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Abstract. We consider the problem of selfish or competitive routing
over a network with flow-dependent costs which is shared by a finite
number of users, each wishing to minimize the total cost of its own flow.
The Nash Equilibrium is well known to exist for this problem under
mild convexity assumptions on the cost function of each user. However,
uniqueness requires further conditions, either on the user cost functions
or on the network topology. We briefly survey here existing results that
pertain to the uniqueness issue. We further consider the mixed Nash-
Wardrop problem and propose a common framework that allows a unified
treatment of this problem.

1 Introduction

The selfish routing problem involves a number of non-cooperative users, or play-
ers, each wishing to ship a certain amount of flow over a shared network, where
link costs are flow dependent. A user can choose which route (or routes) to use
in order to minimize the total cost of its own flow. This gives rise to a non-
cooperative game, with the associated Nash equilibrium as the central solution
concept.

Selfish routing was first considered by Wardrop [28] in the context of trans-
portation networks. This paper introduced the notion of shortest-path equilib-
rium, or Wardrop equilibrium, where only minimal-cost pathes are used between
each origin-destination pair. This may be view as the Nash equilibrium of a game
between a continuum of infinitesimal users. Recent overviews of the extensive
literature that concerns the Wardrop equilibrium and its variants may be found
in [22, 20, 3, 25].

The finite-user version of the selfish routing model was introduced in the liter-
ature more recently, motivated in part by the non-centralized view of communi-
cation networks. The paper [11] shows convergence of the Nash equilibrium (for
symmetric users) to the Wardrop equilibrium as the number of users increases to
infinity. Existence, uniqueness and some basic properties of the Nash equilibrium
are studied in [21, 2, 4, 23]. The notion of a mixed Nash-Wardrop equilibrium,
which combines infinitesimal users with positively-sized ones, is considered in [10,
7]. Efficient network design and management are considered in [13, 14, 16, 15, 9],



while [26] bounds the performance degradation relative to centralized routing
(along with similar results for the Wardrop equilibrium). The convergence of
some dynamic schemes to the Nash equilibrium is considered in [12], while [17]
considers a repeated game version of the routing problem, and [5] considers the
addition of side-constraints on link flows.

Our focus here in on the question of uniqueness of the Nash equilibrium in
selfish routing. Besides its theoretical interest, uniqueness is of obvious impor-
tance for predicting network behavior in equilibrium. From the computational
aspect, efficient procedures that find all Nash equilibria are virtually non-existent
when the equilibrium is non-unique. Uniqueness is also of particular importance
for network management, where regulating the user behavior in a single equilib-
rium (using pricing, for example) is usually much easier than for several equilibria
simultaneously.

Uniqueness is well-known to hold for the basic (single-class) Wardrop equi-
librium, assuming only that the link costs are strictly increasing in the link
flow. In that case the Wardrop equilibrium has been shown in [6] to be equiva-
lent to convex optimization problem, and hence is unique. However, this simple
cost monotonicity requirement no longer suffices for the the finite-user Nash
equilibrium, as shown through simple counter-examples, nor for the multi-class
Wardrop equilibrium problem (where link costs depend on the user class). There-
fore, additional conditions are required to guarantee uniqueness in these cases.
Existing conditions may be roughly divided into two types: conditions on link
cost functions on the one hand, and conditions on the network topology on the
other. In this paper we provide a brief survey of these uniqueness results, focusing
on the finite-user model. We will also show that the multi-class Wardrop equi-
librium may be embedded within the finite-user problem, and outline a general
framework that handles the joint Nash-Wardrop problem in a unified manner.

2 The Game Model

Consider a network which is defined by a directed graph G = G(V, L), where V
is a finite set of vertices (or nodes) and L ⊂ V × V is a set of edges or links.
This network is shared by a finite set I = {1, 2, . . . , n} of users, where each user
i needs to deliver a given positive amount di of flow from its source node Oi

to its destination node Di, and may divide its flow between the set of paths
πi that connect these nodes. Denote by f i

l the flow of user i on link l, and let
fl =

∑
i∈I f i

l denote the total flow on link l. Furthermore, fl = (f i
l )i∈I is the flow

vector over link l, f i = (f i
l )l∈L is user i’s flow profile, and f = (f i)i∈I denotes

the system flow profile.
The flow profile of each user is subject to the standard positivity and con-

servation requirements. That is, f i
l ≥ 0, and the sum of flows at each node

(including external incoming or leaving flow) is null. We denote the set of feasi-
ble flow profiles f i for user i by F i, which is clearly a closed, convex polyhedron,
and by F the set of feasible system profiles.



Let J i(f) denote the cost function for user i. We consider additive costs of
the form

J i(f) =
∑

l∈L

J i
l (fl) . (1)

Thus, the cost for each user is the sum of its link costs, and the cost of any given
link depends only on the flow vector on that link. We further impose here the
following assumptions:

Assumption A1: J i
l (fl) = f i

l T
i
l (fl).

Assumption A2: The function T i
l takes values in [0,∞], and is continuously

differentiable, strictly increasing (where finite), and convex.

T i
l (fl) is the cost per unit flow for user i on link l. Note that the per-unit costs

may differ between users; this may arise, for example, due to user-dependent
pricing. A simple consequence of these assumptions is that the link cost function
J i

l (f
l) is strictly convex in f i

l , hence the user cost J i(f) is convex in fl.
We note that more general cost functions of the form J i

l (fl) = J i
l (f

i
l , fl) have

been considered in [21] and subsequent literature. However, in this review we
will focus on the above-mentioned case, which is of most practical interest.

A cost function that is often used in the context of communication networks
is the M/M/1 delay functions, namely T i

l (fl) = 1
Cl−fl

for fl < Cl, and T i
l = ∞

for fl ≥ Cl, where Cl is the link capacity. Note that the above assumptions
allows the per-unit costs to assume infinite values, as long as the increase to
infinity is continuous.

A flow profile f̂ is a Nash equilibrium point (NEP) if each user’s flow profile
is a best-response against the combined flows of the others. That is, for each
i ∈ I,

J i(f̂) = min
f i∈F i

J i(f̂1, . . . , f̂ i−1, f i, f̂ i+1, . . . , f̂ I). (2)

A simple consequence of Assumptions A1-A2 above is that the link cost
function J i

l (f
l) is strictly convex in f i

l , hence the user cost J i(f) is strictly convex
in fl. If follows that the above model is a convex game, and existence of the NEP
essentially follows from classical results [8, 24]. As the best-response minimization
problem faced by each user is a convex program, its solution is unique (whenever
finite). However, as is well known, uniqueness of the best response does not
guarantee uniqueness of the equilibrium point.

When cost functions take infinite values, some care is needed in distinguish-
ing finite-cost equilibria from infinite-cost ones, where at least one user does
not have a finite-cost response to the flow of the others. To exclude existence
of infinite-cost equilibria some additional assumptions are required. An fairly
straightforward one is the following:
Assumption A3: For any flow configuration f which involves infinite costs, at
least one user whose cost is infinite can modify its flow configuration to obtain
a finite cost.

Irrespectively of Assumption A3, our discussion will henceforth focuse on
finite-cost equilibria and their uniqueness.



Nonuniqueness: A first counterexample to the uniqueness of the NEP under
reasonable convexity assumptions was given in [21], using a two-user four-node
network. The user cost functions were not however given in the form of Assump-
tion A1. Counterexamples with cost functions that do comply with A1-A2 are
given in [23] for the networks shown the Figure 2 (we return to these networks
in Section 5). In all these examples non-uniqueness is essential, in the sense that
the user costs are different in the two equilibria.

Elastic demand: The model considered in this paper assumes that flow de-
mands are fixed. Elastic demand can be incorporated into this model by elimi-
nating the demand constraint and subtracting a flow utility term U i(di) from the
cost function (1). The utility function is usually assumed to be convex increas-
ing in the flow, which maintains the convexity of the overall cost. One approach
to treat the elastic-demand case is to reduce it to the fixed demand model by
adding a dedicated link for each user that absorbs its excess flow, with cost
that represents the flow utility. A direct proof of uniqueness for the parallel link
network may found in [1] and [18].

3 Cost Function Conditions

A general tool for establishing uniqueness of the NEP in convex games is the
notion of Diagonal Strict Convexity (DSC) introduced in [24]. This condition
may be applied to the network routing problem to obtain per-link sufficient
conditions. It then remains to determine what classes of link cost functions satisfy
this property.

Let gi(f) = ∂Ji(f)
∂f i denote gradient of user i’s cost with respect to its flow

vector, and for a fixed vector ρ ∈ Rn let g(f , ρ) = (ρigi(f i))n
i=1 (arranged as a

row vector). Then the cost functions {J i} satisfy the DSC property if g(f , ρ) is
strictly increasing in f for some positive vector ρ. That is ρi > 0, and

(g(f̂ , ρ)− g(f , ρ)) · (f̂ − f) > 0 for all nonequal f , f̂ ∈ F . (3)

As established in [24], the DSC property implies uniqueness of the equilibrium
in the routing game.

The DSC property (3) may be written in scalar notation as
∑

l∈L

∑

i∈I

ρi(gi
l(f̂l)− gi

l(fl))(f̂
i
l − f i

l ) > 0 (4)

It is now clear that a sufficient condition for the DSC property to hold for the
overall game is that a DSC-like property holds for each link separately, but with
a common weight vector ρ. We summarize this as follows.

Theorem 1. Suppose there exist numbers ρi > 0 so that, for each link l,
∑

i∈I

ρi(gi
l(f̂l)− gi

l(fl))(f̂
i
l − f i

l ) > 0 (5)

for any pair of feasible link flows f̂l 6= fl. Then the NEP is unique.



A second-order sufficient condition given in [24] for the DSC property (3)
is that the Jacobian matrix G of g(f , ρ) with respect to f be positive definite
(G + GT > 0) for every feasible f . Applying this condition on to the last result
leads to the following result.

Corollary 1 ([21]). Suppose that matrix Gl(fl, ρ) is positive definite for each
link l, where

Gl(fl, ρ) =

{
ρi

∂2J i
l (fl)

∂f i
l ∂f j

l

}

i,j∈I

.

Then the condition of the last theorem holds, and the NEP is unique.

A couple of simple examples from [21] will be useful for illustrating the nature
of these conditions, and in particular the effect of the system load and cost
function steepness.

Example 1: Assume two users, I = a, b, and consider a link l with capacity
Cl and M/M/1 costs: T i

l = 1/(Cl − fl), where fl = fa
l + f b

l . Then for fl < Cl,

Gl(fl, ρ) =
1

(Cl − fl)3

(
2ρa(Cl − f b

l ) ρl(Cl + fa
l − f b

l )
ρb(Cl + f b

l − fa
l ) 2ρb(Cl − fa

l )

)

Assume that the total flows are in a rectangle which is bounded away from the
link capacity, namely fa

l ≤ ra, f b
l ≤ rb where ra + rb < Cl. It may be easily

verified that the DSC condition on the matrix Gl holds with ρa = rb and ρb = ra.
However, this is not the case under the alternative constraint fa

l + f b
l < Cl.

Indeed, for any fixed vector ρ the matrix Gl(fl, ρ) is not positive definite if fa
l or

f b
l is close enough to Cl. Evidently, the condition in the Corollary is satisfied in

lightly loaded networks (flow requirements da + db < Cl for each link), but not
when the feasible total flow on some link exceeds the capacity.

Example 2: Let T i
l = P (fl), i = a, b, where P is a monic polynomial with

degree m ≥ 1. Then it may be verified that, with ρ = (1, 1), Gl(fl) is positive
definite over the entire positive quadrant if m ≤ 7, but not if m ≥ 8. Thus, DSC
is implied here if the cost function is “not too steep”.

The next result was established for polynomial-like cost functions of the form

T i
l (f) = alf

pl + bl . (6)

Such costs find application in the context of road traffic. Let p∗ = 3n−1
n−1 , where

n is the number of users. Note that p∗ > 3 for any n.

Theorem 2 ([2]). Assume the per-link costs (6), with al > 0 and 0 < pl < p∗

for all l. Then the NEP is unique.

The proof proceeds by demonstrating positive definiteness of the (n by n) matrix
Gl(fl, ρ), with ρi ≡ 1.



4 Symmetric Users

A general uniqueness result holds for the case of symmetric users, namely when
all users have identical origin-destination pairs, flow demands and link cost func-
tions. In that case the NEP is unique, and indeed turns out to be symmetric
(namely with identical link flows) [21]. The proof is by direct analysis, which
uses the first-order optimality conditions to show that non-symmetric flows lead
to a contradiction.

5 Topological Conditions

Given that uniqueness does not always hold under Assumptions A1-A2 in net-
works of general topology, the question arises as to whether there exist restricted
network topologies for which this general uniqueness property holds. This ques-
tion was answered in the affirmative in [21] for parallel-link networks. In a recent
work, Milchtaich [19] characterized all two-terminal network topologies for which
this property holds for the multi-class Wardrop equilibrium. This result was ex-
tended in [23] to the finite user model, as described below. We start by defining
the following basic property.

Definition 1. A network G has the topological uniqueness property if the NEP
is unique for any routing game over G that satisfies Assuptions A1-A2.

The discussion in this section will be focused on two-terminal networks, where
the source and the destination of all users are the same. The simplest network
topology of interest is that of a parallel network: In this case the network has
only two nodes, with one serving as the origin node for all users and the other
as the destination node. As mentioned, it was shown in [21] that a parallel-link
network has the topological uniqueness property.

We proceed to define nearly parallel networks, following [19]. As shown there,
undirected two-terminal network topologies can be classified into one of two
classes. The class of nearly parallel networks essentially contains the networks
shown in Figure 1, as well as serial connections of those networks. The comple-
mentary class contains all networks in which one of the basic networks shown in
Figure 2 is embedded, in the following sense.

Definition 2. A network G′ is said to be embedded in the wide sense in net-
work G′′ if G′′ can be obtained from G′ by some sequence of the following three
operations:

1. Edge subdivision: An edge is replaced by two edges with a single common
end vertex.

2. Edge addition: The addition of a new edge joining two existing vertices.
3. Terminal vertex subdivision: The addition of a new edge, joining the terminal

vertex O or D with a new vertex v, such that a nonempty subset of the edges
originally incident with the terminal vertex are incident with v instead.
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Fig. 1. Basic networks that define the class of nearly-parallel networks
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Fig. 2. Basic networks that are not nearly-parallel

Definition 3. A two-terminal network G is called nearly parallel if it is one
of the networks in Figure 1, or can be constructed from one of the networks in
Figure 1 by a series of edge subdivisions.



Theorem 3 ([19]). For every two-terminal network G, one, and only one, of
the following conditions holds: (i) G is nearly parallel, or is a serial connection
of two or more nearly parallel networks. (ii) One (or more) of the networks in
Figure 2 is embedded in the wide sense in G.

The actual (directional) network model is obtained from the non-directional
one by replacing each edge with two directional links, one in each direction. Of
the five networks in Figure 1, only network (e) supports meaningful bidirectional
traffic between some pair of nodes (namely, on the parallel-link network between
nodes A and B) given the indicated origin and destination nodes. Indeed, network
(e) is the most general of the five, as the other four may be considered a special
case of this network for routing purposes. Still, the formal definition of nearly
parallel networks does require all these basic networks.

The following result states that topological uniqueness extends to the class
of nearly parallel networks, and only to that class.

Theorem 4 ([23]). A two-terminal network G has the topological uniqueness
property if, and only if, G is a nearly parallel network or is a series connection
of such networks.

The proof of sufficiency uses specific arguments related to monotonicity prop-
erties of the marginal link costs. The proof of necessity proceeds by providing a
(three-user) counterexample to uniqueness with cost functions that satisfy A1–
A2 for each of the networks shown in Figure 2, and then showing that these
basic examples can be extended to any network that is not nearly parallel by
using the embedding property in Theorem 3(ii).

6 Mixed Nash-Wardrop Routing

Recall that the Wardrop equilibrium may be considered as the limit of the Nash
routing problem, where the user size is infinitesimal. A natural extension to
the model is to consider jointly both large (atomic) users and a continuum of
infinitesimal users that share the same network, to which we refer as the mixed
Nash-Wardrop model [10, 7]. As in the multi-class Wardrop model, we assume
that infinitesimal users belong to a (finite) number of user classes, distinguished
by their cost functions.

While the equilibrium conditions for atomic and infinitesimal user classes are
defined from different perspectives, they actually share common properties and
a unified treatment of these two types of users is desirable. In [23] two different
approaches for unified treatment are presented, and used in particular to obtain
proper extensions of the above topological uniqueness properties to the mixed
model. Due to space limitations we do not provide details here. In broad terms,
the two proposed approaches are:

1. Reduction to a finite user Nash model: Here each service class is trans-
formed to a single atomic user with an appropriate cost function. This may



be considered a multi-class extension of the well known representation of the
single-class Wardrop equilibrium as a (convex) optimization problem.

2. A continuum-game model: Here the framework of non-atomic games [27] is
used to model small users. Thus, each user (large or small) is explicitly modelled
as a rational decision maker with an individual cost function. This is in contrast
to the usual definition of the Wardrop equilibrium, which specifies the behavior
of small-user classes via an aggregate flow condition. As opposed to the previous
approach, the model allows for a continuum of infinitesimal-user classes alongside
the discrete population of large users.

In either case, the cost functions obtained for the infinitesimal users or in-
finitesimal user classes satisfy somewhat weaker conditions than Assumptions
A1–A2 and their natural extensions. Still, these conditions do allow to obtain
unified uniqueness results for this model, which recover the known topological
uniqueness results for both the Nash and Wardrop equilibrium.

7 Conclusion

While new grounds have been gained recently in the analysis of the uniqueness
issue in selfish routing, it appears that much remains to be done. Without fur-
ther conditions on the cost functions, uniqueness results are limited to a fairly
restricted class of network topologies. On the other hand, the sufficient condi-
tions that have been explored so far based on diagonal convexity are link-based
and do not bring the network topology into play at all. One may hope to find
a middle ground that combines cost function properties with other network and
user characteristics. This remains a challenging direction for further research.
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