . (3.4.38)

For time t in which tA is non-singular, the estimate of tθ is given by the solution

 28

 1
t t tθ −= A b . (3.4.39)

Another algorithm is the λ-LSPE algorithm. It samples an additional matrix

 () ()
0

t
T

t n n
n

s sφ φ
=

=∑B , (3.4.40)

and starting from some initial guess 0θ applies the iteration

 ()1
1t t t t t t tθ θ α θ−
+ = + −B b A , (3.4.41)

where tα is a positive decreasing step size. In order to avoid singularities of tA in

LSTD(λ) or tB in λ-LSPE, one can add a diagonal matrix δ I to either tA or tB , where δ

is a positive real. We note that it is often useful to write the variables tA , tB , and tb above

as recursions:

() ()()
()

() ()

1 1

1 1,

T
t t t t t

t t t t t

T
t t t t

s s

g s s

s s

φ γφ

φ φ

− +

− +

= + −

= +

= +

A A z

b b z

B B

 (3.4.42)

where 1 1− −= =A B 0 (or 1 1 δ− −= =A B I) and 1 0− =b .

The above formulations of LSTD(λ) and λ-LSPE are derived from the least squares ap-

proximation:

 () () () ()
2

1 1
0

ˆarg min , ;
t t

T T m nLS
t n n t m m

n m n

s s d s s
θ

θ φ θ φ θ γλ θ−
+ +

= =

⎛ ⎞⎡ ⎤= − +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
∑ ∑ (3.4.43)

The trajectories of temporal differences are used to build a value function estimation (right

hand term in the above), which is then approximated in a least squares sense using linear

approximation ()T
nsφ θ . The above two algorithms differ in the choice of θ̂ . LSTD(λ)

minimizes the inconsistency of the new estimation 1
LS

tθ + , by forcing 1
ˆ LS

tθ θ += . The λ-LSPE

 29

algorithm uses the current estimate ˆ
tθ θ= in (3.4.43). It then makes an adjustment in the

direction of 1
LS
tθ + , setting ()1 1

LS
t t t t tθ θ α θ θ+ += + − , using some positive stepsize tα .

A detailed derivation of LSTD(λ) is presented in [BB99] and [B02], and convergence

with probability one is proven in [NB03]. The complexity of each step of LSTD(λ) is

O(K3). An efficient implementation of O(K2) complexity per step, named RLS-TD(λ), is

derived in [XHH02]. The derivation of λ-LSPE(λ) is presented in [NB03], with its straight-

forward implementation of O(K3) complexity per step, and its efficient implementation of

O(K2) complexity. An extension to its convergence properties for a constant step size is

given in [BBN03].

3.4.5 Comparison of TD and Least Squares methods
In the subsection, we briefly compare the TD learning algorithms above. We start by stat-

ing that all the algorithms above converge with probability one to the same fixed point,

which depends on λ. Furthermore, the efficient implementation of the λ-LSPE and

RLS-TD(λ) are comparable in terms of computational load, memory requirements and as-

ymptotic convergence rates. Their intermediate convergence behavior differs. The LS

based algorithms are more data efficient than TD(λ) in the sense that they converge signifi-

cantly faster in terms of the number of iterations required to achieve a certain error level.

Furthermore, TD(λ) requires the specification of a learning stepsize which significantly ef-

fects the convergence rate. The drawback of the LS methods is the computational load per

iteration and memory requirements, which are O(K2), as opposed to the complexity of

TD(λ) which is O(K). This renders LS methods impractical when the number of features is

large.

3.5 Algebraic Preliminaries

In this section we give a few definitions which will serve us in subsequent sections.

Definition 1: A matrix A is called an M-matrix if 0ii >A , 0ij ≤A i j∀ ≠ , and 1 0− >A

element-wise.

 30

Definition 2: A matrix A is said to be diagonally dominant if ii ij
j i≠

> ∑A A .

Definition 3: An n×n real matrix A (not necessarily symmetric) is said to be positive defi-

nite if for all nonzero vectors n∈x \ , 0T >x Ax .

We use the notation 0>A (0<A) to denote that A is symmetric positive (negative) defi-

nite. It is well known that a real symmetric matrix A, is positive definite if and only if (iff)

all its eigenvalues have positive real parts, i.e. ()()Re 0eig >A . The following lemma does

not assume A is symmetric.

Lemma 3.1 Let A be a positive definite matrix (not necessarily symmetric). Then all the

eigenvalues of A have a positive real part.

Proof Denote by µ and i= +v x y any eigenvalue of A and its corresponding

eigenvector, where , N∈x y R are the real and imaginary parts of v respectively. By direct

calculation we obtain

 () () () ()T T T T Ti i i= − + = + + −v Av x y A x y x Ax y Ay x Ay y Ax† (3.5.44)

where † denotes a conjugate transpose. Since ≠v 0 is an eigenvector of A we have

 2µ µ= =v Av v v v† † (3.5.45)

Using the last two equations we obtain

 () () 2T T T Tiµ ⎡ ⎤= + + −⎣ ⎦x Ax y Ay x Ay y Ax v (3.5.46)

Since A is positive definite it follows that 0T ≥x Ax , 0T ≥y Ay , with at least one of them

being a strict inequality since ≠v 0 , and therefore

 () ()Real / 0T Tµ = + >x Ax y Ay v . (3.5.47)

■

 31

Definition 4: A real matrix A is said to be Hurwitz-stable if all its eigenvalues have nega-

tive real parts, i.e. ()()Re 0eig <A .

Theorem: A real matrix A is stable iff there exists a matrix 0>L such that

 T + <A L LA 0 . (3.5.48)

3.6 Algebraic Multigrid Review

3.6.1 What is Algebraic Multigrid?
Algebraic Multigrid (AMG) is a family of multilevel numerical methods for accelerating

the iterative solution of large linear equation systems of the form

 =Au b (3.6.49)

AMG convergence analysis assumes A is a symmetric positive definite matrix (SPD). We

are not aware of such analysis under different assumptions. In practice, it is often further

assumed that A is an M-matrix or is strictly diagonally dominant. For AMG to be computa-

tionally efficient, it is further required that A is sparse.

AMG accelerates standard iterative methods, by eliminating error components at vari-

ous resolution scales. A standard iterative method is used on the original fine grid, which

results in reducing one type of error components. The complementary type, which is slow

to converge under iteration, is named algebraically smooth. Smooth errors are approxi-

mated on a coarse grid and eliminated after interpolation. Since iteration and coarse grid

correction are effective for complementary types of error components, applying them alter-

nately results in a synergetic fast reduction of any error component.

We now make this description more concrete. Consider an iterative method of the form

 ()1: −= + −u u Q b Au (3.6.50)

where the matrix Q determines the iteration method. Common iteration methods are

Richardson for which =Q I , ω -Jacobi for which Q is the diagonal of A divided by a

 32

damping factor []0,1ω∈ , and Gauss-Seidel for which Q is the lower triangular part of A

including the diagonal. Notice that this form of iteration has much in common with Dy-

namic Programming methods presented in section 3.2. The policy evaluation method in

(3.2.15) is in fact a Richardson iteration for A=I-P. Applying the iteration (3.6.50) multi-

plies the error vector *≡ −e u u , where *u is the exact solution of (3.6.49), by the matrix

 1−= −S I Q A , (3.6.51)

(see straightforward derivation in [S01]). The matrix S is known as the smoothing operator.

Denote the eigenvalue, eigenvector pairs of S by kµ , kv , respectively. Error vectors

spanned by eigenvectors with near zero eigenvectors will be effectively reduced by the it-

eration. However, an error vector aligned with kv for which 1kµ ≈ will converge very

slowly. The latter is said to be algebraically smooth. Any initial error can be represented as

a linear combination of kv . As we apply (3.6.50) repeatedly, non-smooth components de-

cay more rapidly and smooth components remain, making the resulting error more and

more smooth. Eventually, the smooth error may be approximated as a linear combination of

eigenvectors kv for which 1kµ ≈ , while neglecting components for which kµ is close to

zero. For a numerical demonstration of differences in convergence rates we refer the reader

to section 5.1.2. AMG methods eliminate the remaining smooth error by a coarse grid cor-

rection step, which applies an additive correction of the form

 ˆ:= +u u e . (3.6.52)

The error is approximated by

 0
1ˆ ≈e I ν . (3.6.53)

where 0
1I is an 0 1n n× matrix (1 0n n<) and ν is some 1 1n × vector. AMG builds 0

1I so that

its columns roughly span the subspace spanned by 1n eigenvectors for which kµ is closest

to 1. Smooth errors are therefore well represented by (3.6.53). Plugging in (3.6.52) into

(3.6.49) generates an over-determined equation for ν

 33

 ()0
1+ ≈A u I ν b . (3.6.54)

Let 1
0I be some 0 1n n× (projection) matrix. A solution for ν is obtained by left multiplying

the above equation by 1
0I

 () ()1 0 1
0 1 0= −I AI ν I b Au . (3.6.55)

We can now solve for ν , and apply the correction in (3.6.52), completing the coarse cor-

rection step. The basic idea described above is extended in AMG to multiple grid levels.

We now define some terms and indexing that will serve us in describing the AMG rou-

tine below. The term grid in AMG refers to a vector of unknowns, whose elements are vir-

tual points. In classical AMG, a coarse grid is a vector, whose elements are a subset of

elements of the fine grid vector. AMG forms a hierarchy of grids. We index these levels by

{ }max0,1, ,∈A … A , where 0=A is the original finest grid and maxA is the coarsest. We de-

note the number unknown variables (points) in grid level A by nA , with 0n the dimension-

ality of u. Since coarse grids are contained within fine grids we have

max max 1 1 0...n n n n
−

< < <A A .

3.6.2 General AMG Routine
AMG algorithms have two phases: a preliminary setup phase which is applied once to de-

fine level operators, and a solve phase which is applied iteratively until a satisfactory preci-

sion is obtained. A general AMG routine which includes these two phases is given in

Algorithm 3.1 below. The setup phase builds three types of operators: n n×A A equation

matrices AA , interpolators 1+IAA which are 1n n +×A A rectangular matrices, and restrictors 1+IAA

which are 1n n+ ×A A matrices. The restrictors are used to project the residual error vector re-

sulting from smoothing iterations at level A onto a coarse grid at level 1+A . Interpolators

are used to transfer a vector that approximates the smooth error on a coarse grid 1+A back

to the fine grid A . Since the setup phase is rather technical, we delay its presentation to sec-

tion 3.7.

 34

The solve phase implements a standard Multigrid algorithm based on the operators de-

fined in the setup phase. The V-cycle scheme outlined in Algorithm 3.1 is a standard im-

plementation of the solve phase, with other schemes given in subsequent sections. The

V-cycle scheme is a recursive implementation of a three step scheme used to approximate

the solution of an equation system =A u bA A A at level A . The first step uses standard itera-

tion to smooth the error vector (step 3). In the second step, the resultant smooth error is ap-

proximated on a coarse grid via a reduced equation system known as the residual equa-

tions, which take the form 1 1 1+ + +=A u bA A A . The coarse approximation of the smooth error is

interpolated to the fine grid and used to make an additive correction (step 4). In the third

step, additional iterations are used to reduce interpolation errors (step 5). At the coarsest

grid, the number of unknowns is small enough to allow a direct solution of

max max max
=A u bA A A (step 1). The schematics of the V-cycle are presented in Figure 3.1.

Algorithm 3.1: General AMG routine
Setup phase:

Denote 0 :=A A for the finest grid, 0=A . We denote its dimensions by 0 0n n× .

For 0=A to max 1−A do:

1. Given AA , build the 1n n +×A A interpolator, 1+IAA by applying the following steps:

 1.1. Select a subset of 1n +A (n< A) coarse grid variables (see section 3.6.4).

 1.2. Calculate the elements 1+IAA which serve as interpolation weights (section 3.6.3).

2. Build the 1n n+ ×A A restrictor 1+IAA , based on the interpolator. Common choices are the

transpose ()1
1

T+
+=I IA A

A A , and the pseudo inverse () ()
1

1
1 1 1

T T−
+

+ + +
⎡ ⎤= ⎢ ⎥⎣ ⎦

I I I IA A A A
A A A A .

3. Build the 1 1n n+ +×A A coarse-grid operator as 1
1 1: +
+ +=A I A IA A
A A A A

 35

Solve phase: V-cycle

()V-cycle ,bA A

If on the coarsest grid, i.e. max=A A

1. Directly solve and return
max max max

1: −=u A bA A A

Otherwise do steps 2-5

2. Initialize level correction :=u 0A

3. Apply 0preβ ≥ smoothing iterations ()1: −= + −u u Q b A u
AA A A A A

4. Coarse grid correction step:

 4.1. Restrict the residual to the coarser grid ()1
1 : +
+ = −b I b A uA
A A A A A

 4.2. Recursive call ()1 1: V-cycle , 1+ += +ν bA A A

 4.3. Interpolate the error to the current grid 1 1ˆ : + +=e I νA
A A A .

 4.4. Correct the current grid estimation ˆ:= +u u eA A A

5. Apply 0postβ ≥ smoothing iterations ()1: −= + −u u Q b A u
AA A A A A

Return uA

The operator defined as 1
1 1: +
+ +=A I A IA A
A A A A is named a Galerkin operator. At least one of the

algorithm parameters preβ and postβ is non-zero, and they are often chosen such that

{ }2,3, 4pre postβ β+ ∈ ,. Further detail on the steps above is available in [MC87], [TOS01]

and [VH99].

3.6.3 Grid Refinement
Grid Refinement is another multilevel scheme we address in our work. It uses a “one way”

coarse-to-fine approach, by interpolating the coarse grid solution to the fine grid. The

schematics are presented in Figure 3.1. This scheme enables to obtain an application de-

pendent initial solution, at a low computational cost. Unfortunately, this solution usually

contains algebraically smooth error components that decay slowly under iterations.

 36

Figure 3.1: Schematics of Grid Refinement (left) and V-cycle (right)

3.6.4 Full Multigrid
Full Multigrid (FMG) combines Grid Refinement and Multigrid. A Grid Refinement step is

used in the initialization of every level, followed by a V-cycle in order to eliminate smooth

errors generated during interpolation. The schematics of FMG are shown in Figure 3.2.

Figure 3.2: Schematics of a Full Multigrid cycle

Grid

Refinement

V-cycle Grid

Refinement

V-cycle

2=A

1=A

0=A

Fine

Coarse

Interpolate

Initialize

Iterate

Interpolate

Iterate Correct

Interpolate

Solve

Correct

Interpolate

Restrict residual

Iterate

Restrict residual

Iterate

2=A

1=A

0=A

Fine

Coarse

 37

3.6.5 Convergence Issues
The convergence of Algorithm 3.1 and similar AMG algorithms is well established when

the matrix A is symmetric positive definite [S01] [MC87]. Theorem A.2.2 and Corollary

A.2.1 in [S01] immediately imply the following theorem.

Theorem Let 0A be SPD and let any full rank interpolation 1+IAA be given. Let AA be

defined as Galerkin operators 1
1 1

+
+ +=A I A IA A
A A A A . Then V-cycle given in Algorithm 3.1 with

Gauss-Seidel iterations used in steps 3 and 5 converges to the solution of 0 0=A u b .

Proof The proof in a nutshell is based on the definition of two operators:

smoothing operator 1−≡ −S I Q AA A A (3.6.56)

coarse-grid correction 1 1
, 1 1 1

− +
+ + +≡ −K I I A I AA A

A A A A A A . (3.6.57)

Each iteration in steps 3 or 5 modifies the error *= −e u uA A A , where *uA is the solution of

=A u bA A A , according to :=e S eA A A ; and applying the correction step (step 4) at level

max 1−A changes the error according to , 1: +=e K eA A A A . The proof follows by showing that

, 1+KA A is an orthogonal projector with respect to the inner product , T=
A

u v u Av , and

therefore cannot increase the induced norm of the error , 1+ ≤
AA

K e eA A A A , while SA for

Gauss-Seidel is a contraction with respect to the same norm. It follows that the composite

operator , 1
post postβ β

+S K SA A A A is a contraction. This immediately implies convergence of a two

level scheme, with an extension to multi-level by induction.

■

A few remarks are in order. The SPD property of A is required to define the induced norm

⋅
A

, which is used to show contraction properties. There are other iteration methods, de-

spite Gauss-Seidel, that guarantee convergence, such as ω-Jacobi (see [S01]). Asymptotic

convergence is guaranteed whatever choice of interpolators or restrictors, as long as the in-

terpolators are full rank. However, the rate of convergence heavily depends on a proper

 38

choice of interpolators. This dependence is presented in [MC87] as a bound on the number

of iterations required to reduce the error norm by some factor, assuming some bound on the

interpolation error. We note that this measure of convergence rate does not consider com-

putational load. An interesting result is that under certain technical conditions the conver-

gence rate in [MC87] (Theorem 3.1) is independent of the size of A. We do not specify

these bounds here since they are not suited for the explicit construction of realistic AMG

processes. We only mention that the interpolator should approximate well smooth errors,

while non-smooth errors are less important. Finally, convergence is also guaranteed when

replacing the exact solution on the coarsest grid with an approximate one, if it fulfills a tol-

erance condition given in [S01]. This result gives some sense of the algorithm robustness.

3.6.6 Practical Issues
While convergence guarantees give a sense of robustness, the main objective of AMG is

computational efficiency. This efficiency is measured in terms of computational effort re-

quired to reach a certain error level. To gain efficiency, interpolators should be computa-

tionally cheap as well as good approximators of smooth errors. In addition, interpolators

should be constructed in a way to keep AA sparse in order to keep coarse grid computations

cheap. Such interpolators are constructed based on heuristics. The construction of interpola-

tors will be discussed in section 3.7.3. Another parameter which effects the efficiency is the

number of iterations performed per correction step. Applying too few iterations will dete-

riorate convergence rate due to large interpolation errors, while too many will be computa-

tionally inefficient. Usually, a total of 2-5 iterations per level are a good default choice.

3.7 Technical notes on the setup phase

3.7.1 A few words on motivation
The goal of the setup phase is to generate inter-level operators such that convergence rate

during the solve phase will be high, i.e. the computational effort required to obtain certain

accuracy should be small as possible. To do so, smooth errors should be well approximated

 39

on the coarse grid by interpolation (see (3.6.53)). On the other hand, it is not required to

approximate non-smooth errors since they are smoothed out by iterations. In fact, the main

idea behind the setup phase is to compromise between interpolation accuracy which domi-

nates convergence speed (in terms of the number of iterations) and the numerical work to-

gether with memory requirements which rely on keeping the interpolator sparse and

strongly reducing the number of unknown variables in the coarse level.

To motivate the general approach, taken in the construction of interpolators, we show a

property that is approximately satisfied by smooth errors. We refer the interested reader to a

more rigor and comprehensive discussion in [S01]. Consider a vector ν , such that

 ≈Aν 0 . (3.7.58)

Applying the smoothing operator (3.6.51) to ν approximately gives

 ()1 1() 1− −= − = − ≈ ⋅Sν I Q A ν ν Q Aν ν , (3.7.59)

which means that an error ν is slow to converge under iteration. In other words, algebrai-

cally smooth errors satisfy

 0,ij j
j

iν ≈ ∀∑A . (3.7.60)

There are many ways to build an interpolation operator that may serve to approximate ν

given it is smooth. A major advantage of AMG lies in the fully automation of the interpola-

tor creation. A very common approach, and also the one we take here, builds the interpola-

tion by splitting the variables of the elements jν of the unknown vector ν into two disjoint

groups: variables named C-variables which are evaluated on the coarse grid, and variables

named F-variables that are interpolated from the C-variables. The interpolation of

F-variables takes the form

 ,i ij j
j C

w i Fν ν
∈

= ∈∑ , (3.7.61)

where ijw are interpolation weights, chosen so that (3.7.60) is approximately satisfied. In

order for the interpolator to be computationally cheap the number of non-zero weights is

 40

kept small as possible. The splitting procedure is known as the coarsening procedure. The

coarsening procedure and two methods we use for choosing weights are described in sec-

tions 3.7.4 and 3.7.3 respectively. Together they form an automatic procedure which takes

a matrix AA and constructs a computationally cheap interpolator 1+IAA , which approximates

smooth errors at level A via (3.6.53).

The setup phase in Algorithm 3.1 applies this heuristic procedure to build 1+IAA . The

specific choice of the restrictor is not as important to guarantee fast convergence and is of-

ten simply taken as the transpose of 1+IAA . However, it is very important to take the coarse-

grid operator as a Galerkin operator. For this special choice the coarse grid correction op-

erator , 1+K A A is a projection operator (see (3.6.57)), which is required in proving conver-

gence properties of the scheme [S01]. In general, various setup procedures differ mainly in

the interpolator construction procedure, and only slightly in the choice the restrictor.

Though technically different, the objective in the interpolator construction is similar: build

1+IAA such that any algebraically smooth errors with respect to AA (or S) is well approxi-

mated as 1 1+ +I νA
A A , while keeping computational costs low.

3.7.2 Notations and Definitions
In the description of the setup phase, we use the following definitions and notations: With

respect to (3.6.49), the ith variable in u, denoted ui, is said to depend on variable uj, or uj to

influence ui if 0ij ≠A . Variable ui is said to strongly depend on uj if

 { }maxij ikk i
ε

≠
− ≥ −A A (3.7.62)

where []0,1ε ∈ is a threshold parameter. Throughout this dissertation, we chose 0.15ε = .

Variable uj is said to strongly influence ui if ui strongly depends on uj.

The variables of every level A are split using the coarsening process into two disjoint

(coarse and fine) subsets: C denotes the set of C-variables evaluated on level 1+A , and F

denotes the complementary set of F-variables, which are interpolated from C-variables.

 41

Given a C-F splitting, each variable that influences iu F∈ is assigned to one of three dis-

joint groups: iC C⊂ denotes the group of C-variables used to interpolate ui, s
iD F⊂ the

F-variables that strongly influence ui, and w
iD the remaining variables that are said to

weakly influence ui.

3.7.3 Construction of Interpolators

In this dissertation we use a common two-step procedure to build 1+IAA . First, we apply stan-

dard coarsening as described in [TOS01] section A.7.1.1. Coarsening, described below,

splits the variables of uA into C-variables that construct 1+νA , and F-variables, which are

interpolated from 1+νA . For now, assume such a split is given. We would like to build an

interplator, i.e. choose interpolation weights, such that smooth errors are well approxi-

mated. Without lose of generality, we assume that C-variables are located at the upper part

of uA , followed by F-variables. The interpolator we seek takes the form

 ()1

if
if

i

i i

i i ij j i
j C

v u C
u I w v u F+

∈

∈⎧⎪= = ⎨ ∈
⎪⎩
∑νA

A A (3.7.63)

The interpolation weights ijw for the F-variables are defined in the second step. We use

two interpolation methods. The strict aggregation interpolation presented in (3.7.64), aims

to generate an extremely cheap interpolator by assigning the value of a single C-variable to

each iu F∈ . In order to approximate (3.7.60) as well as possible, iu is set to the C-variable

that mostly influences it. If the most influencing variable is not unique, the first one in lexi-

cal order is chosen.

Strict aggr.:
() ()ij ikk C

1 for a single , for which max

0 otherwise
i

ij

j C
w ∈

⎧ ∈ − = −⎪= ⎨
⎪⎩

A A
 (3.7.64)

 42

The second weighting scheme we use named Ruge-Stüben is presented in (3.7.69). It better

approximates (3.7.60) at a price of being computationaly more expensive. The weight deri-

vation is obtained by first rewritting (3.7.60) as

w s

ii i

ii i in n ij j im m
j Cn D m D

ν ν ν ν
∈∈ ∈

+ ≈ − −∑ ∑ ∑A A A A . (3.7.65)

Note that jν are not known for s
ij D∈ or w

ij D∈ . They are therefore approximated respec-

tively by:

,

,

i

i

mj s
m j i

j C mk
k C

w
n i i

m D

n D

ν ν

ν ν

∈
∈

≈ ∀ ∈

≈ ∀ ∈

∑ ∑
A

A (3.7.66)

where strongly connected F-varialbes are replaced with a weighted average of C-variables,

and weakly connected variables are simply replaced with the interpolated variable iν . By

substitution in (3.7.65) and changing the summation order we have

w s

i ii i

i

im mj
ii in i j ij j

j C j Cn D m D mk
k C

ν ν ν
∈ ∈∈ ∈

∈

⎛ ⎞
+ ≈ − −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑∑

A A
A A A

A
, (3.7.67)

leading to

s

i i

i

w
i

im mj
ij

j C m D mk
k C

i j

ii in
n D

ν ν
∈ ∈

∈

∈

⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥⎣ ⎦≈ −
⎛ ⎞

+⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑ ∑

∑

A A
A

A

A A
. (3.7.68)

 43

The weights in the Ruge-Stüben method are given by

Ruge- Stüben:
s
i

i

w
i

im mj
ij

mkm D
k C

ij
ii in

n D

w
∈

∈

∈

⎛ ⎞
⎜ ⎟+ ⎜ ⎟
⎜ ⎟
⎝ ⎠= −

+

∑ ∑

∑

A A
A

A

A A
. (3.7.69)

For a detailed disucssion and justification of Ruge-Stüben weigting see [TOS01] section

A.7.2.1.

3.7.4 Coarsening
As described before, the coarsening procedure splits the variables ui into two disjoint

groups: C-variables and F-variables. The previous section described methods for choosing

interpolation weights such that smooth errors are approximated by interpolation (3.6.53).

This was achieved by neglecting and approximating terms in (3.7.60). In order to minimize

the error caused by these approximations we would like to interpolate each F-variable, ui,

from as many variables as possible, or at least from those that strongly influence it. This

will require to assign all the stongly influencing variables to set C. A weaker requirement is

to be able to approximate well any variable that strongly influences ui, whether we choose

it to be a C-variable or an F-variable. On the other hand, computational efficiency requires

to keep the number of C-variables minimal. The above considerations are formally repre-

sented by the following criterions [VH99]:

(C1) For every iu F∈ , any variable, uj that strongly influences ui should either be in

C or share a strongly influencing C-variable, i.e. i jC C∩ ≠∅ .

(C2) C should be a maximal subset with the property that no C-variable strongly

depends on another C-variable.

In this dissertation we follow the coarsesning procedure described in [TOS01]. It is a heu-

ristic procedure aimed to satisfy both criterions. Whenever these criterions contrast, the

second one is relaxed. Coarsening is done in three sweeps:

(1) Define strong dependencies and influences between variables.

 44

(2) Split into C-variables and F-variables to satisfy (C2) by applying Algorithm 3.2.

(3) Scan F-variables to make sure (C1) is satisfied. This is done using Algorithm 3.3.

For further detail see [TOS01].

Algorithm 3.2: Split into C-variables and F-variables

1. Assign to each variable a value equal to the number of variables that it strongly influ-

ences. Denote this value by iλ .

2. Choose a variable with the maximal iλ , as a C-variable. Denote this variable by uc.

3. Set all unassigned variables that strongly depend on uc, to be F-variables. Denote

these variables by uf,j.

4. Increase iλ of each unassigned variables, ui, by one for every uf,j variable it strongly

depends on. Decrease iλ by one if uc strongly depends on ui.

Repeat steps 2-4 until all variables are either C-variables or F-variables.

Algorithm 3.3: Enforce (C1)

1. For each F-variable, ui, do:

 1.1. For every s
j iu D∈ do

 i) If iC and jC share a C-variable then continue to the next uj in step 1.1.

 ii) If for any other /s
k i ju D u∈ , iC and kC do not share a C-variable

then reassign ui to be a C-variable,

otherwise reassign uj to be a C-variable.

 iii) Continue to the next ui in step 1.

 45

C h a p t e r 4

AMG for Policy Evaluation and Iteration

In this chapter we discuss the application of AMG to the problems of policy evaluation and

policy optimization, when the model of the MDP is fully known. Throughout this chapter,

we assume the MDP is irreducible, aperiodic and finite, with an infinite-horizon discounted

cost. For AMG to be efficient, we further assume that P is sparse. This assumption is rea-

sonable for many complex real life problems in which the number of states reached from any

state s∈S within a single step is limited.

Starting with policy evaluation, we show a deficiency of standard iterative methods that

limits their convergence rate. We then apply AMG as a "black box" solver to accelerate con-

vergence for the PE problem. Next, we review the validity of assumptions made in AMG

theory to prove convergence, in the context of policy evaluation. All assumptions except for

symmetry are validated for the finest grid. Since symmetry is needed to guarantee conver-

gence, we show how the problem can be reformulated to impose symmetry. For reasons dis-

cussed later on, convergence may be faster in practice when applying AMG as a "black box"

solver, ignoring the symmetry assumption violation. Next, we discuss a special kind of inter-

polator-restrictor setting for AMG, which forms aggregates in the state space. We prove that

this special setting enables to write coarse grid equations as the solution of MDPs of reduced

state space sizes. General interpolator-restrictor settings do not support this property. This

property is convenient when one wishes to apply extra processing in low resolution, such as

a coarse policy search. We conclude this chapter by addressing the application of AMG to

the problem of policy optimization, specifically by policy evaluation combined with policy

improvement.

 46

4.1 AMG for Policy Evaluation

In this section, we address the problem of evaluating a fixed stationary policy π . To do so

we need to solve the linear equation defined in (3.2.8). We rewrite this as

 ()πγ− =I P v gp p , (4.1.1)

and define

 πγ= −A I P (4.1.2)

 π=b g . (4.1.3)

For notational ease, we drop the dependence notation on the fixed policy π , writing P and

g instead of πP and πg respectively.

4.1.1 A deficiency of standard iterative methods
To understand why AMG should prove beneficial to policy evaluation, we demonstrate

when standard iterative methods have poor convergence rates. We remind that standard itera-

tive methods take the form (see section 3.6.1 for definitions)

 ()1: −= + −u u Q b Au . (4.1.4)

This iteration propagates the error according to

 ()1: −= −e I Q A e . (4.1.5)

If the operator 1−−I Q A has little effect on some error vector e , convergence will be slow.

Such error vectors are said to be algebraically smooth. For example, if e is an eigenvector of
1−−I Q A with an eigenvalue close to 1, convergence rate will be poor. To make this more

concrete in the context of policy evaluation, we demonstrate this for the Richardson method,

i.e. =Q I . Substituting (4.1.2) into (4.1.5) we obtain

 : γ=e Pe . (4.1.6)

 47

The error after n iterations, denoted ne , is therefore

 () 0
n

n γ=e P e . (4.1.7)

Since P is a probability matrix it has an eigenvalue equal to 1, with a corresponding eigen-

vector []1 1 1 T=1 " . Assuming the initial error is 0 =e 1 , the error after n iterations is

 () 0 0
n n n n n

n γ γ γ γ= = = =e P e P 1 1 e . (4.1.8)

Often γ is chosen close to one (e.g. 0.999), in order to account for long-term revenues. Con-

sequently, convergence will be very slow. Though demonstrated for the Richardson method

only, similar results apply to all iteration methods discussed in this dissertation. The reason is

that iterations make local adjustments and therefore global corrections propagate slowly.

Convergence is slowed down when the error vector lies in the space of smooth errors. The

error can then be well approximated as done in AMG algorithms.

4.1.2 AMG as a "black box" solver for PE
Treating AMG as a “black box” solver, we may directly apply it to solve (4.1.1) and obtain

the value function, v . Algorithm 4.1 below is the application of the general AMG scheme

(Algorithm 3.1) to policy evaluation. In step 2, the V-cycle takes the residual error as an ar-

gument and the result is used to correct nv . This modification is equivalent to initializing

V-cycle with the current estimate on the finest grid instead of zero, i.e. 0 : n=u v (step 2 in

Algorithm 3.1).

 48

Algorithm 4.1: AMG for Policy Evaluation

1. Apply the Setup phase with respect to γ= −A I P

2. Starting with some initial guess, usually 0 =v 0 , iteratively apply,

 2.1. Calculate residual ():n nγ= − −res g I P v

 2.2. Correct ()1:= +V-cycle , 0n n n+ =v v res A

4.1.3 AMG for policy evaluation - review of assumptions
AMG theory ensures the convergence of Algorithm 4.1 if A is symmetric and positive defi-

nite (SPD). Efficiency relies on A being sparse. Interpolator construction often further as-

sumes that A is an M-matrix (see definition in section 3.5). We now address the validity of

these assumptions in the context of policy evaluation. First, we show in Lemma 4.2 that for

the finest grid, A as defined in (4.1.2) is indeed an M-matrix.

Lemma 4.2 If P is a transition probability matrix and [)0,1γ ∈ , then A as defined in

(4.1.2) is an M-matrix with a strictly dominant diagonal.

Proof First, we show that A has a positive diagonal and non-positive off diagonal

elements. The matrix P is a transition probability matrix, i.e. []0,1ij ∈P and 1ij
j

=∑P . Since

[]0,1ij ∈P and [)0,1γ ∈ we have

 0 1ijγ≤ <P . (4.1.9)

Applying this to the definition of A in (4.1.2) we obtain

 1 1 0ii ijγ γ= − ≥ − >A P (4.1.10)

 0ij ij i jγ= − ≤ ∀ ≠A P . (4.1.11)

Next, we show that A is strictly diagonally dominant. We verify that A has a positive row

sum

 49

 1 1 0ij ij
j j

iγ γ= − = − > ∀∑ ∑A P , (4.1.12)

where we used the equality 1ij
j

=∑P . By moving all off diagonal elements to the right hand

side, and using (4.1.11) we prove strict diagonal dominance

 ii ij ij
j i j i

i
≠ ≠

> − = ∀∑ ∑A A A . (4.1.13)

It is well known that a strictly diagonally dominant matrix satisfying (4.1.10) and (4.1.11) is

an M-matrix [W99].

■

As stated in section 3.6.5, if the M-matrix A is symmetric and positive definite (SPD), then

convergence is guaranteed, and choosing 1
1 1: +
+ +=A I A IA A
A A A A (Galerkin operators) ensures that

AA are SPD at all levels. Unfortunately, there is no reason to assume that A is symmetric,

since P seldom is. Consequently, direct application of AMG to (4.1.1) may diverge. More

over, for general interpolators, even if 0A is an M-matrix, AA on coarser levels are not gen-

erally so. Ensuring that AA is an M-matrix in the non-symmetric case can be done for the

special case of state aggregation, to be discussed in 4.1.5. It goes without saying that A is

sparse, since P is sparse as stated at the beginning of this chapter. We conclude by noting

that even though the symmetry assumption is generally invalid, our experiments suggest that

in practice direct application of AMG often converges and may be advantageous in terms of

convergence rate (see chapter 6).

4.1.4 Imposing symmetry
We now present two approaches to circumvent the violation of the symmetry assumption, in

order to guarantee convergence. One is to multiply both sides of (4.1.1) by TA , to obtain

 () ()T T=A A v A b . (4.1.14)

Equation (4.1.14) takes the form of a least-squares problem. Since A is an M-matrix and

therefore non-singular, TA is non-singular and (4.1.14) has the same solution as the original

 50

equation (4.1.1). The matrix TA A is positive definiteness since () 2 0T T = ≥u A A u Au ,

and symmetric. We can therefore apply AMG to (4.1.14) while guaranteeing convergence to

the true value function. We denote T=A A A� and T=b A b� , and apply AMG to solve

 =Av b� � . (4.1.15)

Another way to circumvent the symmetry violation is to use a Kaczmarz form. Since TA is

invertible we may define a vector x as the solution of T =A x v . Substituting into (4.1.1) we

obtain

 ()T =AA x b . (4.1.16)

The matrix TAA is symmetric and positive definite. Again, we can apply AMG to solve

(4.1.16) with guaranteed convergence. The benefit of these approaches is the applicability of

AMG convergence theory. Unfortunately, as demonstrated in chapter 6, the rate of conver-

gence for both approaches is inferior in practice to that of directly applying AMG to (4.1.1).

This result is not surprising since the condition numbers of TA A and TAA are greater than

the condition number of A , rendering the solution of (4.1.14) and (4.1.16) harder than

(4.1.1). Furthermore, TA A and TAA are less sparse than A which increases the computa-

tional load. In general they are not M-matrices, even if A is. We note that the M-matrix

property is useful in the construction of interpolators and refer the interested reader to

[TOS01].

4.1.5 Preservation of the Markov chain interpretation under strict

state aggregation
When using AMG to evaluate a policy, one may wish to preserve a Markov chain (MC) in-

terpretation on the coarse grids. We say that AA has an MC interpretation if it can be written

as

 γ= −A I PA A A , (4.1.17)

 51

where IA is the identity matrix of dimension matching level A , and PA is a transition prob-

ability matrix. We say that the MC interpretation is preserved if given that AA has a MC in-

terpretation, it follows that the Galerkin operator 1
1 1

+
+ +=A I A IA A
A A A A has a MC interpretation.

When MC interpretation is preserved, coarse grids may be viewed as Markov chains defined

on a reduced state space. This is beneficial since by Lemma 4.2, this results in AA being

M-matrices at all levels, making interpolation more stable. This also enables to define a pol-

icy search at a low resolution. This variant is left for future work.

We use two different methods to construct the inter-level operators. The method pro-

posed by Ruge and Stüben [S01] has proven effective in practice. Unfortunately, it does not

preserve MC interpretation or the M-matrix property over grid levels. As an example, con-

sider a Markov chain defined by 0P below with a discount factor of 0.9γ = . We generate

the Ruge-Stüben interpolator 0
1I using (3.7.69) and 0.15ε = in (3.7.62), and take the restric-

tor as its transpose.

1 1
2 2

1 1 1
3 3 3

0 1 1 1
3 3 3

1 1 1
3 3 3

0 0 0 0

0 0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0 0

1

1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

P , 0
1

0 0 0

0 0 0

0 0 0

0 0

0 0

0 0 0

1
1

1
0.4286 0.4286

0.3 0.6
1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

I . (4.1.18)

Writing down the Galerkin operator we obtain the following coarse grid equations

 ()1 0 1 0
1 0 0 1 0 0 1

0

0

0

0.55 0.0514 -0.4886
1 -0.3857 -0.3857

-0.3 -0.3 0.8029 -0.0771
-0.27 -0.54 1

γ

⎡ ⎤
⎢ ⎥
⎢ ⎥= = − =
⎢ ⎥
⎢ ⎥
⎣ ⎦

A I A I I I P I , (4.1.19)

where 1A is not an M-matrix since it has a positive off diagonal element (underlined above).

Since 1γ−I P is an M-matrix for any [) 10,1 , 0γ ∈ >P , there are no such 1,γ P satisfying

1 1γ= −A I P , therefore 1A has no MC interpretation.

 52

The second method uses state aggregation. Here the state space is partitioned into dis-

joint groups, denoted , 1, 2, ,k k K= …G . Each group, called an aggregated state, is treated as

an abstract state. The interpolator is defined

 ()1 1 if

0 otherwise
kik

i+ = ∈

=

IAA G
, (4.1.20)

and the restrictor is defined as its pseudo-inverse

 () ()
1

1
1 1 1

T T−
+

+ + +
⎡ ⎤= ⎢ ⎥⎣ ⎦

I I I IA A A A
A A A A . (4.1.21)

Lemma 4.3 State aggregation using (4.1.20) and (4.1.21) preserves MC interpretation.

Proof Follows directly from Lemma 1 in [BC89]. The lemma states that if 1+IAA and
1+IAA satisfy (4.1.20) and (4.1.21), then

a) 1
1 1

+
+ +=I I IA A

A A A

b) 1
1 1

+
+ +P I P IA A
A A A A� is a transition probability matrix.

Writing the Galerkin operator, we verify the MC interpretation,

 ()1 1 1 1
1 1 1 1 1 1 1γ γ γ+ + + +
+ + + + + + += = − = − = −A I A I I I P I I I I P I I PA A A A A A A A
A A A A A A A A A A A A A A . (4.1.22)

The last equality follows directly from the lemma. Since 1+PA is a transition probability ma-

trix, 1+AA has a MC interpretation.

■

As noted in [BC89], ()1 1

T

+ +I IA A
A A is a diagonal matrix with the k h diagonal entry equal to the

number of elements in kG , denoted kG . The inverse is therefore easy to compute, and

 [] []1
,

1

i j

ij km
k mi

+
∈ ∈

= ∑P PA A
G GG

. (4.1.23)

 53

In [BC89] aggregates are formed for a two level scheme by grouping states of similar residu-

als. We take a different approach by gradually grouping states based on state adjacency. A

subset of representative states (C-variables) is selected using the coarsening procedure de-

scribed in section 3.7.4. Each remaining state i is aggregated with a representative state j ,

to which transition probability is highest, i.e. ()arg max ' |
k

j p s k s i= = = . On the first coarse

level, only adjacent states are grouped. On the next coarse level, adjacent states relative to

coarse grid are grouped, grouping states that are two steps apart on the fine grid.

For completeness, we present Algorithm 4.2 as a version of the V-cycle function pre-

sented in Algorithm 3.1, specialized to the case of state aggregation. Interpolators, restrictors

and transition probability matrices are defined according to (4.1.20), (4.1.21) and (4.1.23)

respectively. In steps 3 and 8, updating the value for all states simultaneously results in a

Richardson iteration. If values are updated one by one using the most up-to-date values, we

obtain an iteration method similar to Gauss-Seidel. The latter is preferred for efficiency rea-

sons.

 54

Algorithm 4.2: AMG for Policy Evaluation - detailed scheme

()V-cycle ,gA A

If on the coarsest grid, i.e. max=A A

1. Directly Solve and Return
max

vA :
max max max max

γ= +v g P vA A A A

Otherwise do steps 2-8

2. Initialize :=v 0A

3. Apply preβ times, s∀ ∈S () () () ()
'

: ' | '
s

s g s p s s sγ
∈

= + ∑v v
A

A A A A
S

4. Restrict the residual to the coarser grid ()()1
1 : γ+
+ = − −g I g I P vA
A A A A A A

5. Recursive call ()1 1: V-cycle , 1+ += +ν gA A A

6. Interpolate the error to the current grid 1 1ˆ : + +=e I νA
A A A .

7. Correct the current grid estimation ˆ:= +v v eA A A

8. Apply postβ times, s∀ ∈S () () () ()
'

: ' | '
s

v s g s p s s v sγ
∈

= + ∑
A

A A A A
S

Return vA

4.2 AMG for Modified Policy Iteration

In previous sections, we discussed the usage of AMG to evaluate a given policy, in order to

accelerate standard iterative methods. We now turn to the problem of finding optimal poli-

cies. Based on the policy iteration algorithm, we replace the costly policy evaluation step

with an efficient AMG algorithm. Algorithm 4.3 alternates between finding the greedy pol-

icy with respect to the current value estimate (step 1), and an AMG policy evaluation step

(steps 2,3). This algorithm may be regarded as an efficient implementation of a modified pol-

icy iteration algorithm. As in Algorithm 4.1, using the residual error in step 3 is equivalent to

initializing AMG on the finest grid with the current estimate of nv .

 55

Algorithm 4.3: AMG for Policy Iteration

Initialize 0 =v 0

1. Derive the greedy policy* ()
()

() () ()
'

: arg max ' | , , ', 'g
n na s s

s p s s a g s s a v sπ γ
∈

∈

= +⎡ ⎤⎣ ⎦∑
A S

2. Apply the Setup phase with respect to
g
nπγ= −A I P

3. Policy evaluation step:

 3.1. Calculate residual ():
g g
n n

n n
π πγ= − −res g I P v

 3.2. Correct ()1:= +V-cycle , 0n n n+ =v v res A

* An additional iteration can be gained at no extra computational cost by assigning the value

of the maximum to 1n+v .

 56

C h a p t e r 5

Multigrid Temporal Difference Algorithms

In the previous chapter, we discussed the application of AMG to the problem of evaluating a

fixed policy, and to the problem of searching for an optimal policy, when the MDP model is

fully known. In this chapter, we extend these ideas to the context of learning, when the

model is not explicitly available. We propose Multigrid versions of Temporal Difference

learning algorithms for policy evaluation. Throughout this chapter we assume that the

Markov chains involved have either finite or infinite countable state spaces, and consider the

infinite-horizon discounted cost. For convergence analysis purposes we further assume the

Markov chains are irreducible and aperiodic.

This dissertation focuses on TD versions of the solve phase of AMG. We provide a short

discussion about the setup phase in section 5.4. In all other sections we assume that the re-

quired inter-level operators are available beforehand. We denote by 1+IAA the interpolator

from level 1+A to level A . The restrictor from level A to level 1+A is defined as

()1
1

T+
+=I IA A

A A . Assigning, as before, the index zero to the finest level, we denote the feature

vector of this level as () ()0 s sφ φ= . We define the feature vector at levels max1, 2, ,∈A … A

recursively by

 () ()1 1
T Ts sφ φ+ += IAA A A (5.1.1)

or in vector form

 1 1+ +=Φ Φ IAA A A . (5.1.2)

 57

Note that the basis functions of a coarse grid are linear combination of basis functions of

finer grids. Consequently, the set of basis functions from all levels, (){ }
max0, ,

sφ
=A A … A

, forms a

redundant set. We will make use of this property in subsequent convergence analysis.

In the first section we analyze the dynamics of the TD(λ) algorithm with linear function

approximation, to reveal a deficiency that limits its asymptotic convergence rate. This analy-

sis shows that TD(λ) may be regarded as a stochastic variant of a Richardson smoother, and

therefore convergence slows down as the error becomes algebraically smooth. Motivated by

the analogy to the known model case, we propose a level-based Multigrid TD learning algo-

rithm in section 5.2. We prove the convergence with probability 1 of each level separately.

Next, we propose a Multigrid TD algorithm that simultaneously updates parameter vectors at

all resolution level, making it more data efficient. We discuss two special cases: one is

equivalent to the level-based algorithm; the other has a special structure that enables to prove

its convergence. In the last section we briefly discuss the setup phase in the context of learn-

ing.

5.1 Analysis of TD(λ) dynamics

5.1.1 Analytic derivation
We remind that the TD(λ) update rule

 () () ()()()1 1 1 1,
T

t t t t t t t t tg s s s sθ θ α φ γφ θ− + + −= + − −z (5.1.3)

 ()1t t tsλγ φ−= +z z . (5.1.4)

The stochastic dynamics of the TD(λ) algorithm are expressed in [BBN03] as

 () ()1 1 1t t t t t t t tθ θ α θ α θ− − −= + − + +b A Ξ ξ (5.1.5)

where

 ()T
λ γ= −A Φ DM I P Φ (5.1.6)

 58

 T
λ=b Φ DM g (5.1.7)

 () ()()1
T

t t t ts sφ γφ += − −Ξ A z (5.1.8)

 ()1,t t t ts s += −ξ b z g . (5.1.9)

The matrices , , , λΦ P D M and the vector g are defined in chapter 3 in equations (3.2.10)-

(3.2.12) and (3.4.32)-(3.4.33). tΞ and tξ are random sequences of matrices and vectors

respectively that have an asymptotic mean equal to zero. Convergence of the means to zero

is faster for Markov chains with a short mixing times and small γλ value.

Our analysis is focused on the convergence of the mean1 of the parameter vector { }tθE .

Taking the expectation of (5.1.5) and denoting { }t tθ θ= E , we approximate the dynamics of

the mean by

 ()1t t t tθ θ α θ+ = + −b A , (5.1.10)

where we neglected the expectation of the third term in (5.1.5). This approximation is rea-

sonable when the means of tΞ and tξ are close to zero, and the correlation between tΞ and

tθ is negligible. This correlation is small if tθ varies slowly.

In [TVR97] it is proven that if the TD(λ) assumption set in section 3.4.3 is valid, TD(λ)

converges with probability 1 to the unique vector

 * 1θ −= A b . (5.1.11)

Denoting the deterministic mean error

 *
t tθ θ= −e , (5.1.12)

and subtracting both sides of (5.1.10) from *θ , we obtain the error propagation equations

1 A similar analysis for both mean and variance yet restricted to the case of no function approxima-

tion is given in [SD98].

 59

 1 1t t t tα− −= −e e Ae . (5.1.13)

We denote the eigenvalue-eigenvector pairs of A, by kµ , kv for 1, ,k N= … , respectively. In

[TVR97] it is shown that A is positive definite and bounded, and therefore ()Real 0kµ ≥

and bounded (see Lemma 3.1). If the error vector equals kv , applying the update rule multi-

plies the error vector by 1 t kα µ− . Since 0tα > is a sequence decreasing to zero, and

()Real 0kµ ≥ and bounded, there exists some T , such that for all t T≥ ,

 ()0 Real 1 1t kα µ< − ≤ . (5.1.14)

Addressing real valued kµ , for a large enough t the factor 1 t kα µ− is smaller for large val-

ues of kµ . Therefore, the asymptotic convergence rate is fast if kµ is large and very slow for

0kµ ≈ . If te is a linear combination of the eigenvectors, convergence would be relatively

fast at first, due to effective reduction of components corresponding to large eigenvalues.

Eventually, convergence rate deteriorates when resultant error components correspond to

small eigenvalues. The smallest eigenvalue dominates the asymptotic convergence rate.

While this discussion assumed kµ is real, it applies to complex eigenvalues as well. Since te

is real, its linear combination representation contains complex eigenvectors and their conju-

gates with equal weights. The imaginary part is thus canceled.

Our analysis shows that TD(λ) effectively reduces one type of error components, while

leaving another type relatively unchanged. Adopting terminology from standard AMG we

name the latter an algebraically smooth error. This calls for a Multigrid scheme, which ap-

proximates and eliminates the smooth error on a coarse grid. This is the subject of the next

section.

For future reference, we use the ODE approach [BT95] to approximate (5.1.13) for large

enough t . This approach enables to avoid the dependence on the learning step tα . We define

a continuous time process ()τe , by rescaling time
1

0

t

t k
k

τ α
−

=

=∑ and interpolating te linearly

 60

between tτ and 1tτ + . The ODE that governs the asymptotic convergence of the mean error is

then given by

 d
d τ ττ

= −e Ae . (5.1.15)

We note that if the error equals to kv , the error derivative is kµ− , and as before, asymptotic

convergence is slow for 0kµ ≈ .

5.1.2 Empirical demonstration
To make the derivations more concrete we offer the following example. We use the 1-D ran-

dom walk Markov chain defined in Figure 5.1 with N=64 states. Detail on this chain is given

later on in section 6.1.1.

Figure 5.1: 1-D random walk Markov chain

Figure 5.2 shows convergence curves of the norm of the residual, for TD(0) when initialized

from different initial errors. In the first three cases, the initial error is an eigenvector kv of A.

As predicted by the analysis above, convergence is exponential with a rate of
k

µ− . In the

bottom row the initial error is an average of the three eigenvectors, normalized to unit length.

It shows that when the initial error is a combination of eigenvectors, convergence deterio-

rates with a limit rate that equals the smallest eigenvalue.

Table 5.1 demonstrates this effect numerically. Denote the initial error by 0e and the er-

ror after applying TD(0) by Te . For each of the four cases above, the table shows the correla-

tion between 0e and each of the eigenvectors, and the correlation between Te and kv ,

1, 2,3k = . We observe the following:

1 2 NN-1

1, 10p g= = +

0.5, 1p g= = −

0.5, 1p g= = −

1, 10p g= = +

 61

• When 0 k=e v is an eigenvector of A, TD(0) attenuates the error without changing its

orientation. As seen from Figure 5.2 the attenuation rate is determined by kµ .

• When 1
0 ic i
= ∑e v , TD(0) attenuates each component differently, making the error more

and more algebraically smooth, ultimately making it lie parallel to the eigenvector with

the smallest eigenvector.

0 1 2 3 4 5
x 104

10-15

10-10

10-5

100

iterations

|re
si
da

ul
 e
rr
or

| 2

e0=v1 where |µ1| = 0.00017
e0=v2 where |µ2| = 0.016
e0=v3 where |µ3| = 0.032
e0=average of vk above

Figure 5.2: Convergence curves for TD(0), starting from different initial
values

Table 5.1: Correlations between te and kv before and after applying
TD(0) when initialized from different initial errors

 Initial correlation ()0 , kρ e v Final correlation (),T kρ e v
 1v 2v 3v 1v 2v 3v

0 1=e v 1 0 0 1 -2E-14 -9E-15

0 2=e v 0 1 0 -3E-3 1 -2E-4

0 3=e v 0 0 1 -3E-3 1E-3 0.92

1
0 ic

i
= ∑e v 0.58 0.58 0.58 1 9E-14 3E-15

 62

5.2 A level-based Multigrid TD algorithm

5.2.1 The Main Algorithm
In this section we propose a level-based Multigrid TD algorithm (LB-MGTD(λ)) that acceler-

ates the convergence of TD(λ). As seen in the previous section, TD(λ) may be regarded as a

stochastic on-line smoother with the dynamics of a Richardson iteration (5.1.10), solving

 θ =A b (5.2.16)

where A and b are previously defined in (5.1.6)-(5.1.7). As such, the convergence rate of

TD(λ) is expected to deteriorate as the error becomes algebraically smooth. Based on the

Multigrid approach we would like to apply a correction of the form

 1 1:θ θ ϑ+ += + IAA A A A (5.2.17)

where 1ϑ +A is the solution of the residual equation

 () ()1 1
1 1ϑ θ+ +
+ + = −I A I I b AA A A

A A A A A A A A . (5.2.18)

In the learning context, this equation cannot be solved directly nor represented explicitly

since the model of the Markov chain is not known. AA and bA are unavailable, because

P , D and g are not known. The level-based Multigrid TD algorithm we propose in

Algorithm 5.1, avoids this obstacle by applying a TD(λ) variant that converges to the solu-

tion of (5.2.18). The idea is to replace the unavailable explicit variables with measured sam-

ples: for example, the vector g with scalar rewards ()1,t tg s s + that are sampled over time,

and the residual error θ−b AA A A by a sampled version. A description of the algorithm is

given in the next sub-section. The algorithm is an on-line implementation of the V-cycle

scheme presented in section 3.6.2 (see schematics in Figure 3.1). The algorithm starts with

some initial guess at the fine level 0=A (usually 0θ = 0), and iteratively applies the function

 ()0 0:=LB-MGTD-V-cycle ,0θ θ . (5.2.19)

 63

The approximated value function at the end of a complete cycle is given by

 () ()0 0
Tv s sφ θ= . (5.2.20)

In Algorithm 5.1 below and henceforth we omit the iteration indexing t for ease of notation,

and write zA , rA and dA instead of ,tzA , ,trA and ,tdA , respectively. We use a dual notation

1 1ϑ θ+ +=A A to denote the correction, in order to distinguish between 1ϑ +A a fixed result vector

when the active level is A , and 1θ +A a varying vector when in level 1+A .

 64

Algorithm 5.1: Level-based Multigrid-TD(λ) at level A (LB-MGTD)

()0 1 1LB-MGTD-V-cycle , , , , ,ϑ θ θ θ− − −
−A AA …

1. Initialize level correction :θ ϑ=A A , :=z 0A

2. Pre-iterate at level A with residual rewards:

 2.1. Observe the transition 1t ts s +→ and the reward tg at time t .

 2.2. Update the eligibility traces (): tsλγ φ= +z zA A A

 2.3. Sample the residual () ()()
1

1
0

:
T

t m t m t m
m

r g s sφ γφ θ
−

−
+

=

= − −∑
A

A

 2.4. Calculate the temporal difference () ()()1
T

t td r s sφ γφ θ+= − −A A A A A

 2.5. Update ,: t dθ θ α= + zA A A A A

 2.6. If the switching criterion is met then continue, otherwise repeat from 2.1.

If operating at the coarsest grid, i.e. max=A A , return
max

θA . Otherwise continue with steps 3-4.

3. Apply coarse grid correction:

 3.1 Set :θ θ− =A A

 3.2. Recursive call ()1 1 0 1: LB-MGTD-V-cycle , 1, , , ,ϑ ϑ θ θ θ− − −
+ += = +0A A AA …

 3.3. Correction using the interpolated error 1 1:θ θ ϑ−
+ += + IAA A A A

4. Post-iterate: repeat step 2 until meeting the switching criterion.

Return θA

5.2.2 Algorithm description

As stated at the beginning of the chapter, we assume that interpolators 1+IAA and feature vec-

tors ()sφA are available at all levels. We also assume having switching criteria between lev-

els. In our experiments we used fixed times for switching between levels. The derivation of

more refined criteria, such as ones dependant on an estimate of the residual decay rate, is

kept for future work.

 65

The LB-MGTD(λ) algorithm above uses a sampled trajectory to estimate the value func-

tion. Each sample consists of a state transition 1t ts s +→ and a reward tg (step 2.1). At each

time t , a parameter vector θA of a single level A is updated, while others denoted mθ
− are

kept fixed. We call the updated level the active level.

When the function LB-MGTD-V-cycle is first called, steps 1-2 simply apply standard

TD(λ) iterations at the active level 0=A . Notice that the sampled residual at this level is no

other than the one step reward, i.e. tr g=A . However, as we have shown in section 5.1, con-

vergence rate is not uniform over all error components. Some error components are effec-

tively reduced by TD(λ) iterations, while others are not. Ultimately, convergence rate dete-

riorates as the error becomes algebraically smooth. A switching criterion pauses TD(λ) at

level 0=A , and the coarse grid correction is initiated (step 3). The resultant smooth error is

approximated at grid level 1=A via recursion in step 3.2, and the correction is applied in

step 3.3. Finally, post smoothing is done by further applying the standard TD(λ) iterations in

step 4 to reduce interpolation error, and the result 0θ is returned.

The most complex step to comprehend is probably the recursion call (step 3.2), which

serves to approximate the smooth error. To better understand this step, lets assume for now

that the algorithm uses only a single coarse grid, i.e. max 1=A . In this case step 3.2 actually

applies steps 1-2 at level 1=A and returns. This time, step 2 implements a variant of TD(λ)

with two modifications: the feature vector ()0 sφ is replaced with ()1 sφ , and the sampled

reward tg with the sampled residual () () ()()1 1 0 0 1 0, :
T

t t t t tr s s g s sφ γφ θ −
+ += − − . We show in

Proposition 1 below, that if allowed to continue indefinitely, the TD(λ) variant converges to

the solution of the coarse grid equations (5.2.18). For this reason it makes sense to use 0
1 1θI

as an approximation of the smooth error in 0θ . Extension of the two-level scheme to a multi-

level one via recursion is straightforward, since step 2 at level A is simply TD(λ) with a fea-

ture vector ()sφA and a one step reward ()1,t tr s s +A . For future use we rewrite the sampled

residual

 66

 () () ()()
1

1 1
0

, :
T

t t t m t m t m
m

r s s g s sφ γφ θ
−

−
+ +

=

= − −∑
A

A (5.2.21)

as a recursion

 () () () ()()1 1 1 1, ,
T

t t t t t tr s s r s s s sφ γφ θ −
+ + + += − −A A A A A . (5.2.22)

Finally, we note that the value function for intermediate times (before level A and higher

were computed) is available as

 () () ()
1

0

T T
m m

m
v s s sφ θ φ θ

−
−

=

= +∑
A

A A . (5.2.23)

5.2.3 Analogy to the classical Multigrid algorithm
The LB-MGTD(λ) algorithm is closely related to the solve phase of the classical Multigrid

algorithm (see the V-cycle of Algorithm 3.1 in chapter 3). The major steps 1-4 in

LB-MGTD(λ) correspond to steps 2-5 in the V-cycle, sharing similar functionality. These

include level correction initialization, pre- and post- iteration, and coarse grid correction.

Step 1 in the V-cycle, which provides direct solution at max=A A is approximated in

LB-MGTD(λ) with iterations of the TD(λ) variant at max=A A (step 2). Notational differences

include: g↔b , θ↔u , ϑ↔ν . We use the notation ϑ for the error approximated on the

coarse grid instead of ν to distinguish it from the notation of the value function v. The

switching criteria in LB-MGTD(λ) have similar role to the parameters preβ , postβ in the clas-

sical algorithm. The purpose of both algorithms is the fast convergence to a solution of a lin-

ear equation system: for LB-MGTD(λ) the equation is that of TD(λ) (see equations and defi-

nitions in (3.4.29)-(3.4.33))

 ()0 0 0 0
T T

λ λγ θ− =Φ DM I P Φ Φ DM g , (5.2.24)

and for the classical Multigrid algorithm it is

 0 0 0=A u b . (5.2.25)

 67

The matrix ()0 0
T

λ γ−Φ DM I P Φ and the vector 0
T

λΦ DM g in LB-MGTD play the role of

0A and 0b in classical Multigrid, respectively. 0θ and 0u are the respective unknown vec-

tors.

However, despite structural similarities, the classical Multigrid algorithm cannot be im-

plemented in the learning context. The coarse grid equations (5.2.18) cannot be explicitly

represented nor directly solved without an explicit model of the Markov chain. Another ma-

jor problem arises from the need to restrict the residual onto the coarse grid. Even if the

model were known, it would be infeasible to represent the residual since its dimension equals

the number of states S , which is often extremely large or infinite in problems which require

function approximation. The LB-MGTD(λ) overcomes both these obstacles by introducing

the TD(λ) variant.

5.2.4 Fast TD solvers for the coarsest level
In LB-MGTD(λ), the solution of the coarse grid equations is obtained by recursively apply-

ing TD(λ) variants at different resolution levels. As the algorithm progresses to coarser grids

the dimension of the unknown parameter vector θA decreases. This opens the opportunity to

use algorithms such as LSTD(λ) or λ-LSPE that, while being more resource demanding, pro-

vide faster convergence (see section 3.4.5).

To solve the coarsest level using these algorithms, one should replace steps 1-2 in

LB-MGTD(λ) when in the coarsest level, with variants of LSTD(λ) or λ-LSPE. The variants

include the following modifications:

• If the algorithm requires initialization, use
max max

:θ ϑ=A A .

• Use ()
max tsφA as the feature vector.

• Use () () ()()
max

max

1

1 1
0

, :
T

t t t m t m t m
m

r s s g s sφ γφ θ
−

−
+ +

=

= − −∑
A

A as the one step reward.

 68

The frame below presents the λ-LSPE variant used to solve the coarse grid equations. We

show in Proposition 1 below, that if allowed to continue indefinitely, these variants applied

at the coarsest level converge to the solution of the coarse grid equations (5.2.18).

1. Apply λ-LSPE on the coarsest grid:

 1.1 Initialize:
max max

:θ ϑ=A A , δ=B I , =A 0 , =b 0 ,
max

=z 0A , for some small2 0δ > .

 1.2. Observe the transition 1t ts s +→ , and the reward tg at time t .

 1.3. Update the eligibility traces ()
max max max

: tsλγ φ= +z zA A A

 1.4. Sample the residual () ()()
max

max

1

1
0

:
T

t m t m t m
m

r g s sφ γφ θ
−

−
+

=

= − −∑
A

A

 1.5. Update () ()
max max

: T
t ts sφ φ= +B B A A

 () ()()max max 1:
T

t ts sφ γφ += + −A A z A A

max

: r= +b b z A

 ()max max max max

1
,: tθ θ α θ−= + −B b AA A A A

 1.6. If the switching criterion is met then return
max

θA , otherwise repeat from 1.2.

5.2.5 Convergence of the coarse level algorithms
In Proposition 1 below we prove that the TD algorithms applied on coarse levels in

LB-MGTD(λ) (Algorithm 5.1), converge with probability 1 to the solution of the coarse grid

equations. Our proof uses Theorem 1 in [TVR97], section VI. To avoid confusion, from here

on we refer to Theorems 1 and 2 in [TVR97] as Theorems A and B respectively. Lemma 5.4

validates Theorem A's assumptions on the coarse grid levels. In the first part of Proposition 1

we apply Theorem A to prove convergence with probability 1, calculate the convergence

point, and show that this point is the solution of the coarse grid equations presented in chap-

ter 3. We restate these equations for convenience:

2 See [NB03] for a discussion on how to choose δ .

 69

 θ =A bA A A (5.2.26)

 1
1 1: +
+ +=A I A IA A
A A A A (5.2.27)

 ()1
1 θ+ −
+ = −b I b AA
A A A A A (5.2.28)

and remind that on the finest grid we have ()0 0 0
T

λ γ= −A Φ DM I P Φ and 0 0
T

λ=b Φ DM g .

In the second part, we prove that λ-LSPE and LSTD(λ) converge to the same solution, and

can thus serve as fast solvers for the coarsest grid.

We note that Lemma 5.4 is required for infinite MDPs, since for finite state spaces, all

assumptions are trivially satisfied.

Lemma 5.4 Assume the TD(λ) assumption set of section 3.4.3 is satisfied for the finest

level 0=A . Further assume that coarse grid feature vectors ()sφA satisfy (5.1.1), that 1
m
m+I ,

0, , 1m = −… A have full rank and that the reward functions are defined by (5.2.21). Then the

TD(λ) assumption set in section 2.4.3 is satisfied for all grid levels.

Proof Theorem A defines a metric space ()2 ,L DS , of vectors defined over the state

space with the norm induced by the inner product , T≡
D

x y x Dy . D is defined in (3.4.33).

()2 ,L DS is the space of all vectors with a finite norm, i.e. < ∞
D

J . We first note that all

levels relate to the same Markov chain and therefore property 1(a) and 4 in the TD(λ) as-

sumption set of section 3.4.3 are trivially satisfied for every A . Assumption 2(b) states that

all basis functions are in ()2 ,L DS . By definition (see (5.1.1)), coarse grid basis functions at

all levels are finite linear combinations of fine grid basis functions, and therefore are in

()2 ,L DS . Assumption 2(b) is therefore satisfied at all levels. We now turn to verify 1(b) for

the modified reward (5.2.21)

 70

() () () ()()

() () ()

() ()

() ()()

21
2

0 1 0 1 1
0

1
2

0 1 0 1
0

1

0 1 1
0

21

0 1
0

, ,

, ,

,

T
t t t t m t m t m

m

T
t t t t m t m

m

T
t t m t m

m

T
m t m t m

m

r s s g s s s s

g s s g s s s

g s s s

s s

φ γφ θ

φ θ

γ φ θ

φ γφ θ

−
−

+ + +
=

−
−

+ +
=

−
−

+ +
=

−
−

+
=

⎡ ⎤⎛ ⎞⎡ ⎤ = − − =⎢ ⎥⎜ ⎟⎣ ⎦ ⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦

⎡ ⎤− ⎣ ⎦

⎡ ⎤⎛ ⎞+ −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∑

∑

∑

∑

A

A

A

A

A

E E

E E

E

E

 (5.2.29)

It is readily seen that this expression is a finite sum of scalar elements of the form

 () ()0 1 2t t kJ s J s +⎡ ⎤⎣ ⎦E (5.2.30)

with ()1 2 2, ,L∈J J DS , since g and the basis functions in the vector ()m sφ are all in

()2 ,L DS . As part of Lemma 7 in [TVR97] it is shown that for any ()1 2 2, ,L∈J J DS and

0k ≥ we have

 () ()0 1 2 1 2
T k

t t kJ s J s + = < ∞⎡ ⎤⎣ ⎦ J DP JE . (5.2.31)

Similarly

 () () ()0 1 2 1 2

kT T
t k tJ s J s+ = < ∞⎡ ⎤⎣ ⎦ J P DJE . (5.2.32)

Since (5.2.29) is a finite sum of finite terms, it is finite. Therefore, ()1,t tr s s +A satisfies 1(b).

We now turn to verify assumption 2(a) on all levels. On the finest grid 0Φ is full rank by

assumption 2(a), i.e. its columns are linearly independent. By assumption 1+IAA are full rank

too. Observing (5.1.2), it follows by induction that 1+ΦA is full rank, since it is a multiplica-

tion of matrices with linearly independent columns. This proves that 2(a) is valid at all levels.

We proceed to verify assumption 3(a) and 3(b) by induction. It is assumed that at level

0=A these assumptions are valid. Assuming these assumptions are valid at level A for some

function :f +→A \S , we will show they are valid level 1+A . For brevity of notation we

shall write

 71

 () () ()1, 1 1 , 1, , , ,t t t t t ts g g s s r r s sτ τφ φ+ + + += = =A A A A . (5.2.33)

Using (5.1.2) we obtain

() ()
() () ()

() ()

1, 1, 0 0 1,0 1,
0

1 , , 0 0 ,0 , 1
0

1 1 0

|

|

T T

T

m m

T T
m m

T

s

s

f s

τ τ
τ

τ τ
τ

φ φ φ φ

φ φ φ φ

∞

+ + + + +
=

∞

+ + +
=

+ +

−

⎡ ⎤= −⎣ ⎦

≤

∑

∑ I I

I I

A A A A

A A
A A A A A A

A A
A A A

E E

E E (5.2.34)

where we remind that ⋅ denotes the Euclidean-induced matrix norm.

For the second bound we substitute (5.2.22) in the following:

() ()

() ()

()()
()()

() ()

1, 1, 0 0 1,0 1,
0

1
, 1, 0 0 ,0 1,

0

1
, , , , 1 0

0

0 , , , , 1

1
, , 0 0 ,0 ,

|

|

|

|

m m

m m

T
m m m

T
t m m m

m m

r s r

r s r

r s

r

r s r

τ τ
τ

τ τ
τ

τ τ τ τ
τ

τ τ
τ

φ φ

φ φ

φ φ γφ θ

φ φ γφ θ

φ φ

∞

+ + + + +
=

∞
+

+ + +
=

∞
+ −

+ + + +
=

−
+

+
+

− =

⎡ ⎤= −⎣ ⎦

⎡ ⎤≤ − −
⎣ ⎦

⎡ ⎤− − −
⎣ ⎦

≤ −

∑

∑

∑

I

I

I

A A A A

A
A A A A A

A
A A A A A A

A A A A A

A
A A A A A

�

�

�

E E

E E

E

E

E E

() ()

() ()

()() ()

0

, , 0 0 , ,
0

, , 1 0 0 ,0 , 1
0

1
0

|

|

1 1

T T
m t t m

T T
m m

s

s

f s

τ τ
τ

τ τ
τ

φ φ φ φ θ

γ φ φ φ φ θ

γ θ

∞

=

∞
−

+ +
=

∞
−

+ + +
=

+ −

⎡
⎢⎣

+ −

⎤+ − ⎥⎦

≤ + +

∑

∑

∑

I

A A A A A

A A A A A

A
A A A�

E E

E E

 (5.2.35)

We validate 3(a) by defining

 () ()1f s c f s+ = ⋅A A (5.2.36)

 72

 () ()(){ }1 1 1max , 1 1
T

c γ θ −
+ + += + +I I IA A A
A A A A� . (5.2.37)

Since c is finite we validate 3(b) by multiplying both side by nc

 ()() () ()() ()0 0 1 0 1 0| |n n n n n n
t n t nc f s s c f s f s s f sµ µ+ +⋅ ≤ ⋅ ⇒ ≤A A A AE E . (5.2.38)

This concludes the validation of the assumption set for any level A .

■

Proposition 1 Consider a Markov chain with either a finite or infinite countable state space,

with discounted cost, and the TD(λ) assumption set in section 2.4.3 for level 0=A . Then, the

following Temporal Difference algorithms applied at level A using ()sφA and the reward

function defined in (5.2.21) converge with probability 1 to the solution of the coarse grid

equations defined in (5.2.26)-(5.2.28):

(a) TD(λ) under the TD(λ) assumption set in section 2.4.3.

(b) λ-LSPE under assumptions 1(a), 2(a) and 4 in the assumption set.

(c) LSTD(λ) under assumptions 1(a), 2(a) in the assumption set.

Proof We start by proving (a). Lemma 5.4 validates the assumptions of Theorem A

on the coarse grid level A . By Theorem A, TD(λ) applied using ()sφA and ()1,t tr s s +A con-

verges with probability 1, to the vector *θ satisfying

 *ˆ ˆθ =A bA A A . (5.2.39)

 () ()()0 , 1
ˆ ˆ T

t t ts sφ γφ +
⎡ ⎤= −⎣ ⎦A zA A A AE (5.2.40)

 ()0 , 1
ˆ ˆ ,t t tr s s +⎡ ⎤= ⎣ ⎦b zA A AE (5.2.41)

 () (),ˆ
t

t
t sτ

τ
τ

γλ φ−

=−∞

= ∑zA A (5.2.42)

 73

We used hats to temporarily distinguish these from AA , bA and zA defined previously.

First, we show that ˆ =A AA A . Using (5.1.1) and ()1
1

T+
+=I IA A

A A we have

 () () () () () () 1
1, 1 1 1 , ,ˆ ˆ ˆ

t t T Tt t
t t ts sτ τ

τ τ
τ τ

γλ φ γλ φ− − +
+ + + +

=−∞ =−∞

= = = =∑ ∑z I I z I zA A A
A A A A A A A A . (5.2.43)

We substitute this in (5.2.40) and verify that ÂA satisfies (5.2.27),

() ()()

() ()()
1 0 1, 1 1 1

1 1
0 , 1 1 1

ˆ ˆ

ˆˆ

T
t t t

T
t t t

s s

s s

φ γφ

φ γφ

+ + + + +

+ +
+ + +

⎡ ⎤= −⎣ ⎦
⎡ ⎤= − =
⎣ ⎦

A z

I z I I A I

A A A A

A A A A
A A A A A A A A

E

E
. (5.2.44)

Since by definition 0 0
ˆ =A A it follows that ˆ =A AA A . We now show that ˆ =b bA A . By substi-

tuting (5.2.21) in (5.2.41) we verify that b̂A satisfies (5.2.28),

() () ()

() () ()()()
() () ()()()

()

1 0 1, 1 1 1 0 , 1 1

1
0 , 1 1

1
0 , 1 0 , 1

1

ˆ ˆ ˆ, ,

ˆ ,

ˆ ˆ,

ˆˆ

T

t t t t t t

T
t t t t t

T
t t t t t t

r s s r s s

r s s s s

r s s s s

φ γφ θ

φ γφ θ

θ

+ + + + + + +

+ −
+ +

+ −
+ +

+ −

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦

⎡ ⎤= − −⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤= − −⎣ ⎦ ⎣ ⎦

= −

b z I z

I z

I z z

I b A

A
A A A A A A

A
A A A A A A

A
A A A A A A A

A
A A A A

E E

E

E E
 (5.2.45)

Again, since 0 0
ˆ = =b b g it follows that ˆ =b bA A . We have shown that (5.2.26) and (5.2.39)

are the same, hence the convergence point satisfies the coarse grid equations (5.2.26)-

(5.2.28), thus proving (a).

Convergence with probability 1 of λ-LSPE and LSTD(λ) to the same point as TD(λ) was

proven in [NB03]. Since all assumptions are valid on the coarse grid A by Lemma 5.4, con-

vergence is guaranteed. By part (a) the convergence point satisfies (5.2.26)-(5.2.28).

■

Proposition 1 shows convergence of each level separately, indicating that Algorithm 5.1 is

admissible. However, as in the known model case discussed in section 4.1.3, this does not

 74

imply convergence of the entire scheme. Since A is not symmetric, even if all coarse grid

equations are solved exactly, divergence may occur.

5.3 A simultaneous Multigrid TD algorithm

5.3.1 Main idea and purpose
In LB-MGTD(λ) (Algorithm 5.1) we used distinct separation between resolution levels. At

every point in time, only a single level is active, receiving a trajectory sample and updating

its parameter vector, while parameter vectors for all other levels are kept fixed. When obtain-

ing data samples is costly, it may be considered wasteful to use each sample in order to up-

date only a single level.

One option is to store a trajectory section sampled on the finest grid, and reapply it on

coarser grids. This procedure does not require the generation of new samples when updating

the coarse levels. This approach is similar to the well-known experience replay approach

[L93].

We propose another approach that uses a single trajectory sample to simultaneously up-

date multiple grid levels. Although grid separation is convenient in the known model case, it

is not necessary in the learning scenario. In Algorithm 5.2 below, we propose to update the

parameter vectors at all levels simultaneously, using a single temporal-difference value. We

name this algorithm Simultaneous Multigrid TD (S-MGTD(λ)).

5.3.2 Algorithm presentation

As stated at the beginning of the chapter, we assume that the feature vectors ()sφA are avail-

able at all levels. We further assume that learning step sequences are defined for all levels

and denoted by { } max

, 0tα
=

A
A A

. The parameter vector of level A to be learned is denoted by ωA , to

avoid confusion with the parameters θA of LB-MGTD(λ) which have a different meaning. In

our experiments we initialize ω = 0A for max0, ,=A … A . The S-MGTD(λ) algorithm is acti-

vated by

 75

 ()max max0 1 0 1, , , :=S-MGTD , , ,ω ω ω ω ω ω⎡ ⎤⎣ ⎦A A… … . (5.3.46)

Algorithm 5.2: Simultaneous Multigrid-TD(λ) (S-MGTD)

()max0 1S-MGTD , , ,ω ω ωA…

1. Initialize: =z 0A for all max0, ,=A … A

2. Iterate steps 2.1-2.3, over time t :

 2.1. Observe the transition 1t ts s +→ and the reward tg at time t.

 2.2. Calculate the temporal difference () ()()
max

1
0

T
t t td g s sφ γφ ω+

=

= − −∑
A

A A A
A

 2.3. For 0=A to maxA do:

 Update the eligibility traces (): tsλγ φ= +z zA A A

 Update ,: t dω ω α= + zA A A A

The approximate cost-to-go function is given at all times by () ()
max

0

Tv s sφ ω
=

= ∑
A

A A
A

.

The value function in S-MGTD(λ) (Algorithm 5.2) is approximated as a linear combination

of basis functions from all resolution levels

 () ()
max

0

Tv s sφ ω
=

= ∑
A

A A
A

. (5.3.47)

This algorithm has the same form as standard TD(λ) algorithm with two differences: the ba-

sis functions are now dependant since ()1 sφ +A depends on ()sφA via (5.1.1) and therefore

form an over-complete basis, and the learnable parameters at different levels have different

learning step sequences.

To gain more insight into this algorithm, we show in section 5.3.3 that for a proper

choice of learning step sequences, this algorithm is equivalent to the LB-MGTD(λ) algo-

rithm presented previously in section 5.2. Next in section 5.3.4, we interpret this algorithm as

 76

TD(λ) applied at the finest level 0=A with a matrix sequence for learning steps instead of a

scalar sequence. We use this in section 5.3.5 to analyze the case in which the learning steps

of different levels proportional to each other.

5.3.3 Level-based as a special case of simultaneous Multigrid TD
We now discuss a special case for which S-MGTD(λ) resembles LB-MGTD(λ) (Algorithm

5.1). For now, we distinguish between the variables of the algorithms, by applying hats to

variables of S-MGTD(λ), denoting ()ˆ ˆ ˆ, , tv s αzA instead of (), , tv s αzA . We show below that

these elements are identical respectively for both algorithms.

Consider the execution of both algorithms in parallel, feeding them the same trajectory

samples. Starting with 0 0T = , denote by iT , { }0,1, 2,i∈ … the time instances in which the

active level A in LB-MGTL(λ) changes (when MG-TD-V-cycle is called are returns), and

by iA the active level during the interval [)1,i iT T + . In particular we have i i=A for

{ }max0,1, ,i∈ … A , and max2i i= −A A for { }max max max1, 2, , 2i∈ + +A A … A . We define the

learning-step scheme for S-MGTD(λ) during the interval [)1,i it T T +∈ according to

 ,

if
ˆ

0 otherwise
t i

m t

mα
α

=⎧
= ⎨
⎩

A
. (5.3.48)

Since the learning steps for all levels but the active one are zero, only the parameter vector of

the active level changes. To emphasize this, we denote the fixed parameter vectors by

m mω ω− = for m ≠ A .

Lemma 5.5 Consider a parallel execution of LB-MGTD(λ) with TD(λ) on the coarsest

level and a modified version of S-MGTD(λ), which applies a reset =z 0A at the active level

when it T= . Assume the learning scheme for S-MGTD(λ) is defined by (5.3.48). Then the

algorithms are equivalent in the sense that () ()v̂ s v s= for all t .

 77

Proof In order to easily compare ()v̂ s and ()v s , we first write them both in terms

of ()0 sφ . Substituting (5.1.1) in itself recursively we obtain the following relation for m < A

 () ()T T m
ms sφ φ= IA A (5.3.49)

where mIA denotes the level A to level m interpolator. It is defined by

 1 1
1 2

m m m
m m

− −
− −=I I I IAA A… . (5.3.50)

As a convention we define IAA to be the identity matrix. For future use we use (5.3.49) to re-

write the eligibility traces as

 () () () () () ()0 0
, 0 0,

0 0

t t T Tt t
t ts sτ τ

τ τ
τ τ

γλ φ γλ φ− −

= =

= = =∑ ∑z I I zA A A A . (5.3.51)

We now apply (5.3.49) to (5.2.23) and to (5.3.47) to obtain

 () () () ()
1 1

0 0
0

0 0

T T T
m m m m

m m

v s s s sφ θ φ θ φ θ θ
− −

− −

= =

⎛ ⎞= + = +⎜ ⎟
⎝ ⎠

∑ ∑ I I
A A

A A A A (5.3.52)

 () () ()
max max

0
0

0 0

ˆ T T
m m m m

m m
v s s sφ ω φ ω

= =

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
∑ ∑ I
A A

. (5.3.53)

We proof the lemma by showing next that at all times

max1

0 0 0

0 0
m m m m

m m

θ θ ω
−

−

= =

+ =∑ ∑I I I
AA

A A . (5.3.54)

The proof follows by induction. At 0t = the equation (5.3.54) is trivially satisfied since all

parameter vectors are initialized as zero. At time t , both algorithms observe the transition

1t ts s +→ and the reward tg , and add a term of the form dα zA A to a parameter vector. In

LB-MGTD(λ), θA is updated, changing the left side of (5.3.54) according to

()
1 1 1

0 0 0 0 0 0 0

0 0 0

:m m m m t m m t
m m m

d dθ θ θ θ α θ θ α
− − −

− − −

= = =

⎡ ⎤+ = + + = + +⎢ ⎥⎣ ⎦
∑ ∑ ∑I I I I z I I I z
A A A

A A A A A A A A A A A . (5.3.55)

 78

In S-MGTD(λ), { } max

0m m
ω

=

A are all updated, changing the left side of (5.3.54) according to

 ()
max max max

0 0 0 0
, ,

0 0 0

ˆ ˆˆ ˆ ˆ ˆ:m m m m m t m m m t
m m m

d dω ω α ω α
= = =

⎡ ⎤
= + = +⎢ ⎥

⎣ ⎦
∑ ∑ ∑I I z I I z
A A A

A A A (5.3.56)

where we used (5.3.51) and the fact that ,ˆ 0m tα ≠ only at the active level. We argue that the

terms added to both sides of (5.3.54) are equal, i.e.

 0 0
,

ˆˆ ˆt td dα α=I z I zA A A A A A . (5.3.57)

First, notice that at the active level we have ˆ =z zA A at all times, which follows trivially from

resetting them at the same times iT , and applying the same update rule until 1iT + . Both algo-

rithms calculate the temporal difference defined in (3.3.21) restated here for convenience

 () () () ()1 1 1ˆ ˆ ˆ, ; ,t t t t t td s s v g s s v s v sγ+ + += + −⎡ ⎤⎣ ⎦ . (5.3.58)

By the induction assumption, (5.3.54) is satisfied, therefore () ()v̂ s v s= and d̂ d= A . Finally,

,ˆ t tα α=A by definition. The above shows that the update rules of both algorithms add the

same term to both sides of (5.3.54), satisfying the induction for 1t + . To conclude the proof

we show that (5.3.54) is satisfied after applying the correction step in LB-MGTD(λ) (step

3.3). This follows directly from the equality

()

1
0 0 0 0 0

1 1 1 1
0 0

1 1
0 0 0 0

1 1
0 0

m m m m
m m

m m m m
m m

θ θ θ θ θ

θ θ θ θ θ

−
− − −

+ + + +
= =

− −
− − −

+ +
= =

+ = + +

= + + = +

∑ ∑

∑ ∑

I I I I I I

I I I I I

A A
A

A A A A A A A

A A
A

A A A A A A

 (5.3.59)

which shows that the left hand side of (5.3.54) remains unchanged under the correction step,

when the active level changes from 1+A to A . Since (5.3.54) is satisfied at all times, it fol-

lows that () ()v̂ s v s= , which concludes the proof.

■

In light of Lemma 5.5, we interpret the update rule of S-MGTD(λ) as a merger of the cor-

rection and the iteration steps of LB-MGTD(λ) (steps 2-4). The vectors mω separately store

 79

the coarse corrections to finer levels in memory. They are implicitly added in the calculations

of the value function as in (5.3.53) and the temporal differences.

We note that although we usually assume that the basis functions within each level A are

linearly independent, the collection of all basis functions from all the levels forms a linearly

dependent set. As a result, we cannot expect S-MGTD(λ) to have a unique convergence

point in terms of { } max

0m m
ω

=

A , rather hope for uniqueness of the approximated function (5.3.47).

5.3.4 S-MGTD(λ) - finest grid formulation
In this section we formulate the solution of S-MGTD(λ) as a function of the finest grid basis

functions only. We show that the update rule takes the form of a TD(λ) algorithm operating

at the finest grid, with a varying matrix taking the place of the learning step. This form will

turn out useful in the subsequent theoretical analysis. We write (5.3.53) as

 () ()0
Tv s sφ ω= . (5.3.60)

where

max

0

0

ω ω
=

= ∑ I
A

A A
A

. (5.3.61)

The update rules of S-MGTD(λ) (step 2.3) changes ω according to

 () ()
max max max

0 0 0 0
, , , 0

0 0 0

:
T

t t td d dω ω α ω α ω α
= = =

⎡ ⎤
= + = + = + ⎢ ⎥

⎣ ⎦
∑ ∑ ∑I z I z I I z
A A A

A A A A A A A A A A
A A A

 (5.3.62)

where we used (5.3.51). We can now rewrite S-MGTD(λ) as an equivalent TD(λ) algorithm.

For ease of notation we omit the zero level index and write z instead of 0z in the following.

 80

Algorithm 5.3: S-MGTD - equivalent algorithm

1. Initialize: :=z 0 , :ω = 0

2. Iterate:

 2.1. Calculate the temporal difference () ()()0 0 1:
T

t t td g s sφ γφ ω+= − −

 2.2. Update the eligibility traces ()0: tsλγ φ= +z z

 2.3. Update : t dω ω= +Λ z

where the learning step is now the matrix sequence

 ()
max

0 0
,

0

T

t tα
=

= ∑Λ I I
A

A A A
A

. (5.3.63)

The value functions estimated by S-MGTD(λ) and Algorithm 5.3 are the same. We empha-

size that Algorithm 5.3 is inferior to S-MGTD(λ) in terms of computational load, since its

update rule takes O(K2) operations where K is the dimension of ()0 sφ , as the learning step

matrix is not sparse. However, its TD(λ) like form assists in theoretical analysis of

S-MGTD(λ), as demonstrated in the following section.

5.3.5 Convergence analysis for proportional learning steps
In this section we address the convergence issue of S-MGTD(λ) for learning step schemes of

the form

 ,t tα β α=A A (5.3.64)

where 0 0β > , 0β ≥A for max1, ,∈A … A are constants, and tα is a predetermined positive,

non-increasing sequence that satisfies
0

t
t

α
∞

=

= ∞∑ and 2

0
t

t

α
∞

=

< ∞∑ (assumption 4 of the TD(λ)

assumption set in section 3.4.3). We say that such schemes have proportional learning steps.

We start our analysis of these schemes with a proof of convergence, when the transition ma-

trix is symmetric (Theorem 3 below). As in the known model case, convergence for the

 81

non-symmetric case is not guaranteed for general choice of βA . In the second part of this

section we support this claim with a counter example. In the convergence proof to follow we

use the following lemma, which considers a generalized form of TD(λ).

Proposition 2 Let a symmetric positive definite matrix C be given. Then under the TD(λ)

assumption set in section 2.4.3 the following variants of TD(λ) converge with probability 1 to

the same solution as TD(λ).

(a) ()1t t tsλγ φ−= +z z , : t dω ω α= + Cz (5.3.65)

where the correction term in TD(λ) is now multiplied by the matrix C.

(b) () ()s sφ φ= C� , ()1t t tsλγ φ−= +z z �� � , 1:t t t t tdω ω α−= + z� . (5.3.66)

where the basis functions used in the eligibility traces of TD(λ) are now multiplied by C, and

are therefore different than the basis functions used in the approximation of the value func-

tion.

Proof Our proof of part (a) follows the line of proof of Theorem A, which con-

structs the Markov process ()1, ,t t t ts s +=X z , and rewrites the TD(λ) algorithm as a stochas-

tic approximation (see section III part C in [TVR97])

 () ()()1 1t t t t t tω ω α ω− −= + −b X A X (5.3.67)

where

() () ()()
() ()

1

1, .

T
t t t t

t t t tg s s

φ γφ +

+

= −

=

A X z X X

b X z
 (5.3.68)

The TD(λ) assumption set is shown to be sufficient to satisfy the assumptions of Theorem B

stated below, proving convergence of (5.3.67) with probability 1. Notice that opposed to

AMG convergence theory, there is no need here for A to be symmetric.

 82

Theorem B (Theorem 2 in [TVR97])

Consider an iterative algorithm of the form (5.3.67) where
1. the step-size sequence tα is positive, non-increasing, predetermined, and satisfies

0
t

t

α
∞

=

= ∞∑ and 2

0
t

t

α
∞

=

< ∞∑ ;

2. tX is a Markov process with a unique invariant distribution, and there exists a mapping h
from the states of the Markov process to the positive reals, satisfying the remaining condi-
tions. Let []0 ⋅E stand for expectation with respect to this invariant distribution;

3. the following matrix and vector are well defined and finite

()
()

0

0

t

t

= ⎡ ⎤⎣ ⎦
= ⎡ ⎤⎣ ⎦

A A X

b b X

E

E
;

4. the matrix −A is stable;
5. there exist constants c and k such that for all X

 () ()()0
0

| 1 k
t

t

X c h
∞

=

= − ≤ +⎡ ⎤⎣ ⎦∑ A X X A XE

 and

 () ()()0
0

| 1 k
t

t

X c h
∞

=

= − ≤ +⎡ ⎤⎣ ⎦∑ b X X b XE ;

6. for any 1k > there exist a constant kµ such that for all ,tX

 () ()()0| 1k k
t kh hµ⎡ ⎤= ≤ +⎣ ⎦X X X XE .

Then, tθ converges to *θ with probability 1, where *θ is the unique vector that satisfies

 *θ =A b .

In assumption 4 above the original requirement in [TVR97] is for −A to be negative defi-

nite. However, it suffices to require that −A is stable, since this is only needed to ensure that

the equation d
dt θ θ= − +A b is stable3.

Following the above line of proof, we rewrite (5.3.65) as a stochastic approximation

3 Theorem B was deduced from Theorem 17 (page 239) in [BMP90], by using the potential function

() 2*U θ θ θ= − . The same can be deduced by using the Lyapunov function () () ()* *T
U θ θ θ θ θ= − −P ,

with P the solution of the Lyapunov equation () ()T− + − = −A P P A Q , for any choice of 0>Q .

 83

 () ()()1 1t t t t t tω ω α ω− −= + −b X A X�� (5.3.69)

where

() () ()()
() ()

1

1,

T
t t t t

t t t tg s s

φ γφ +

+

= −

=

A X Cz X X

b X Cz

�

�
. (5.3.70)

Next, we show that if the assumptions of Theorem B are satisfied for standard TD(λ) in

(5.3.67), they are also satisfied for our variant (5.3.69). By transitivity this will show that the

TD(λ) assumption set is sufficient to satisfy the assumptions of Theorem B for (5.3.69),

proving convergence. Assumptions 1,2 and 6 are the same for both cases. Showing that satis-

fying assumptions 3-5 for (5.3.67) implies their validity for (5.3.69) is straightforward as fol-

lows:

3) By substitution

 () ()0 0t t= = =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦A CA X C A X CA� E E (5.3.71)

and similarly =b Cb� . Since ,A b and C are well defined and finite, so are ,A b� � .

4) Consider the real matrix =A CA� . It is straightforward from Lyapunov's first theorem (see

section 3.5) that if there exists a matrix 0>L such that T + >A L LA 0� � , then −A� is stable.

By assumption 0>C , and so we can take 1 0−= >L C . This gives

 1 1 0T T T T T T− −+ = + = + = + >A L LA A C L LCA A C C C CA A A� � , (5.3.72)

where the last inequality follows from −A being stable, showing that −A� is stable as well.

5) By substitution we have

() ()

() ()() ()()

0 0
0 0

0
0

| |

| 1 1 ,

t t
t t

k k
t

t

X X

X c h c h

∞ ∞

= =

∞

=

⎡ ⎤ ⎡ ⎤= − = = −⎡ ⎤⎣ ⎦⎣ ⎦⎣ ⎦

⎡ ⎤≤ = − ≤ + = +⎡ ⎤⎣ ⎦⎣ ⎦

∑ ∑

∑

A X X A C A X X A

C A X X A C X X

� �

�

E E

E
 (5.3.73)

for c c= C� . Proving the second inequality is similar.

 84

We now apply Theorem B to (5.3.69), proving convergence with probability 1 to the unique

solution of

 *ω =A b� � . (5.3.74)

By assumption 0>C and therefore invertible. We multiply both sides by 1−C showing that

the convergence point satisfies

 *ω =A b (5.3.75)

which is the same convergence point as for TD(λ). This concludes part (a).

Part (b) follows trivially by noticing that

 () () () ()
0 0

t t
t t

t ts sτ τ
τ τ

τ τ

γλ φ γλ φ− −

= =

= = =∑ ∑z C Cz��

which shows that the update rules of (a) and (b) are the same.

■

Next, we make use of the above proposition to prove the convergence of S-MGTD(λ) with

proportional learning steps, as shown in the following proposition.

Theorem 3 Consider a Markov chain with either a finite or infinite (countable) state

space, with discounted cost, and assume the TD(λ) assumption set in section 2.4.3 is satis-

fied. Then S-MGTD(λ) (Algorithm 5.2) with proportional learning steps (5.3.64) converges

with probability 1 to the same value function as TD(λ) applied at 0=A .

Proof For proportional learning steps, the learning step matrix defined in (5.3.63) is

 ()
max

0 0

0

T

t tα β
=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑Λ I I
A

A A A
A

. (5.3.76)

 85

and we denote

 ()
max

0 0

0

T
β

=

= ∑C I I
A

A A A
A

. (5.3.77)

The matrix C is SPD where positive definiteness follows since 0 =I IA (the unit matrix),

0 0β > , and 0β ≥A .The update rule of Algorithm 5.3 takes the form

 : t dω ω α= + Cz , (5.3.78)

which is exactly as in (5.3.65). Convergence with probability 1 of Algorithm 5.3 follows di-

rectly from Proposition 2 part (a), and the solution is the same as TD(λ) applied at the finest

level. Since Algorithm 5.3 and S-MGTD(λ) are equivalent, convergence with probability 1

of S-MGTD(λ) to the same solution follows.

■

5.4 A Few Words on On-Line Grid Construction

Throughout this chapter we assumed that the required inter-level operators are available be-

forehand. In this section we demonstrate how to generate such operators on-line through

samples. This demonstration is provided for completeness only, since this is not the focus of

our research.

We seek to apply the setup step of AMG based on the matrix A defined in (5.1.6) when

the MDP model is not known. We remind that A can be sampled using (3.4.38)

 () ()()1
0

t T
t s sτ τ τ

τ

φ γφ +
=

= −∑A z . (5.4.79)

In principle, we can sample tA before execution of the solve step, and directly implement

the setup step to generate AA at all levels based on tA . This approach is data inefficient

since all samples obtained for the setup step are not used in the solve step. In the following

we show how the setup step can be combined with the solve step, in LB-MGTD(λ)

(Algorithm 5.1).

 86

We suggest to initialize ,0 0=AA , and update ,tAA during the execution of the TD(λ) it-

erations at level A (step 2) according to

 () ()(), , 1 , 1:
T

t t t t ts sφ γφ− += + −A A zA A A A A . (5.4.80)

Before moving to the coarser grid 1+A (step 3.2), we apply the setup step based on the sam-

pled ,tAA to generate 1+IAA , 1+IAA , ()1 sφ +A and initialize

 ()1, 1 ,:
T

t t+ +=z I zA
A A A , (5.4.81)

 1
1, , 1:t t

+
+ +=A I A IA A
A A A A . (5.4.82)

where in (5.4.81) we used (5.3.51). In this way, the setup step uses all the information gath-

ered until the time in which the inter-level operators for the next coarse level are required.

A deficiency of this particular algorithm is the resources needed to store 0,tA , which for

practical problems with many features may be infeasible. We remind that LSTD(λ) and

λ-LSPE use 0,tA as well and therefore suffer the same deficiency. However, in contrary to

these LS algorithms, the setup step does not require 0,tA to be exact, since it is only used to

locate the strongest dependencies between variables. We therefore suspect that more efficient

algorithms for the setup step can be derived. Some indication for this can be found in the al-

gorithm presented in [KA99] that clusters states based on temporal neighborhood without

explicitly generating 0,tA . The derivation of such algorithms is left for future work.

 87

C h a p t e r 6

Experiments and Results

In this chapter we bring experimental results on the previously proposed algorithms com-

pared to traditional ones. We start by describing two test bed problems, as well as some nota-

tions and conventions used throughout the chapter. We present results for the known model

case (chapter 4), starting with the problem of Policy Evaluation (section 4.1) and followed by

the problem of seeking the optimal policy using Modified Policy Iteration (section 4.2). The

next section considers the learning scenario (chapter 5), and shows results on the perform-

ance of LB-MGTD and S-MGTD (sections 5.2-5.3). The last section concludes our observa-

tions.

6.1 Problem Definitions

6.1.1 A simple example: 1-D random walk
The random walk problem described in Figure 5.1, consists of a Markov chain with N

states, ordered on a 1-D line and indexed { }1, 2, ,s N∈ … . The transition probability from

any inner state to its right or left neighbor is 0.5 and the transition probability from an edge

state to its inner neighbor is 1, i.e.

() () { }' 1 | ' 1| 0.5, 2,3, 1p s j s j p s j s j j N= + = = = − = = ∀ ∈ −… (6.1.1)

() ()' 2 | 1 ' 1| 1p s s p s N s N= = = = − = = (6.1.2)

 88

where s is the current state and 's is the following state. The cost inflicted upon transition

from any inner step is -1, while a reward of +10 is provided when "bouncing" from an edge

state. The discount factor is chosen such that the total discount from edge to edge is 0.5, i.e.

1

10.5Nγ −= (6.1.3)

The problem of policy evaluation is that of efficiently obtaining the value function for the

infinite horizon discounted case. This function is given in Figure 6.2. This simple problem is

similar to the hop-world problem in [XHH02]. These problems are helpful for testing scal-

ability issues, because the propagation time of information from one end to the other depends

on N .

Figure 6.1: 1-D random walk Markov chain

0 50 100 150 200 250 300
-380

-360

-340

-320

-300

-280

-260

-240

-220

state

va
lu
e

Figure 6.2: 1-D random walk value function for N=256 states.

1 2 NN-1

1, 10p g= = +

0.5, 1p g= = −

0.5, 1p g= = −

1, 10p g= = +

 89

6.1.2 The Mountain Car application
A more complicated test bed we use is the popular mountain car task [S96] [MA95]

[MM02]. A car positioned at the bottom of a valley, is required to reach the top of the moun-

tain at exactly zero speed (see Figure 6.). Since its engine is too weak, it cannot drive straight

up the mountain, but has to back up to gain momentum. A reinforcement of +1 is received on

reaching the goal on the right at zero speed. Reaching the goal at any other speed reduces the

reward linearly until a penalty of -1 inflicted for the maximal speed. A penalty of -1 is also

inflicted on reaching the left border. The action space consists of either accelerating to the

right or to the left at a constant thrust. This is a continuous time, continuous 2-D space prob-

lem (horizontal position and velocity). We used the discretization scheme described in

[MM02] to derive a discrete time discrete space MDP that approximates the problem. We

used a 100×100 uniform grid in both horizontal position and velocity, resulting with a 10,000

state MDP. Technical details of the problem, the discretization scheme, and parameter values

are provided in [MM02]. For further detail on the dynamics of this problem, see [MA95].

Figure 6.4 shows the optimal value and policy on a 100×100 grid.

We use the discrete mountain car problem to examine practical issues. We intentionally

withhold the algorithm from using any geometrical information from the continuous prob-

lem, making the discrete problem seem unstructured and therefore making it hard for a de-

veloper to define good aggregates beforehand. In this way, we can test how AMG works on

problems without foreseen natural aggregations. We then observe whether the setup phase

manages to automatically construct grids that correlate the unused geometrical structure. Fi-

nally, we note that this problem is non-symmetric, enabling us to test the effects of violating

the symmetry assumption.

Figure 6.3: Mountain Car Task

Goal

 90

0

0.2

0.4

0.6

0.8

1

-1
0

1 -4
-2

0
2

4
-1

0

1

velocity

value function

position

va
lu

e
fu

nc
tio

n

-0.5

0

0.5

position

ve
lo

ci
ty

value function

-1 -0.5 0 0.5 1
-4

-2

0

2

4

-4

-2

0

2

4

position

ve
lo

ci
ty

greedy policy action

-1 -0.5 0 0.5 1
-4

-2

0

2

4

Figure 6.4: Value function and optimal policy for the mountain car task.
top: views of the optimal value function on a 100×100 grid. bottom: opti-
mal control - accelerate to the right (white), accelerate to the left (black).
The gray arrows represent an optimal trajectory.

6.2 Notations and Conventions

Throughout the chapter we use the following abbreviations: Value Iteration smoothing (VI)

(eq. (3.2.15), Gauss-Seidel smoothing (GS) (section 2.2.5), Ruge-Stüben interpolation (RS)

(eq. (3.7.69)) and strict aggregation interpolation (aggr) (eq. (3.7.64)).

6.2.1 Known model case - technical details for sections 6.3-6.4

Throughout the following sections we present convergence curves of the 2L norm of the re-

sidual error, ()
2nγ− −g I P v . The curves are given as a function of the number of iterations

 91

t, or as a function of the accumulated computational load. For Value Iteration (VI) and

Gauss-Seidel (GS) a single iteration is one pass through all the states. For AMG based algo-

rithms a single iteration consists of an entire fine to coarse and back to fine pass (V-cycle). In

order to fairly compare methods of different complexities per iteration, we measure conver-

gence in terms of math operations, either summation or multiplication, required to attain a

certain level of accuracy. For ease of presentation we introduce a computational unit. In the

context of Policy Evaluation, one computational unit equals the number of math operations

in a single VI iteration. In the context of Policy Iteration, one computational unit equals the

number of operations in a single policy improvement step. We used code to count math op-

erations, as known bounds are too loose for our purposes.

We used Gauss-Seidel as the smoothing method for all AMG algorithms as it proved bet-

ter than Jacobi or Richardson. We chose the number of pre- and post- iterations so as to

maximize the convergence rate. Intermediate numbers of 2-3 iterations were found to be

best; where performing enough iterations is required to remove local errors, while perform-

ing too many iterations is not cost-effective. However, during simulations we observed that

the performance was rather insensitive to the exact choice of parameters.

For ease of readability we often display the same results side by side, using linear scale

(left side) and logarithmic scale (right) for the horizontal axis.

6.2.2 Learning case - technical details for section 6.5
In the learning case, we used the 1-D random walk Markov chain with N = 256 states, the

algorithm parameter λ=0 and a constant step size of 0.1tα = . Since a learning algorithm

uses stochastic samples, it produces a random process for an output. To produce convergence

curves we average over M=5 independent Monte-Carlo executions. We first generate M in-

dependent trajectories of the Markov chain, with the initial state chosen randomly according

to the stationary distribution. We then apply each trajectory { }1,2, ,m M∈ … to each of the

algorithms under investigation, initialized by 0θ = 0 , and obtain its estimate of the parameter

 92

vector at time t, denoted by ()m
tθ . We calculate the asymptotic parameter vector by solving

(3.4.29) and denote it by θ∞ . We estimate the mean bias of ()m
tθ , denoted by ,bias tθ , as

 () (),
1

1 M
m

bias t t t
mM

θ θ θ θ θ∞ ∞
=

= − ≈ −∑ E . (6.2.4)

We do not plot the bias ,bias tθ as a function of iterations since it is a vector. Instead we plot

its 2L norm bias,t 2
θ as a measure of distance from asymptotic solution. We note that while

,bias tθ is an unbiased estimator of ()tθ θ∞−E , bias,t 2
θ is a biased estimator of ()tθ θ∞−E .

The bias is negligible if the variance of ,bias tθ is small compared to its mean.

6.3 Policy Evaluation - known model case

6.3.1 Results for the 1-D random walk problem
In this section, we observe the convergence behavior of different policy evaluation methods

applied to the 1-D random walk problem. Figure 6.5 shows convergence curves of standard

and AMG based methods when using 6 levels. Figure 6.6 and Figure 6.7 show the depend-

ence of convergence rates on the number of grid levels and on the state space size respec-

tively.

As expected, the asymptotic convergence of all methods is exponential as indicated by

the straight lines in Figure 6.5. Figure 6.6 shows that the number of computational units re-

quired to reach a residual error norm of 10-10 when using 6 levels are: 38203 for VI, 19103

for GS, 1174 for AMG:aggr, and 23 for AMG:RS. Gauss-Seidel converges two times faster

than VI. However the AMG methods converge considerably faster than GS; using strict ag-

gregation results in 16 times faster convergence, and using Ruge-Stüben results in 830 times

speedup relative to GS. For this specific test bed, the Ruge-Stüben interpolation proved

much better than interpolation based on strict aggregation, requiring only 3 iterations versus

130 to converge. The reason lies in larger interpolation errors in the strict aggregation

 93

method, which inject algebraically smooth errors in the correction step that slow down con-

vergence. This is also indicated in Figure 6.6 on the left by the increase in iterations to the

target residual as the number of levels increases, for AMG with aggregation. This increase is

expected since increasing the number of levels replaces the exact solution at level A with the

approximate result of a V-cycle from level A onward. Interpolation errors accumulate caus-

ing a decrease in convergence rate. On the other hand, the exact solution on the coarsest grid

is costly. Figure 6.6 on the right shows that the computational load required to reach the tar-

get residual, decreases with the number of grid levels. As the number of level increases the

coarsest grid equations contain fewer variables, decreasing its computational cost. The addi-

tional cost of inter-level operators and iterations at inter-levels is small for coarse levels. The

total cost of inter-level operators and iterations has generally the same complexity as a single

iteration at the finest level.

Figure 6. shows the effort required to reach a residual of 10-10 as a function of the number

of states. We used ()2log 2N − levels where N is the number of states, such that the number

of variables at the coarsest level is similar for all problems. Notice that the number of opera-

tions per computational unit increases linearly with the number of states. The effort meas-

ured either in iteration count or computational units, to reach the target residual increases

linearly with the number of states in all methods. However, the rate of increase for the AMG

methods is slower than for the standard methods. The increase factor in computational load

from a 128 state to a 2048 state problem is: 271 for VI, 270 for GS, 66 for AMG:aggr, and

13 for AMG:Ruge-Stüben. These numbers were obtained by multiplying the number of

computational units in Figure 6.5 by the number of states, since the computational unit is

proportional to the number of states. The increase factor for the AMG methods is considera-

bly smaller than for standard methods, which suggests that AMG may be better suited for

problems with more than one dimension, for which the number of states increases exponen-

tially with the number of features.

 94

0 1 2 3 4 5
x 104

10-15

10-10

10-5

100

105

|re
s| 2

computational units

Value iteration
Gauss-Seidel
AMG:aggregation
AMG:Ruge-Stuben

Figure 6.5: Convergence curves for the 1-D random walk problem.
N=1000 states. AMG methods use 6 grid levels, 1 pre- and 1 post-iteration.

0 2 4 6 8 10
100

101

102

103

104

105

number of grid levels

ite
ra

tio
ns

 to
 re

ac
h

|re
s| 2=1

0-1
0

Value iteration
Gauss-Seidel
AMG:aggregation
AMG:Ruge-Stuben

0 2 4 6 8 10

101

102

103

104

105

number of grid levels

co
m

p.
 u

ni
ts

 to
 re

ac
h

|re
s| 2=1

0-1
0

Value iteration
Gauss-Seidel
AMG:aggregation
AMG:Ruge-Stuben

Figure 6.6: Computational effort in iterations(left)/computational
units(right) to reach a residual of 10-10 as a function of the number of grid
levels.
The number of iterations/computational units to reach |res|2=10-10 are:
38203 for VI , 19103 for GS, 130/1174 for AMG:aggr, and 3/23 for
AMG:RS, when using 6 levels.

 95

102 103 104100

102

104

106

number of states in the Markov chain

ite
ra

tio
ns

 to
 re

ac
h

|re
s| 2=1

0-1
0

Value iteration
Gauss-Seidel
AMG:aggregation
AMG:Ruge-Stuben

102 103 104101

102

103

104

105

number of states in the Markov chain

co
m

p.
 u

ni
ts

 to
 re

ac
h

|re
s| 2=1

0-1
0

Value iteration
Gauss-Seidel
AMG:aggregation
AMG:Ruge-Stuben

Figure 6.7: Computational effort in iterations(left)/computational
units(right) to reach a residual of 10-10 as a function of the number of
states.

6.3.2 Policy evaluation in the mountain car problem
In this section, we compare policy evaluation methods for the mountain car problem. Figure

6.8 and Figure 6.9 show convergence curves for this problem, using a 100×100 and 30×30

discretization grids respectively. As in the previous simple problem, AMG:aggr and

AMG:RS converge faster than VI or GS. However, this time AMG:aggr converges faster

than AMG:RS. The advantage of AMG:aggr is a result of its computationally cheap interpo-

lation relative to the Ruge-Stüben interpolation, which makes it more cost effective. Notice

that AMG:aggr and AMG:RS converge though the problem is not symmetric. In section

4.1.4 we presented the Kaczmarz and the least-squares (LS) problem formulations which

guarantee convergence even in non-symmetric problems. Convergence curves for these

methods are given in Figure 6.9. We note that we used a 30×30 grid configuration since run-

ning these methods on a 100×100 grid was too resource consuming. Though these methods

guarantee convergence, they are slow to converge: AMG:LS is more than 8 times slower

than AMG:aggr, and AMG:Kaczmarz does not reach the target residual within the simula-

tion time. The reason for the relative slow convergence rates of AMG:LS and

AMG:Kaczmarz is that the imposed symmetry is obtained at the expense of an increase in

the condition number of the equation system to be solved (see section 4.1.4).

 96

0 1000 2000 3000 4000 5000 6000
10-15

10-10

10-5

100

105

|re
s| 2

computational units

Value iteration
Gauss-Seidel
AMG:aggregation
AMG:Ruge-Stuben

Figure 6.8: Convergence curves for the mountain car problem on a
100×100 grid.
AMG methods use 9 grid levels with 3 pre- and 2-post iterations. The
number of comp. units to reach |res|2=10-10 are: 2081 for VI, 952 for GS,
340 for AMG:aggr, and 566 for AMG:RS.

 97

0 1000 2000 3000 4000
10-15

10-10

10-5

100

105

|re
s| 2

computational units

AMG:aggregation
AMG:Ruge-Stuben
AMG:Kaczmarz
AMG:LS

Figure 6.9: Convergence curves for the mountain car problem generated
on a 30×30 grid.
AMG methods use 6 grid levels with 3pre and 2post iterations. The num-
ber of comp. units to reach |res|2=10-10 are: 153 for AMG:aggr, 369 for
AMG:RS, and 1360 for AMG:LS. AMG:Kaczmarz did not reach the tar-
get residual within 5000 comp. units.

6.3.3 What do grids look like?
In the coarsening process, the points of level 1+A are a subset of the points of level A .

Figure 6.10 and Figure 6.12 show the selected grid points in each level. Large points belong

to coarse and finer grids as well. Small points belong to fine grids only. Lines connecting

points mark a high transitional probability between the states. Figure 6. and Figure 6.13 rep-

resent the basis functions generated at each level. In order to visualize these functions we

define influence regions. In the correction step, coarse grid points are interpolated to the finer

level, thus influencing their value. We assign each point in a fine level to its most influencing

coarse level point. This assignment partitions the state space into influence regions, which

we present in Figure 6. and Figure 6.13. Each influence region is given an arbitrary gray

level for better visualization.

 98

For the 1-D problem, the setup phase generated a uniform aggregation as shown in

Figure 6.10, which may be regarded as natural for this problem. The basis function hierar-

chies in Figure 6., reveal that correction is done in blocks clustered by state adjacency, with

global errors eliminated on the coarsest grid, and local errors on fine grids. In the mountain

car problem, the setup phase generated a grid hierarchy shown in Figure 6.12. A high prob-

ability trajectory is shown in Figure 6.4 above. Comparing these figures reveals that aggrega-

tion is formed along high probability trajectories. A closer look in Figure 6.12 shows uni-

form aggregation along these trajectories. The variables of coarse levels are automatically

chosen with equal spacing along such trajectories, with the basis functions shown in Figure

6.13 (left) aligned. This makes sense since states lying on the same trajectory are susceptible

to suffer the same global error, and should therefore share a similar correction. We refer the

interested reader to [MMS02] in which influence traces are defined in the discretization

process. These traces are similar to the basis functions formed here.

Figure 6.13 shows the basis functions for two different policies: the optimal policy and a

random policy in which right or left accelerations are chosen with equal probability. The dif-

ferences demonstrate the dependency of the generated basis functions on the policy. We note

that during our simulations we observed divergence when using basis functions of one policy

to estimate the other. This stresses the importance of dynamically adapting the basis func-

tions to match policy changes.

0 10 20 30 40 50 60 70 80 90 100
state

Figure 6.10: Grid points for the 1-D random walk problem.

 99

level 1

20 40 60 80 100

level 2

20 40 60 80 100

level 3

20 40 60 80 100

level 4

20 40 60 80 100

level 5

20 40 60 80 100

level 6

20 40 60 80 100

Figure 6.11: Basis functions for the 1-D random walk problem at different
grid levels.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-4

-3

-2

-1

0

1

2

3

4

Figure 6.12: Grid points for the mountain car problem using the optimal
policy.

 100

level 7

-1 0 1
-4

-2

0

2

4
level 8

-1 0 1
-4

-2

0

2

4
level 9

-1 0 1
-4

-2

0

2

4

level 10

-1 0 1
-4

-2

0

2

4
level 11

-1 0 1
-4

-2

0

2

4

level 7

-1 0 1
-4

-2

0

2

4
level 8

-1 0 1
-4

-2

0

2

4
level 9

-1 0 1
-4

-2

0

2

4

level 10

-1 0 1
-4

-2

0

2

4
level 11

-1 0 1
-4

-2

0

2

4

Figure 6.13: Basis functions for the mountain car problem for the optimal
policy (left) and for a random choice policy (right).

6.4 Modified Policy Iteration

In this section, we seek the optimal policy of the mountain car problem. We compare con-

vergence curves of different settings of Algorithm 4.3 and the classic VI and PI algorithms.

The direct solution of (3.2.7) required in the evaluation step of PI is computationally very

demanding. We therefore approximate its solution by using 100 VI iterations, and present the

performance of PI as a function of iterations only, and not the computational load. The modi-

fied PI algorithm was implemented using 4 iterations in the policy evaluation step, taking its

computational load into account. We use two measures to assess the convergence behavior:

the percentage of states in which the greedy policy differs from the optimal one (Figure

6.14), and the norm of the residual error (Figure 6.15). Convergence curves of these meas-

ures are shown as functions of either computational load or the number of iterations.

In computational terms, AMG:aggr reaches the optimal policy about 9 times faster than

VI and more than 5 times faster than modified PI. Though AMG:RS takes about the same

number of iterations to reach optimal policy as AMG:aggr, it is two times slower in compu-

tational terms. The reason is that RS interpolation is more computationally expensive than

interpolation based on aggregation. Observe that both AMG based methods and Policy Itera-

tion take about 20 iterations to reach optimal policy. The fact that the number of policy im-

 101

provement steps is the same suggests that policy evaluation using a single V-cycle iteration

provided a solution close enough to the true value so that the policy improvement step is op-

timal. Similar results are obtained for the second convergence measure (Figure 6.15). AMG

based methods reach the target residual an order of magnitude faster than the standard meth-

ods in computational terms, and as fast as PI in terms of the number of policy improvement

steps.

0 200 400 600 800 1000 1200
10-4

10-3

10-2

10-1

100

di
sa

gr
ee

m
en

t f
ra

ct
io

n

iterations

Value iteration
Modified policy iteration
AMG:aggregation
AMG:Ruge-Stuben
Policy iterations

0 200 400 600 800 1000 1200
10-4

10-3

10-2

10-1

100

di
sa

gr
ee

m
en

t f
ra

ct
io

n

computation units

Value iteration
Modified policy iteration
AMG:aggregation
AMG:Ruge-Stuben

Figure 6.14: Curves of the fraction of states in which policy differs from
the optimal, in the mountain car problem.
The number of iterations/comp. units to reach optimal policy is: 1247 for
VI, 250/750 for Modified PI, 18/140 for AMG:aggr, 20/275 for AMG:RS,
and 21/- for PI.

0 1000 2000 3000 4000 5000 6000
10-15

10-10

10-5

100

|re
s| 2

iterations

Value iteration
Modified policy iteration
AMG:aggregation
AMG:Ruge-Stuben
Policy iterations

0 1000 2000 3000 4000 5000 6000
10-15

10-10

10-5

100

|re
s| 2

computation units

Value iteration
Modified policy iteration
AMG:aggregation
AMG:Ruge-Stuben

Figure 6.15: Curves of the residual error norm, in the mountain car prob-
lem.
The number of iterations/comp. units to reach a residual of 10-10 is: 3675
for VI, 735/2205 for Modified PI, 32/250 for AMG:aggr, 22/308 for
AMG:RS, and 38/- for PI.

 102

6.5 Multigrid Temporal Difference Algorithms

In this section we present results on Multigrid TD learning algorithms. Throughout this sec-

tion our test bed is the 1-D random walk problem with N=256 states. We use 0λ = and the

learning step sequence 0.1tα = for all algorithms. For Multigrid algorithms, we use the

setup step (see section 3.7) to generate a hierarchy of feature vectors, ()sφA prior to the algo-

rithm execution.

6.5.1 Grid level convergence
Here we examine the convergence behavior of TD algorithms applied separately on different

grid levels. We apply TD(0) at level A by using ()sφA as the feature vector, the reward from

the finest grid and initializing θ = 0A . The convergence curves are shown in Figure 6.16.

Convergence on coarser grids is faster than on finer grids, but the steady state error is larger.

There is a tradeoff between accuracy achieved on fine grids and relatively high convergence

rates on coarse grids. Our Multigrid TD algorithms apply TD at multiple grid levels taking

advantage of this property: accuracy is obtained by fine grid iterations, while fast corrections

of global nature are obtained at coarser levels.

 103

0 1 2 3 4
x 106

102

103

104

|θ
 b

ia
s| 2

iterations

TD at level 0
TD at level 2
TD at level 4

Figure 6.16: Curves of the bias in θ for TD(0) applied at different grid lev-
els.

6.5.2 Results for Multigrid TD methods
In this section we bring results for several variations of LB-MGTD and for S-MGTD. We

test two level schemes of LB-MGTD: a one-way bottom up scheme called grid-refinement

and a V-cycle scheme (sections 3.6.3 and 3.6.2 respectively). We switch levels every 5,000

iterations in both schemes. Diagrams of the active level of these schemes are given in Figure

6.17. All algorithms in this section use a constant learning step of 0.1tα = , which was also

the learning step for all levels in S-MGTD, i.e. ,t tα α=A .

Figure 6.18 shows convergence curves with TD(λ) used as the coarsest grid solver.

S-MGTD and LB-MGTD with a V-cycle scheme have similar convergence rate, which is

considerably faster than for the other algorithms tested, specifically an order of magnitude

faster than TD(λ). Among the LB-MGTD variations, V-cycle has the fastest convergence

rate. Notice the ripples in the curve caused by changes in convergence rate following active

level transitions. This effect does not occur in S-MGTD, since there are no explicit level

changes. The grid-refinement scheme has a fast convergence rate at first, when error compo-

nents of global nature are reduced. However, the convergence rate deteriorates after return-

 104

ing to the fine grid, and becomes similar to the convergence rate of TD(λ). The reason lies in

the slow convergence of smooth errors generated in the interpolation.

In section 5.2.4 we suggested to use fast TD solvers at the coarsest level. Figure 6.19 and

Figure 6.20 show convergence curves with different coarsest level solvers for the grid-

refinement and V-cycle schemes respectively. For the grid refinement scheme (Figure 6.19),

all methods have the same asymptotic convergence rate, as expected, due to algebraically

smooth errors caused in interpolation. However, LSTD(λ) and λ-LSPE applied on the coars-

est level enabled a better initialization for TD(λ) on finer levels. The finest level reached a

mean bias of 4097 for TD(λ), 1408 for λ-LSPE, and 387 for LSTD, after 25,000 iterations.

Since TD(λ) has a slow converges rate the improved initialization enabled to reach an initial

bias that standard TD(λ) doesn't reach within 750,000 iterations. Though LSTD achieved

better initialization than λ-LSPE, its value was undefined during the first iterations, until the

matrix tA became non-singular. Its residual changed discontinuously from the initial resid-

ual of about 6000 to 320. Since the residual is actually a discrete time random process, we

use the continuity term loosely, to say that the residual of the ODE which is a continuous

time random process is continuous (see section 5.1). On the other hand, by initializing
1

1t δ−
=− =B I with 10δ = (see (3.4.42)), λ-LSPE had a well defined solution at all times, and

its residual changed gradually. We remind that the update rule of λ-LSPE averages its previ-

ous solution with a new least squares solution, weighted by the step size. This enables to

control the tradeoff between smoothness (high bias) and fast adaptivity to changes (high

variance). The choice of parameters was done to highlight the difference between λ-LSPE

and LSTD(λ). We note that a similar tradeoff control exists in the efficient implementation of

LSTD(λ) called RLS-TD(λ). The choice of parameters affects only the short term behavior,

since LSTD and λ-LSPE converge to each other faster than to the convergence point (this is

proven in [NB03]).

In the V-cycle scheme (Figure 6.20) the use of LSTD(λ) and λ-LSPE as coarse grid

solvers helps to obtain a fast convergence rate during the first three V-cycle cycles (150,000

iterations). During the next cycles, the variance grows making our estimate of the conver-

gence curve unreliable. Notice the spikes when using LSTD, caused by the high initial vari-

 105

ance of LSTD(λ), versus the smoothed version achieved by λ-LSPE. Eventually the scheme

which uses TD(λ) as the coarse grid solvers catches up and offers a solution with lower vari-

ance. The high variance in the coarsest level results from driving the coarse grid solvers with

the sampled residual as a one step reward. The sampled residual, which we remind to be

() () () ()()1 1 1 1, ,
T

t t t t t tr s s r s s s sφ γφ θ −
+ + + += − −A A A A A (see (5.2.22)), is a sum of random vari-

ables, and therefore its variance intends to increase at coarser levels. LSTD and λ-LSPE hap-

pen to be more sensitive to this additional noise than TD(λ). This negative affect can be re-

duced in λ-LSPE by changing the algorithm parameters, i.e. smaller step size and initializing
1

1t δ−
=− =B I with larger δ.

0 5 10 15
x 104

0

2

4

6

gr
id

 re
fin

em
en

t l
ev

el
s

iterations

0 5 10 15
x 104

0

2

4

6

V
-c

yc
le

 le
ve

ls

iterations
Figure 6.17: Active grid for the grid refinement (top) and V-cycle (bottom)
schemes.

 106

0 2 4 6 8
x 105

101

102

103

104
|θ

 b
ia

s| 2

iterations

TD
LB-MGTD:grid refinement
LB-MGTD:V-cycle
S-MGTD

Figure 6.18: Curves of different Multigrid TD algorithms. TD(λ) is used as
the coarsest level solver.
The number of iterations[×1000] to reduce the bias norm by half is: 654
for TD, 370 for LB-MGTD:GR, 76 for LB-MGTD:V-cycle, and 62 for
S-MGTD.

0 2 4 6 8
x 105

101

102

103

104

|θ
 b

ia
s| 2

iterations

coarsest solver:TD
coarsest solver:λ-LSPE
coarsest solver:LSTD

Figure 6.19: Curves of LB-MGTD with a grid refinement scheme
for different coarsest level solvers.

 107

0 2 4 6 8
x 105

101

102

103

104

|θ
 b

ia
s| 2

iterations

coarsest solver:TD
coarsest solver:λ-LSPE
coarsest solver:LSTD

Figure 6.20: Curves of LB-MGTD with a V-cycle scheme
for different coarsest level solvers.

6.6 Concluding Remarks

The results in section 6.3 show that incorporating AMG with policy evaluation brings advan-

tages in terms of accelerated convergence and less sensitivity of the convergence rate to the

problem size. This motivated the incorporation of AMG with policy iteration, which is

shown to speedup convergence to the optimal policy in section 6.4. The results of section 6.3

also motivated the incorporation of AMG ideas in the learning case. We observed that the

Multigrid-TD algorithm converges faster than the standard TD algorithm. The grid-

refinement, which is a bottom up only scheme, has an asymptotic convergence rate similar to

TD, since interpolation injects algebraically smooth errors. The V-cycle scheme however has

a faster convergence rate due to elimination of errors at multiple scales. Among the coarse

grid solvers used, we observe that while LSTD and λ-LSPE are faster to converge than TD,

they are more susceptible to noise, increasing the variance of the solution. It is therefore

preferable to use a fast coarsest grid solver during the initial few cycles, and then switch to

TD(λ) in consecutive cycles. Other options are to change the parameters of λ-LSPE to incor-

 108

porate more smoothing as the number of iterations increase, along with reducing the step size

tα . We note that the criterion used for switching levels is arbitrary, so that deriving better

criteria should improve performance. This problem is less important in the S-MGTD algo-

rithm, which shows significant improved convergence rate over the other algorithms exam-

ined.

 109

C h a p t e r 7

Conclusions

In this dissertation, the AMG approach was used to speed up policy evaluation for the known

model case and in TD learning. Two new TD learning algorithms with a complexity per step

similar to TD(λ), called LB-MGTD(λ) and S-MGTD(λ) were proposed. We showed how to

incorporate LSTD(λ) and λ-LSPE as fast solvers of the coarsest level in LB-MGTD(λ). We

prove separate convergence of each level for LB-MGTD(λ) providing rational for the

scheme, and prove the convergence of S-MGTD(λ). Our convergence proof for S-MGTD(λ)

is not limited to the symmetric case. This is surprising since the symmetry assumption is re-

quired by current theorems in order to guarantee convergence of AMG. This is a limiting

requirement since in practical non-symmetrical problems using AMG offers considerable

speedup only at a risk of divergence. In this sense S-MGTD(λ) is safer than LB-MGTD(λ)

for non-symmetrical problems.

Experimental results on two test-bed problems demonstrate that AMG for policy evalua-

tion can considerably speed up convergence. This speed up is used within a policy improve-

ment step, demonstrating that the optimal policy can be reached with fewer mathematical

operations. On a single problem the LB-MGTD and S-MGTD learning algorithms showed

considerable speed up relative to TD(λ). During our experiments, we observed that increas-

ing number of states in this problem makes the proposed algorithms even more superior to

TD, suggesting that LB-MGTD and S-MGTD are less susceptible to scalability. This prop-

erty is well known in Multigrid literature.

Experimental results on the incorporation of LSTD(λ) or λ-LSPE as coarsest level solvers

in LB-MGTD(λ) showed considerable speedup when used in a grid refinement scheme or

during the first cycles of the V-cycle scheme. However, these solvers showed increased sus-

ceptibility to noise increasing the variance in consecutive cycles. In practice it is therefore

 110

favorable to use λ-LSPE as a coarsest level solver during the first few cycles, and then switch

to TD(λ) at the coarsest grid. In our tests, we used a simple criterion to switch between lev-

els. An improved criterion may estimate the residual convergence rate, and switch between

levels when it deteriorates.

We have shown an equivalent formulation of the proposed S-MGTD as a TD(λ) variant

with modified eligibility traces, in which the basis functions used in the eligibility traces are

different than those used in the value function approximation. The derivation of S-MGTD

from the Multigrid approach and the experimental results suggest that this may offer a con-

siderable speed up. A proper choice for basis functions used for eligibility traces is a linear

combination of interpolations of the original basis functions restrictions, where the interpola-

tor is built to approximate algebraically smooth errors (see (5.3.66) and (5.3.77) in section

5.3.5).

In this dissertation we focused on the solve phase of AMG. In the known model case, the

implementation of a setup phase that defines inter-level operators is straightforward, with

many methods available in AMG literature (see references in [TOS01]). In the learning case,

we focused on the development of learning versions of the solve phase, and assumed that

inter-level operators are available beforehand. We offered a way to obtain these operators

on-line by applying a standard setup procedure to an on-line estimate of the matrix A as done

in the LSTD algorithm [NB03]. We note that the setup phase is considerably less susceptible

to the accuracy in A than LSTD, holding the potential of using rough or even qualitive esti-

mators to estimate only the significant elements of A. The derivation of such schemes is kept

for future work.

The setup phase of AMG automatically generates hierarchies of aggregates, based on the

notion of smooth error approximation. AMG theory and practical experience with setup pro-

cedures may be applied to address the open question of how to form aggregation hierarchies

automatically.

Finally, we note that the algorithms we proposed are not limited to algebraic Multigrid,

and may easily be extended to work with geometric Multigrid when ordered meshes are

natural to the problem at hand.

 111

Bibliography

[AC88] Akian M. and Chancelier J.P., Dynamic Programming Complexity

and Application. Proceedings of the 27th Conference on Decision

and Control, Austin, Texas, pp. 1551-1558, 1988.

[B02] Boyan J.A., Technical Update: Least Squares Temporal Difference

Learning. Machine Learning, 49, pp. 233-246, 2002.

[B72] Brandt A., Multi-Level Adaptive Technique for Fast Numerical So-

lution to Boundary Value Problems. In the 3rd International Confer-

ence on Numerical Methods in Fluid Mechanics, 1972.

[B86] Brandt A., Algebraic Multigrid Theory: the Symmetric Case. Appl.

Math. Comp. Vol. 19, pp. 23-56, 1986.

[B99] Bertsekas D.P. Nonlinear Programming, 2nd edition. Athena Scien-

tific, 1999.

[BB99] Bradtke S.J. and Barto A.G., Linear Least-Squares Algorithms for

Temporal Difference Learning. Machine Learning, 22:1-3, pp. 33-

57, 1996.

[BBN03] Bertsekas D.P., Borkar V.S., and Nedić A., Improved Temporal Dif-

ference Methods with Linear Function Approximation. Report LIDS-

2573, December 2003.

[BC89] Bertsekas D.P. and Castañon D.A., Adaptive Aggregation Methods

for Infinite Horizon Dynamic Programming. IEEE Transactions on

Automatic Control, Vol. 34, No. 6, 1989.

[BHMC00] Briggs W.L., Henson V.E., and McCormick S.F., Multigrid Tutorial,

Second Edition. Philadelphia, SIAM, 2000

 112

[BM03] Barto A.G. and Mahadevan S., Recent Advances in Hierarchical Re-

inforcement Learning. Discrete Event Dynamic Systems: Theory and

Applications, Vol. 13, pp. 41-77, 2003.

[BMP90] Benveniste A., Métivier M., and Prioret P., Adaptive Algorithms and

Stochastic Approximations. Berlin: Springer-Verlag, 1990.

[BT95] Bertsekas D.P. and Tsitsiklis J.N., Neuro-Dynamic Programming.

Athena Scientific, Belmont, MA, 1995.

[CM82] Chatelin F. and Miranker W.L., Acceleration by Aggregation of

Successive Approximation Methods. Linear Algebra and its Appli-

cations, Vol. 43, pp. 17-47, 1982.

[D00] Dietterich T.G. Hierarchical Reinforcement Learning with the

MAXQ Value Function Decomposition. Journal of Artificial Intelli-

gence Research 13, pp. 227-303, 2000.

[D98] Digney B., Learning Hierarchical Control Structure for Multiple

Tasks and Changing Environments. Proceedings of the Fifth Confer-

ence on the Simulation of Adaptive Behavior, Cambridge, 1998.

[DH92] Dayan P. and Hinton G.E., Feudal Reinforcement Learning. Ad-

vances in Neural Information Processing Systems (NIPS) 5, pp. 271-

278, 1992.

[F61] Fedorenko R.P., A Relaxation Scheme for the Solution of Elliptic

Differential Equations. UdSSR Comput. Math. Phys. 1,5, pp. 1092-

1096, 1961 (in Russian).

[FD02] Foster D. and Dayan F., Structure in the Space of Value Functions.

Machine Learning, Vol. 49, pp. 325-346, 2002.

[FS02] Feinberg E.A. Shwartz A. Handbook of Markov Decision Processes

- Methods and Applications. Kluwer Academic, Netherlands, 2002.

[H76] Hackbusch W., Ein Iteratives Verfaheren zur Schnellen Auflösung

Elliptischer Randwertprobleme. Technical Report 67-12, Universität

Köln, 1976.

 113

[HA98] Heckendorn R.B. and Anderson C.W., A Multigrid Form of Value

Iteration Applied to a Markov Decision Problem. Technical Report

CS-98-113, Colorado state university, computer science department,

1998.

[KA99] Kretchmar R.M. and Anderson C.W., Using Temporal Neighbor-

hoods to Adapt Function Approximators in Reinforcement Learning.

Proceedings of the International Work Conference on Artificial and

Natural Neural Networks (IWANN), Alicante, Spain, pp. 488-496,

1999.

[KXZ03] Kim H., Xu J., and Zikatanov L., A Multigrid Method Based on

Graph Matching for Convection-Diffusion Equations. Numerical

Linear Algebra with Applications. Vol. 10, pp. 181-195, 2003.

[L93] Long-Ji Lin., Self-Improving Reactive Agents Based on Reinforce-

ment Learning, Planning and Teaching. Machine Learning, Vol. 8

(3-4), pp. 293-321, 1992.

[MA95] Moore A.W. and Atkeson C., The Parti-Game Algorithm for Vari-

able Resolution Reinforcement Learning in Multidimensional State

Space. Machine Learning, Vol. 21, 1995.

[MC87] McCormick S.F., Multigrid Methods, Frontiers in Applied Mathmat-

ics. SIAM, 2000. Chapter 4, Ruge J.W. and Stüben K., Algebraic

Multigrid.

[MM02] Munos R. and Moore A., Variable Resolution Discretization in Op-

timal Control. Machine Learning, Vol. 49, pp. 291-323, 2002. Pa-

rameters for the Mountain Car problem can be found in http://www-

2.cs.cmu.edu/~munos/variable/ .

[MMS02] Menache I., Mannor S., and Shimkin N. Q-Cut - Dynamic Discovery

of Sub-Goals in Reinforcement Learning. European Conference on

Machine Learning, pp. 295-306, 2002.

http://www-2.cs.cmu.edu/~munos/variable/
http://www-2.cs.cmu.edu/~munos/variable/

 114

[MMS03] Menache I., Mannor S., and Shimkin N., Basis Function Adaptation

in Temporal Difference Reinforcement Learning. To appear in the

Annals of Operations Research, special issue on the Cross Entropy

method. Revised: December 2003

[NB03] Nedić A. and Bertsekas D.P., Least Squares Policy Evaluation Algo-

rithms with Linear Function Approximation. Discrete Event Dy-

namic Systems: Theory and Applications, Vol. 13, pp. 79-110, Klu-

wer Academic, Netherlands, 2003.

[P94] Puterman M.L., Markov Decision Processes: discrete stochastic dy-

namic programming. Wiley-Interscience, New York, 1994.

[S01] Stüben K., An Introduction to Algebraic Multigrid. Appendix in

[TOS01], 2001.

[S88] Sutton R.S., Learning to Predict by the Methods of Temporal Differ-

ences. Machine Learning, Vol. 3, pp. 9-44, 1988

[S96] Sutton R.S., Generalization in Reinforcement Learning: Successful

Examples Using Sparse Coarse Coding. Advances in Neural Infor-

mation Processing Systems (NIPS), Vol. 8, pp. 1038-1044, MIT

Press, 1996.

[SB98] Sutton R.S. and Barto A.G., Reinforcement Learning: An Introduc-

tion. MIT Press, Cambridge, MA, 1998.

[SD98] Singh S. and Dayan P., Analytical Mean Squared Error Curves for

Temporal Difference Learning. Machine Learning, Vol. 32, pp. 5-

40. 1998. Also in NIPS 9, pp. 1054-1060.

[SJJ95] Singh S.P., Jaakkola T., and Jordan M.I., Reinforcement Learning

with Soft State Aggregation. Advances in Neural Information Proc-

essing Systems, Vol. 7, pp. 361-368, MIT Press, 1995.

 115

[SPK84] Schweitzer P.J., Putterman M.L., and Kindle K.W., Iterative Aggre-

gation-Disaggregation Procedures for Discounted Semi-Markov

Reward Processes. Operations Research, Vol. 33, No. 3, pp.

589-605, 1985.

[T92] Tesauro G.J., Practical Issues in Temporal Difference Learning. Ma-

chine Learning Vol. 8, pp. 257-277, 1992.

[TOS01] Trottenberg U., Oosterlee C., and Schüller A., Multigrid. Academic

Press, San Diego, 2001.

[TVR97] Tsitsiklis J.N. and Van Roy B., An Analysis of Temporal-Difference

Learning with Function Approximation. IEEE Transactions on Auto-

matic Control. Vol. 42, No. 5, pp. 674-690, 1997.

[VH99] Henson V.E., An Algebraic Multigrid Tutorial. Presented at the

Ninth Copper Mountain Conference on Multigrid Methods. UCRL-

MI-133749. 1999.

http://www.llnl.gov/CASC/people/henson/presentations/amgtut.pdf

[W99] Wagner C., Introduction to Algebraic Multigrid. Course notes, Uni-

versity of Heidelberg, 1999.

http://www.iwr.uni-heidelberg.de/groups/techsim/chris/amg.pdf

[XHH02] Xin Xu, Han-gen He and Dewen Hu., Efficient Reinforcement

Learning Using Recursive Least-Squares Methods. Journal of Artifi-

cial Intelligence Research, Vol. 16, pp. 259-292, 2002.

http://www.llnl.gov/CASC/people/henson/presentations/amgtut.pdf
http://www.iwr.uni-heidelberg.de/groups/techsim/chris/amg.pdf

	Acknowledgements
	Contents
	List of Figures
	List of Algorithms
	Abstract
	Notations and Abbreviations
	Introduction
	Literature Survey
	2. Aggregation for Dynamic Programming
	2. Multilevel approaches for Reinforcement Learning
	2. TD learning algorithms - recent advances
	2. Algebraic Multigrid

	Scientific Background
	3. Problem modeling and the MDP framework
	3. Dynamic Programming
	3. The Bellman equations
	3. Policy Evaluation
	3. Policy Iteration
	3. Value Iteration
	3. Asynchronous Value Iteration
	3. Modified Policy Iteration

	3. Introduction to Reinforcement Learning
	3. What is Reinforcement Learning?
	3. Temporal Difference Update – basics
	3. TD(λ)

	3. TD Methods for Linear Function Approximation
	3. Linear Function Approximation
	3. Temporal Difference using Function Approximation
	3. TD(λ) with Function Approximation
	3. Least-Squares based methods
	3. Comparison of TD and Least Squares methods

	3. Algebraic Preliminaries
	3. Algebraic Multigrid Review
	3. What is Algebraic Multigrid?
	3. General AMG Routine
	3. Grid Refinement
	3. Full Multigrid
	3. Convergence Issues
	3. Practical Issues

	3. Technical notes on the setup phase
	3. A few words on motivation
	3. Notations and Definitions
	3. Construction of Interpolators
	3. Coarsening

	AMG for Policy Evaluation and Iteration
	4. AMG for Policy Evaluation
	4. A deficiency of standard iterative methods
	4. AMG as a "black box" solver for PE
	4. AMG for policy evaluation - review of assumptions
	4. Imposing symmetry
	4. Preservation of the Markov chain interpretation under str

	4. AMG for Modified Policy Iteration

	Multigrid Temporal Difference Algorithms
	5. Analysis of TD(λ) dynamics
	5. Analytic derivation
	5. Empirical demonstration

	5. A level�based Multigrid TD algorithm
	5. The Main Algorithm
	5. Algorithm description
	5. Analogy to the classical Multigrid algorithm
	5. Fast TD solvers for the coarsest level
	5. Convergence of the coarse level algorithms

	5. A simultaneous Multigrid TD algorithm
	5. Main idea and purpose
	5. Algorithm presentation
	5. Level-based as a special case of simultaneous Multigrid T
	5. S-MGTD(λ) - finest grid formulation
	5. Convergence analysis for proportional learning steps

	5. A Few Words on On�Line Grid Construction

	Experiments and Results
	6. Problem Definitions
	6. A simple example: 1-D random walk
	6. The Mountain Car application

	6. Notations and Conventions
	6. Known model case - technical details for sections 6.3�6.4
	6. Learning case - technical details for section 6.5

	6. Policy Evaluation - known model case
	6. Results for the 1�D random walk problem
	6. Policy evaluation in the mountain car problem
	6. What do grids look like?

	6. Modified Policy Iteration
	6. Multigrid Temporal Difference Algorithms
	6. Grid level convergence
	6. Results for Multigrid TD methods

	6. Concluding Remarks

	Conclusions
	Bibliography

