
Fast Graph-Search Algorithms for General Aviation Flight

Trajectory Generation

Eran Rippel∗, Aharon Bar-Gill† and Nahum Shimkin‡

Technion—Israel Institute of Technology, Haifa, Israel

May 24, 2004

Abstract

We consider numerical algorithms for on-board flight trajectory generation and optimization in

three dimensional space. Our approach relies on graph search algorithms, which perform a global

search over the set of feasible trajectories. We start by formulating a simplified kinematic model

that is appropriate for General Aviation aircraft. The cost function to be optimized includes, the

cost function to be optimized accounts for position-dependent criteria such as the flight altitude and

terrain clearance. Additional “dynamic” components that involve the angular velocities are introduced

to account for riding qualities and pilot workload. Using an approximate grid-based discretization

scheme, we transform the continuous optimization problem into a search problem over a finite graph,

and apply Dijkstra’s shortest-path algorithm to this problem. To reduce the computation time to

acceptable levels, we introduce a novel state reduction technique that leads to sub-optimal search.

Further speedup is achieved by heuristic search techniques and hierarchical methods. Performance of

the proposed algorithms is evaluated for a trajectory optimization problem with terrain following over

a 100 × 100 kilometer area. Our experiments demonstrate the potential of these algorithms, when

combined, to provide an on-board solution to realistic flight trajectory generation problems.

∗Graduate student, Department of Electrical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
†Department of Aeronautical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
‡Department of Electrical Engineering, Technion—Israel Institute of Technology, Haifa, Israel

1

Nomenclature

avertical, āv – aircraft vertical acceleration, and its upper bound
ahorizontal, āh – aircraft horizontal acceleration, and its upper bound
c(X, U) – immediate cost function
C(v, u) – cost of edge (v, u)
d0 – trajectory accuracy
D – set of destination vertices
DTM(t) – ground level from Digital Terrain Map
E – the set of edges of a graph
g – cost-so-far estimation function
G – a graph
h – cost-to-go heuristic function
h0 – safety clearance height
H0 – clearance height
H – flight level
hx, hy, hz – 3D grid spacing
i, j, k – integer grid indices
J – cost functional
m, n, � – integer indices for neighboring grid points
m – maximal number of neighbors for each 3D point
n – number of 3D points in the mesh
N – number of vertices in a graph
P , Pi – a point in 3D Cartesian space
Rmin – minimal aircraft turn radius
s – source vertex
S – set of vertices with known shortest-path values
S0 – finite grid in Cartesian space
tf – first arrival time to a goal state
u, v – vertices
U – control signal
V (X) – aircraft velocity at state X
V – the set of vertices of a graph
wκ – cost criterion weight
x, y, z – Cartesian coordinates
X – aircraft state
α – tradeoff factor
γ – vertical flight path angle
κ – cost criterion index
ψ – heading angle
Xf – set of goal states
Ω – set of cost criteria
∆γ0 – largest separation between discrete angles

2

1 Introduction

General Aviation (GA) constitutes a considerable part of today’s saturated air traffic. In most

instances, a GA aircraft is flown by a single pilot, who may find himself under adverse weather

conditions, operating in Single Pilot Instrument Flight Rule (SPIFR) mode; a faulty link to Air

Traffic Control (ATC) may complicate matters even more. The additional stress and workload cause

many unfortunate accidents. Technological advancements, combined with increased affordability,

open new venues for tackling this SPIFR safety problem. These include, for example, Ground

Collision Avoidance Systems (GCAS) [1, 2] that employ Geographic Information System (GIS)

databases [3, 4].

Three-dimensional (3D) flight trajectory generation is a complex task, involving various criteria

that affect the resulting path. These include, among others, the flight duration, the degree to

which different terrain features are utilized, the workload imposed on the pilot in order to follow

the prescribed trajectory, and riding qualities (or passenger comfort) which are affected by the

accelerations involved. Every generated trajectory has to accommodate for these often conflicting

objectives. Evidently, the specified cost components and the tradeoff between them should reflect

the specific requirements of the flight mission. For example, low altitude may be required to avoid

flying within a cloud layer, which may add to pilot stress. ‘Sunday pilots’, in particular, would

prefer maximum dwell time below cloud ceiling, i.e., flying as low as possible, subject – of course –

to safety constraints. The weight given to the pilot workload (pumping the stick and the pedals)

should depend on the pilot’s preferences. And minimal exposure to high g-levels may be critical if

an injured passenger is carried onboard. All these considerations bring out the need for a flexible

flight trajectory generation capability.

In this paper we address the problem of on-board generation and optimization of 3D trajectories.

GA applications call for a low-cost solution to this problem that would trace a flight path for rescuing

a person, for example, seconds after destination has been decided on (hospital most suitable to

treat the particular injury). Thus, by on-board algorithms we refer here to algorithms that can

compute optimal flight paths within few tens of seconds. Modern technology should allow for such

a solution, in particular under circumstances where communication with ATC fails and routine

VFR/IFR (Visual/Instrumental Flight Rules) cannot be maintained.

An implementation of such a trajectory generator includes an onboard computer, in which

3

the Digital Terrain Map (DTM) resides, and an altimeter (e.g., a GPS receiver), on top of the

standard navigational instrumentation normally available in GA airplanes. Laptop computers with

DTMs are indeed increasingly being used by light aircraft and helicopters who fly rescue and other

emergency missions without adhering to prescribed routes. Also, the provisioning of cues that

enable the pilot to comfortably follow the planned trajectory is readily implementable even in

today’s low-cost aircraft. As stated, in the sequel we focus on the trajectory generation task.

Overview of the proposed approach: A control-oriented formulation of the trajectory optimiza-

tion problem calls for finding a control signal U(t) to minimize the cost functional:

J =
∫ tf

0
c (X(t), U(t)) dt (1)

subject to the nonlinear differential state equation:

Ẋ(t) = f (X(t), U(t)) , 0 ≤ t ≤ tf . (2)

In addition, various constraints may apply to the state and control variables. Theoretical solution

approaches to this problem include Dynamic Programming, which iteratively computes the optimal

value function from any state, and the Calculus of Variations (with the associated Euler-Lagrange

equations), which traces the optimal path [5, 6, 7]. Solution of practical problems requires numerical

methods [8, 5, 9]. State of the art numerical methods related to the Calculus of Variations are

essentially based on non-linear optimization algorithms, such as Gradient Descent and Newton’s

method. These methods are basically of local nature, so that convergence to the global minimum

cannot be guaranteed unless the problem is highly structured. This is not the case in the GA

flight generation problem, where rugged terrain and forbidden flight zones, for example, may create

multiple locally-optimal trajectories. Dynamic Programming, on the other hand, is essentially a

global method. However, due to its exhaustive nature, it is considered computationally feasible

only for problems with low state dimension and coarse grid discretization (cf. [5], Chapter 7, and

[8]).

The present work aims to develop 3D trajectory optimization methods which are of global na-

ture, yet computationally feasible, using the basic tool of graph-search. Graph search methods are

a standard tool for shortest-path problems. However, existing work does not address problems with

dynamic aspects, namely when accelerations are taken into account as part of the problem con-

straints and cost. We note that graph search methods are closely related to Dynamic Programming,

but employ the special structure of the shortest-path problem to enhance computational efficiency.

4

To begin with, we set up a simplified model that captures the essential ingredients of the trajec-

tory optimization problem for General Aviation aircraft. We apply to this model an approximate

discretization scheme, which allows the application of efficient global search algorithms to find the

optimal path. In particular, we discretize the model over a state space which includes both spatial

position and velocity, and formulate the trajectory optimization problem as a shortest-path search

problem over a finite graph. This form is appropriate for the application of Dijkstra’s shortest-path

algorithms, which is an efficient single-pass algorithm. In essence, Dijkstra’s algorithm proceeds

from the target (or initial) state and iteratively develops the front of equi-distant states (or graph

vertices). Thus, at each step one new node is tagged with its optimal value, until a target state is

reached. As will be seen, the sequential structure of this scheme will allow us to introduce some

important modifications to the algorithm.

The application of the basic Dijkstra algorithm to the discretized model is still short of providing

on-board performance for problems of realistic size. We therefore explore algorithms that accelerate

the process of trajectory generation. First, we reduce the dimensionality of the discrete state space

by removing the velocity-related components. Nonetheless, the proposed reduced-state algorithm

retains the ability to account for the acceleration cost, albeit in a sub-optimal manner. Further

enhancements that are considered include the addition of an A∗ heuristic, and a hierarchical (coarse-

fine) search scheme. The performance of these algorithms is examined and compared in simulation.

Related Research: The nonlinear nature of both the aircraft state dynamics and the performance

index J , make the trajectory generation problem hard to solve. We briefly review here some of the

solution approaches that have been proposed for this problem. These include definition of various

cost function components, different aircraft model formulations, and algorithmic solution variants.

Funk [10] performs vertical-plane optimization only, by means of cubic splines. The splines are

generated by solving a nonlinear programming problem. He addresses only the altitude aspect of

the cost. Another trajectory optimization solution, utilizing nonlinear programming, is given by

Hargraves and Paris [11] – again only for the vertical plane.

Asseo [12] tackles the 3D problem by looking separately at the horizontal and vertical com-

ponents. His algorithm employs the gradient method, but restricts the gradient search to the

horizontal plane only, avoiding the convergence problems associated with vertical constraints. He

achieves vertical tracks by fitting parabola segments that clear critical points. This approach in-

volves no vertical optimization. Also, only the kinematics of the aircraft is modelled, not accounting

5

for aspects of flight dynamics.

Menon et al. [13] use the optimal control approach to obtain trajectories that minimize a linear

combination of flight time and Terrain Following (TF) costs. They address the 3D problem by

employing the adjoint method [6, 8], and a 1D search. The transformation allows the iterative

algorithm to generate 3D trajectories, while optimizing for a single parameter. The algorithm is

complex and its computational cost is high. Here too, only aircraft kinematics is considered, not

accounting for flight dynamics.

Lu and Pierson [14] use the optimal control approach and address off-line calculation of optimal

vertical TF trajectories. They use a point-mass nonlinear dynamic model of the aircraft for their

analysis, and utilize the Hamiltonian function, with the inverse-dynamics approach [15].

Spong et al. [16] deal with the problem of bounded inputs, employing Optimal Decision Strategy

(ODS), which is a class of pointwise optimal control strategies. Accounting for the bounded nature

of nonlinear aircraft dynamics (such as thrust and aerodynamics), Lee et al. [17] apply the ODS

method to the TF flight problem. Rehbock et al. [18] convert the ODS method into a linear pro-

gramming problem, in contrast to the previous work, where it is posed as a quadratic programming

problem. Barnard [19] combines the ODS method with the neural networks technique.

Hess and Jung [20, 21] use a Generalized Predictive Control algorithm, that calculates an

optimal control sequence several steps ahead. They then apply only the first control of the sequence,

and recalculate a new sequence (a ‘receding horizon’ process). Lu and Pierson [22, 23] also consider

predictive algorithms.

Numeric solutions of continuous Dynamic Programming methods are extensively treated in [9].

However, these methods may require multiple passes over the entire state space. For the specific

case of the shortest-path problem (which corresponds to a special case of the problem in Equations

(1) and (2) with c(X, U) = c(X), Ẋ = U and ‖U‖ ≤ 1), more efficient alternatives are offered

by appropriate discretization schemes coupled with efficient graph search procedures. An early

example for the use of this approach may be found in [24]. More recently, numerically consistent

algorithm (that converge to the exact solution when the spatial resolution is increased) have been

proposed in [25] and [26]. All these methods use a Dijkstra-like algorithm to perform a global

search over the discretized space. Unfortunately, these algorithms do not accommodate at present

the dynamic aspects of our problem, namely the acceleration-related costs and constraints.

6

The remainder of this paper is organized as follows. The underlying optimization problem,

the aircraft model and the cost function are formulated in Section 2. The transformation of the

problem into a graph search and the application of Dijkstra’s algorithm are described in Section 3.

Sub-optimal enhancements are discussed in Section 4. Section 5 presents simulation results that

demonstrate the performance of the proposed algorithms. Finally, in Section 6 we conclude and

indicate some topics of interest for further research.

2 Problem Definition

The problem we consider is of generating an optimal aerial trajectory between two points – the

source and the destination. The trajectory has to be flyable, and hence attention is paid to the

physics of the problem, including the flight model, acceleration constraints, and cost components

that reflect passenger and pilot comfort. We proceed to formulate the continuous model, specify

some important maneuverability constraints, and finally specify the proposed cost functional.

2.1 Model Formulation

We start with a simplified, kinematic model of an aircraft flying in a three-dimensional airspace.

The aircraft is considered as a point in 3D space, and its translational and angular states at time t

are defined by the configuration vector X(t) = (x(t), y(t), z(t), γ(t), ψ(t))T ∈ G. This is illustrated

in Figure 1. The set G is defined as �3 × [γmin, γmax] × [−π, +π). The coordinates x, y and z are

taken relative to an Earth frame of reference, such as WGS-84 (World Geodesic System). The

extremal values γmin and γmax are derived from the flight model, detailed in the next subsection.

The flight speed V (t) will be taken as given, and will not be a controlled variable in our model.

This is the common situation is GA flight. However, we do allow the speed to be a (static) function

of the configuration vector X(t), namely V (t) = g(X(t)). In particular, V may depend on the

flight altitude, as well on the climb angle γ(t). We note that during climbs, even with throttle

compensation, the aircraft can lose roughly 20% of its velocity, and during descends can gain up

to 20% increased velocity. Wind speed data may also be used to modifying V according to the

heading angle ψ(t). We shall not proceed further here with a precise modelling of these effects.

We assume instantaneous control of the angular rates, so that the control signal U(t) coincides

7

with (γ̇, ψ̇). The state equations Ẋ(t) = f(X(t), U(t)) may now be written as

ẋ(t) = V (t) cos γ(t) cos ψ(t)

ẏ(t) = V (t) cos γ(t) sinψ(t)

ż(t) = V (t) sin γ(t)

γ̇(t) = U1(t)

ψ̇(t) = U2(t) .

(3)

The control and state variables will be further constrained by the flight model, as detailed in the

next subsection. Given an initial state X0 and the goal set Xf , feasible trajectories are continuous

solution paths X(t) that start at X(0) = X0 and terminate at X(tf) ∈ Xf . We shall be interested

in optimal trajectories, that minimize a cost functional to be defined below.

2.2 Flight Model Constraints

Aircraft performance is subject to physical constraints that affect its maneuverability. Additional

restrictions may be applied to ensure passenger and pilot comfort. Assuming that upper bounds are

specified for the lateral accelerations, we will find it convenient to represent them by corresponding

bounds on the angular velocities and the aircraft turn radius.

Under normal flight condition of GA aircraft, decoupling of the motion plane components is

justified, resulting in two approximate acceleration measures:

avertical = V γ̇ , ahorizontal = V ψ̇ . (4)

These accelerations approximate the two components of the lateral acceleration relative to the

aircraft frame. Accordingly, they should not exceed certain levels for comfort. Assuming hard

bounds āv and āh on the vertical and horizontal accelerations, respectively, we obtain the following

constraints on the angular rates:

|γ̇| <
āv

V
, |ψ̇| <

āh

V
. (5)

The minimal turn radius is next determined from V = ψ̇R:

Rmin ≥ V

|ψ̇|max

=
V 2

āh
. (6)

8

This minimal radius serves as a constraint imposed on aircraft trajectories. Note that these bounds

may depend on the aircraft configuration X through the velocity V . It may be convenient to use

some nominal value V0 for V in these equations, although this is not necessary.

The maximal climb angle, based on climb rate capability safety requirements, gives rise the the

additional constraint

|γ| < γmax . (7)

We note that different values may be assigned to the upper an lower values of γ and γ̇ if so required.

All the constraints above need to be accounted for in the trajectory planning algorithm.

2.3 The Cost Function

We next specify the class of cost functions that we consider. Referring back to equation (1), the

cost functional will be of the form

J =
∑
κ∈Ω

wκJκ (8)

where Ω = {time, altitude, , riding qualities} is the set of criteria, possibly augmented by others as

discussed below. The weights wκ control the tradeoff between these sometimes conflicting criteria.

We first consider integral costs of the form

Jκ =
∫ tf

0
cκ(X(t)) dt , (9)

where the running cost function cκ(X) is to be chosen appropriately. We next indicate some

possible choices of special interest. Note that a general terminal cost of the form φ(X(tf), tf) may

be accommodated as well, but seems to be of limited use in the present context.

The flight duration tf is an obvious performance measure. It may be expressed as a unit integral

over the flight interval:

Jtime =
∫ tf

0
1 dt (10)

Next, the length of the trajectory is obtained by letting cκ(X) = V (recall that V is a function of

X in our model). More generally, the fuel consumption rate may be approximated as a function

cfuel(X) of the the flight configuration X, leading to the cost component Jfuel which evaluates the

9

total fuel consumption. We note that in a typical application the fuel consumption is approximately

proportional to the flight time, and in our experiments we only consider the latter.

An altitude cost components will be of the general form

Jaltitude =
∫ tf

0
F (z(t), DTM(t))dt (11)

where z(t) is the aircraft altitude at time t, DTM(t) is the ground height at the current (x, y)

position, as may be read in the on-board Digital Terrain Map, and F is an appropriate function

thereof. For example, in Terrain Following flight, we might require that the aircraft maintains a

fixed clearance H0 above the ground, and penalize for deviations by

Jaltitude =
∫ tf

0
|z(t) − DTM(t) − H0| dt . (12)

Another interesting case is when the flight altitude is required to remain below a certain level H –

for example, to keep the aircraft below a cloud layer. An appropriate cost function may take the

form

Jaltitude =
∫ tf

0
I{z(t) > H}dt , (13)

where I{ } is the indicator function (that equals one if z(t) > H, and zero otherwise). In either

case it is natural to impose a hard constraint of the form z(t) ≥ DTM(t)+h0, where h0 is a safety

clearance. This is easily incorporated in our graph model.

A second class of cost criteria that will be of interest to us concerns the passenger comfort, as

affected by the lateral accelerations. We shall use the term riding qualities to refer to this criterion.

Using (4), the proposed measure of the riding qualities is

Jriding qualities =
∫ tf

0
(|γ̇(t)| + α|ψ̇(t)|)V (t)dt . (14)

This criterion quantifies the lateral acceleration components, its values being accumulated over the

entire trajectory. These accelerations influence both the pilot and the passengers. The parameter

α allows for relative weighting of the two component.

An additional concern for trajectory planning is the pilot workload. During the flight, the pilot

is preoccupied with numerous tasks on top of the need to follow the outlined trajectory. Having a

10

rapidly varying trajectory requires the pilot to constantly focus on the task of following it, paying

less attention to other instrument and visual data. Furthermore, the accumulated workload may

lead to excessive stress and fatigue, and should therefore be an important consideration during the

trajectory construction process, especially for low flight over irregular terrain. To some extent, the

riding qualities cost as defined above accounts also for the pilot workload, as it quantifies the total

angular change that the trajectory requires. Other measures of pilot workload may include the

number of required maneuvers, the total time that the flight is non-straight or non-level, and other

related quantities. Obviously, the proper choice of cost here requires careful consideration of the

human engineering factors involved. We shall therefore rely on the riding qualities cost to regulate

the smoothness of the planned trajectory.

3 The Basic Graph-Search Solution

In this section we propose an approximate solution of the trajectory optimization problem that was

presented above. We begin by discretizing the continuous model. We then translate the problem

into a weighted graph search problem, which may be solved using Dijkstra’s shortest path algorithm.

3.1 Discretization

The proposed discretization scheme begins with a uniform discretization of the three-dimensional

space of spatial positions. The discretized trajectory is constrained to go through the grid points,

connected with straight line segments. The actual trajectory will of course be a smoothed version

of the discrete one. The smoothed trajectory may be computed by a post-processing method, or

simply left to be determined by the pilot and the guidance filter.

Consider the discrete grid {(ihx, jhy, khz)} ⊂ �3, where the constants hx, hy, hz determine

the grid spacing in the respective coordinates, and i, j , k take integer values. A finite grid S0 is

obtained by intersecting this set with the set of feasible spatial points in continuous space. In

particular, the definition of S0 should incorporate all hard constraints concerning forbidden flight

zones and altitudes. The horizontal grid spacings hx and hy will usually be identical, which we

assume henceforth. The choice of these resolution parameters is discussed below.

We now create a mesh over the spatial grid by defining a neighborhood structure. The neighbors

11

of a point P = (ihx, jhy, khz) are those grid points which are accessible from it in one step. The

simplest definition that is useful for our purpose is given by

Neighb((ihx, jhy, khz)) =
{

((i + m)hx, (j + n)hy, (k + �)hz) : m, n ∈ {−1, 0, +1}, |�| ≤ �m,n
max}

(15)

with n = m = 0 excluded. Thus, the horizontal plane neighbors are the eight nearest points (Figure

2a). Other possibilities will be discussed below. �max is constrained by the allowed elevation angle

γmax (equation 7) and should therefore obey the following bound:

hz�
m,n
max ≤ tan(γmax)

√
(mhx)2 + (nhy)2 . (16)

For simplicity we assume below that �m,n
max = �max is independent of m and n.

As the discrete path is restricted to neighboring mesh points, the specified neighborhood struc-

ture determines the discrete values that the flight path angles γ and ψ can assume. Given two

neighboring grid points P1 = (x1, y1, z1) and P2 = (x2, y2, z2), with P2−P1 = (mhx, nhy, �hz), their

relative path angles are given by:

ψ1→2 = tan−1

(
y2 − y1

x2 − x1

)
= tan−1

(
nhx

mhy

)
(17)

γ1→2 = tan−1

(
∆z√

∆x2 + ∆y2

)
= tan−1

(
�hz√

(mhx)2 + (nhy)2

)
(18)

(where inverse tangent in the first equation should be interpreted as the four-quadrant inverse

tangent, according to the signs of the nominator and denominator in its argument.)

Given the above neighborhood structure and hx = hy, the heading angle ψ is constrained to

multiples of π/4. A finer angular resolution may be obtained by extending the definition of the

neighboring points beyond the nearest grid points, as illustrated in Figure 2b. Naturally, this

extended definition will entail an increase in search time.

We next consider a convenient representation for the discretized state vector X = (x, y, z, γ, ψ).

We shall use the representation X = (P1, P2), where the grid point P1 = (x, y, z) provides the

current position, and P2 gives the path angles according to equations (17)-(18). In fact, we shall

consider only such pairs (P1, P2) where P2 is a neighbgor of P1, namely P2 ∈ Neighb(P1), so that

12

γ and ψ are restricted to those values that point directly to neighboring points. This leads to the

graph structure that we define below.

The choice of the grid resolution is a decisive factor in the complexity and accuracy of the

resultant algorithm. We outline briefly some general guidelines for choosing the grid separation

parameters. A specific example may be found in Section 5. Starting with the horizontal parameters

hx = hy, their choice should be directly dictated by the required trajectory resolution. In particular,

if the trajectory is required to be specified to within an accuracy d0 in the horizontal plane, we need

to choose
√

2hx ≤ d0. Moreover, to accommodate the allowed turning radius Rmin, and assuming

that we do not allow discrete heading angle changes of more than 90o, hx should not be larger

than Rmin. When the accuracy requirement is the dominant one, as may be expected, we will have

hx << Rmin. In that case special care is required to enforce the turn radius constraint within the

algorithm, as discussed in Section 3.4. Finally, the resulting resolution parameter hx will typically

be larger than the available DTM grid separation, and for convenience may be chosen as a multiple

thereof.

The vertical spacing hz is chosen to satisfy several requirements. The obvious one is the required

resolution in the flight elevation. Next is the required resolution in the vertical flight path angle

(or climb angle). The largest separation between two discrete angles may be seen to equal ∆γ0 =

tan−1(hz/hx) (this is just the first possible angle above zero when flying along horizontal grid lines),

so hz should be chosen so that this value is small enough. Furthermore, hz must be small enough

so that a change in the (discrete) climb angles between adjacent grid points can be done within the

allowed range of vertical acceleration. Specifically, suppose that the maximal vertical acceleration

a = āv is applied to the aircraft over a distance hx, which is traversed in time T = hx/V . Then the

vertical increment (over a zero acceleration or straight line path) equals aT 2/2, so that we must

have hz not more than that:

hz ≤ 1
2
āv

(
hx

V

)2

. (19)

Typical this bound should be fairly large, so that hz can be chosen based on the required vertical

and angular resolutions.

13

3.2 Graph Structure and Costs

We next define a graph structure for the discrete problem. This includes a finite set of vertices V,

a set of edges E connecting pairs of vertices, and a cost for each edge. We shall also refer to V as

the (discrete) state-space of the problem. Two vertices that are connected by an edge are said to

be neighboring vertices. Note the distinction that is made here between neighboring vertices and

neighboring points, as defined in the previous Subsection.

A vertex v corresponds to a discretized state X as defined above, namely a pair of neighboring

points in the cartesian 3D grid S0:

v = (P1, P2) ∈ S0 × S0 , with P2 ∈ Neighb(P1) . (20)

Here P1 = (x1, y1, z1) is the current location of the aircraft, and P2 − P1 defines the direction

of its velocity vector. Since the aircraft necessarily follows its specified velocity vector, P2 must

be the aircraft’s next location on the grid. A neighboring vertex u of a vertex v = (P1, P2) is

therefore of the form u = (P2, P3) = ((x2, y2, z2), (x3, y3, z3)), with P3 a neighbor of P2 as defined

by equation (15). An edge in this graph is therefore of the form ((P1, P2), (P2, P3)), with P1 ∈ S0,

P2 ∈ Neighb(P1), and P3 ∈ Neighb(P2).

An example of a vertex (P1, P2) and some of its neighbors (P2, P3) is depicted in Figure 3. Note

that not all neighboring vertices may be feasible due to turn radius constraints, and indeed the

figure does not depict neighboring vertices that require a turn of 180o or more. We will consider this

constraint separately in Section 3.4, and use it to further restrict the set of edges of the searched

graph.

Having defined the neighbors of a vertex, the cost C(v, u) for each edge can now be specified. In

accordance with equation (8), this cost will be in the form C(v, u) =
∑

κ wκCκ(v, u). We start with

the cost components of the form (9). Recall that each vertex v defines a configuration vector Xv of

the form Xv = (xv, yv, zv, γv, ψv). The flight time between vertices v and u may be approximated

as the distance divided by the average velocity, namely

∆tvu =
√

(xu − xv)2 + (yu − yv)2 + (zu − zv)2/V̄vu (21)

where V̄vu = (V (Xv) + V (Xu))/2. Consequently, for a running cost function cκ(X) we let

Cκ(v, u) =
c(Xv) + c(Xu)

2
∆tvu . (22)

14

In particular, for the time component from equation (10) we obtain

Ctime(v, u) = ∆tvu (23)

and for the altitude component from equation (11):

Caltitude(v, u) =
F (zv, DTMv) + F (zv, DTMu)

2
∆tvu (24)

where DTMv = DTM(xv, yv).

Next, using the notation of Equations (17)-(18) applied to the vertices v = (P1, P2) and u =

(P2, P3), define

∆γ = γ2→3 − γ1→2 (25)

∆ψ = ψ2→3 − ψ1→2 . (26)

The riding qualities cost component (14) is then given by

Criding qualities(v, u) = (|∆γ| + α|∆ψ|)V̄vu (27)

We have thus defined the graph G = (V, E) with non-negative edge costs, C(u, v) ≥ 0. The

required solution is the shortest path on this graph, which can be found using standard graph search

algorithms. We next describe the basic Dijkstra algorithm as applies to this problem, and then

consider certain modifications that are required in order to account for the turn radius constraints.

3.3 Dijkstra’s Algorithm

Dijkstra’s algorithm [27] provides an efficient solution to the minimal-path graph search problem.

Essentially, the algorithm recursively evolves the front of vertices that are closest to the source,

until a target vertex is reached. Convergence is therefore guaranteed.

A pseudo-code implementation of the Dijkstra algorithm is shown in Table 1. G = (V, E) denotes

the graph, C is the cost function over the edges E , s is the source and D the set of destination

vertices. The algorithm stores for each vertex v an estimate g(v) of the cost-so-far, namely the cost

of the shortest path from the source. g(v) is initialized to +∞, except for the source where in is

initialized to 0.

15

The algorithm also maintains a set S ⊂ V of vertices whose final shortest-path values have

already been determined. This set is initialized with the source vertex, {s}, and g(s) = 0. The

algorithm then repeatedly selects (or retires) the vertex v in the complement of S which is closest

to the source. This is essentially done by considering all vertices u which are one-edge neighbors

to some vertex v is S, and picking up the one with the smaller cost estimate g(v) + C(u, v).

This selection is effectively handled by managing a priority queue, which maintains the best cost

estimates so far for all neighbors of S. For any vertex u retired to S we also save its predecessor v,

so that the optimal path may be traced back.

Dijkstra(G = (V, E), C, s, d)

S = {s}
PriorityQueue = {s}
g(s) = 0
for all v ∈ V\S,

g(v) = ∞
predecessor(v) = none
PriorityQueue.insert(v)

while D ∩ S = ∅,
v = PriorityQueue.extract minimum()
retire v to S
for u ∈ neighbors(v),

if (g(u) > g(v) + C(v, u)) then
PriorityQueue.decrease key(u, g(v) + C(v, u))
PriorityQueue.predecessor(u) = v

Backtrack from D to s

Table 1: Dijkstra’s algorithm

It is readily verified that Dijkstra’s algorithm does compute the shortest path, under the condi-

tion that the link costs are non-negative [28]. The time complexity of the algorithm is O(N log N),

where N is the number of vertices in V, provided that the degree of the graph (number of neigh-

bors for each node) is bounded, and the queue is implemented with an efficient data structure. To

realize that, note that the algorithm performs a single-pass over the state space, with each vertex

requiring at most one priority queue extraction and a number of priority queue updates bounded

by the number of its neighbors. An efficient priority queue data structure, such as the binary heap,

16

can handle extraction of a minimal element or value update in a list of N elements at O(log N)

each.

Returning to the flight trajectory optimization, Dijkstra’a algorithm can be directly applied to

solve this problem, provided that we ignore for the moment possible turn radius constraints. To

estimate the time complexity of the algorithm, assume that the 3D mesh has n points. Let m be

the maximal number of neighbors for each point. For the neighborhood structure of Equation (15),

we have that m ≤ 8(2�max + 1). As a vertex in a pair of two neighboring points, the number of

vertices is N ≤ mn, and the basic Dijkstra algorithm runs at O(N log N).

3.4 Constrained Dijkstra

An important factor that has been left out of the above algorithm is the turn radius constraint.

In a typical situation, the minimal turn radius in the horizontal plane (as per Equation 6) may be

significantly larger than the horizontal resolution hx. In that case, in order to allow large single-

step heading changes as required in our scheme, the turn radius constraint should be enforced by

considering a span of several consecutive vertices. For example, following a 90o turn, the prescribed

trajectory should not have another heading change (in the same direction) for a certain stretch of

flight, so that the aircraft can complete the first maneuver.

An optimal solution to such multi-step constraints would require to expand the state space into

sequences of point of required length. This would easily leads to an increase of the state space

by orders of magnitude, with a corresponding increase in the computation times. To avoid this

problem, we propose a sub-optimal modification of the basic Dijkstra algorithm, which retains the

original state space.

The Constrained Dijkstra algorithm utilizes the basic Dijkstra data structure, which allows to

trace back the optimal path (to a required number of steps) for each retired vertex. Recall that

whenever a state is retired (to the set S), it causes an update in the estimated cost-so-far of its

(non-retired) neighbors. In the proposed modification, when a vertex is retired, it traces back the

recorded path to the required number of steps, and then determines the set of its feasible neighbors

in light of the added multi-step constraints. Thus, the trajectory cannot proceed to vertices that

violate these constraints. Other than that, the algorithm proceeds exactly as before. It is evident

that the a complexity of the algorithm remains the same, namely O(N log N).

17

To handle the turn radius constraint, it remains to specify the sequences of vertices that obey or

violate this constraint. This can be done in different ways, and we specify below a simple heuristic

criterion that will also be used in our experiments. With each (discrete) change in the heading angle

of magnitude α, we associate a distance d before and after the turn point. d designates the travel

distance required to complete the turn under the turn radius constraint Rmin. Using the geometry

in Figure 4, we obtain d = Rmin tan(θ/2). This rule can be easily converted into a “dictionary” of

allowed turn sequences over the discrete grid.

As an illustration for the effect of the turn radius constraint, we depict in Figure 5 two tra-

jectories. One is created by the basic Dijkstra algorithm, while the other imposes turn radius

constraints via the constrained Dijkstra algorithm. The general conditions of the simulation are

as detailed in Section 5. In this example, an altitude cost component penalized the aircraft for an

altitude of more than 100 meters above the ground, and the lateral acceleration cost components

were removed in order to highlight the influence of the turn radius constraint. The smoothing affect

of this constraint is apparent in the form of the resulting trajectory.

4 Accelerating the Algorithm

The previous section described a Dijkstra-based solution to our trajectory optimization problem.

Despite the efficient search procedure, running times are still excessive due to the large cardinality

of the disceretized state space. For quantification metrics, see Section 5.

In this section we present several approaches for accelerating the Dijkstra search. We begin by

describing an A∗ enhanced version, and explain why the acceleration we obtain is only minor.

We focus therefore on two additional Dijkstra-based algorithms that tradeoff accuracy for speed.

The Reduced-state Dijkstra algorithm cuts down the number of vertices in the search graph, by

redefining a vertex as a spatial point without the angular (or next-point) components. Consideration

of the angular components is retained through the back-tracking property of the Dijkstra search.

The Hierarchical Dijkstra algorithm conducts an initial search at a coarser spatial resolution, which

constrains the finer search to a smaller area of the map. Each algorithm by itself achieves a

significant speedup compared to the basic Dijkstra algorithms of the previous section. Combined,

the two modified algorithms offer an on-board solution to the trajectory generation problem. As

we demonstrate empirically in Section 5, the performance degradation due to these sub-optimal

18

modifications is minor.

4.1 Reduced-State Dijkstra

The major factor that slows down the Dijkstra algorithm is the large state space that needs to

be explored. As was discussed before, our Dijkstra algorithm employs a state (or vertex) which

comprises of two neighboring spatial points, resulting in a state-space cardinality of mn, where n

is the size of the spatial grid and m is the average number of neighbors to each point in that grid

(see Section 3). This two-point state decodes the flight velocity vector so that we can deduce the

angular acceleration (and its associated costs) between two neighboring vertices. The underlying

idea behind the Reduced-State Dijkstra is to settle for a single-point vertex, while still accounting for

all cost components, albeit in a sub-optimal way. To take account of acceleration cost components,

we shall use the trace-back feature which is inherent in the Dijkstra algorithm. The basic idea is

very similar to the one used in Section 3.4 to enforce the turn-radius constraints.

The Reduced-State Dijkstra algorithm thus reduces the state-space to n vertices. Its run-

ning time is therefore O(n log n). A vertex is defined to be a single point in the 3D mesh, i.e.,

v = X = (x1, y1, z1) ∈ S0. A neighbor of vertex v is defined by equation (15).

Computation of the angular acceleration (and the associated riding qualities cost) requires

three consecutive spatial points. Referring back to Dijkstra’s algorithm in Table 1, recall that

for each retired vertex v (now a single spatial point) the algorithm stores its predecessor vertex

in order to trace back the optimal path. Now, whenever a vertex is retired, the algorithm is

required to update the cost-to-go estimates for its neighbors. For such a vertex v we use following

notation: pre(v) = (x1, y1, z1) is its predecessor vertex; v = (x2, y2, z2) is the current vertex; and

u = (x3, y3, z3) is neighboring vertex. With these definitions, the edge cost C(v, u) can be computed

by using exactly the same equations (23)–(27) that were used before. Turn radius constraints may

be incorporated into this algorithm exactly as described in Section 3.4.

It should be apparent that the search algorithm proposed here is sub-optimal when all compo-

nents of the cost function are present. Specifically, it cannot fully account for the riding-quality

cost that makes the optimal value function depend also on the directional components of the full

state. Instead of exploring all possible velocity vectors (or predecessor points) in a given spatial

point, we freeze the velocity vector that leads to it the first time that it is reached. Other options

19

(which could eventually turn up to be the optimal ones) are suppressed and excluded from further

consideration. Nonetheless, the cost discrepancies between the results obtained by full-state the

Dijkstra solution and those obtained via the Reduced-State Dijkstra solution turn out to be minor

in all our experiments. One way to explain this in the context of our problem is by noting that

(small) deviations from the optimal velocity can usually be corrected later on with little penalty.

The speedup achieved by the state reduction is, however, most substantial.

4.2 The A∗ Algorithm

The A∗ algorithm, introduced by Nilsson [29], accelerates graph searching procedures by adding a

heuristic cost component to direct the search towards an optimal route. Essentially, the heuristic

cost function is an a-priori estimate of the cost-to-go function from each vertex. In our problem,

the search procedures used so far did not make use of any information concerning the location of

the target state. It seems reasonable, for example, to give some priority to those vertices that point

in the direction of the goal, rather than those that point in the opposite direction.

Recall that the Dijkstra algorithm used the cost-so-far function g(v) to direct the search. This

function is used to choose the vertex that is explored and retired at every step (by determining

the order of vertices in the priority queue). The A∗ algorithm uses for that purpose a modified

cost g̃(v), where g̃(v) = g(v) + h(v), and h(v) is a pre-specified heuristic. The algorithm, as used

here, is otherwise identical to the Dijkstra algorithm described above. Nilsson [29] proved that

when h(v) is an underestimate of the minimal cost-to-go between the current vertex v and the

destination vertex, then A∗ produces an optimal solution. In the ideal case that h(v) equals the

optimal cost-to-go, the algorithm directly finds the optimal path. Setting to h(v) = 0 recovers the

basic Dijkstra algorithm.

The challenge in designing the A∗ algorithm is in finding a good underestimating heuristic. We

approach this task by examining separately each component of our cost function.

An underestimating time heuristic should be smaller than the (optimal trajectory) flight time

from any given vertex v to the destination vertex d. A simple time heuristic is therefore the

Euclidian distance from our current position to the destination, divided by the speed. The accuracy

of this estimate depends of course on the deviation of the optimal trajectory from the straight line,

which depends mainly on the other cost components.

20

On the other hand, finding a reasonable underestimate for the altitude cost or the riding qualities

cost is more challenging. If we look at each of these cost components separately while completely

disregarding the others, we obtain an underestimate that tends to zero, which is obviously not

helpful. For example, the altitude cost is an indication of how high above the terrain the aircraft

is flying – the aircraft can simply fly at the zero-cost height all the way to nullify that cost compo-

nent. When only the riding qualities are considered, the best path is a direct course towards the

destination, also resulting in near-zero cost.

So far, we have not been able to come up with an easily computable heuristic that adequately

approximates these cost components in the “interesting” cases (namely, where the optimal flight

path is not a straight line). Some initial attempts at analyzing the spatial regularity of the terrain

(using Fourier Transforms and Wavelet methods) have not led to noticeable improvement in the al-

gorithm. We therefore restrict further consideration to the above-mentioned straight-line heuristics

for the flight time, which will be examined in the experimental section.

4.3 Hierarchical Dijkstra

While the Reduced-State Dijkstra algorithm decreases the total number of vertices in the graph,

the Hierarchical Dijkstra restricts the detailed search to a specific segment in the overall graph.

Hierarchical and multi-grid schemes are of course widely-used tools in numerical analysis and opti-

mization, and we describe here a simple coarse-fine scheme that is convenient for our application.

The search problem is first solved at a coarser level, which is obtained by some down-sampling of

the original spatial grid.

The implementation considered here uses a down-sampling by a factor of k along each axis,

leading to a k3 reduction in the spatial grid. The DTM was correspondingly down-sampled. Since

safety is a major concern, the ground elevation at each sampled point was taken as the maximal

elevation over the map points it covers.

The algorithm calculates an optimal path at the coarse level, using the down-sampled DTM.

The resulting coarse-level trajectory defines a search corridor over the original (fine) spatial grid.

The points in this corridor are simply those that are within a specified distance from the coarse

trajectory. The fine-level search is then conducted inside this corridor, see Figure 6. The same

algorithm may be used for both the coarse and fine level searches.

21

5 Experimental Results

This section describes some simulation experiments that demonstrate and compare the performance

of the proposed algorithms. We consider the following issues:

a. Performance of the Reduced-State Dijkstra algorithm, as compared to the standard (full state)

algorithm.

b. Effect of the cost parameters on the obtained trajectory.

c. The A∗ and Hierarchical enhancements to the reduced-State Dijkstra algorithm.

The DTM that was used is a 100 by 100 km digital map with a 50 m resolution grid. The map

coordinates are

bottom-left (origin): N32o10′, E34o50′

top-right (destination): N33o10′, E35o50′

The state at the origin point is specified by ψ0 = 45o (heading towards the destination), γ0 = 0.

These variables are left free at the destination points. The initial and final heights are set to ground

level. We assume a constant flight velocity of V = 100 m/s, and a required bound of 5 m/s2 (g/2),

on the two lateral acceleration components. The cost function was taken according to Equations

(8), (10), (12) and (14). The following weights were used, unless otherwise stated: wtime = 0.2 ,

waltitude = 1 , and wriding qualities = 1. These weights were used after empiric experimentation found

them to give a good tradeoff between the various cost criteria.

The basic horizontal resolutions (hx and hy) were set to 800 meters. This presents a reasonable

trajectory resolution for general aviation. The DTM was accordingly down-sampled. The minimal

turn radius constraint from equation (6) computes as Rmin = 2000 m. As this is larger than hx,

the turn radius constraint will be enforced throughout by using the Constrained Dijkstra method

of Section 3.4. The vertical resolution parameter hz was set to 30 meters (100 feet), with �max = 2

(see (15)). This gives an angular resolution of tan−1(hz/hx) = 2.15o in the vertical flight path angle

γ, with γmax = 4.3o. The acceleration constraint from equation (19) requires hz ≤ 160 m, which is

well satisfied.

The range of flight elevations considered was 1500 m, yielding 50 points in the vertical axis, and

total number of states in the spatial grid is n = 1252×50 = 625000. The number of neighbor points

22

in m = 8 × (2�max + 1) = 40, which brings the number of vertices in the full-state formulation to

N = mn = 25×106. Simulations were conducted on an Intel� Pentium� 3, 866 MHz with 0.75 GB

RAM CPU. The algorithmic engine is a Microsoft� Visual C++ program, and the graphics engine

is MathWorks MATLAB�.

The first experiment compares the full-state Dijkstra solution with the Reduced-State Dijkstra

algorithm. The results are shown in Figure 7. The full-state Dijkstra algorithm takes some two

hours to complete, as opposed to 126 seconds for the Reduced-State Dijkstra. The cost degradation

of the latter is less than 3%. This gives close to 60-fold speedup, with a minor loss in performance.

Recall that the Reduced-State algorithms reduces the state space cardinality by a nominal factor

of m = 40, the number of neighbors of each point as computed above. This is directly reflected in

the reduction in computation time. The two algorithms were further compared for various problem

parameters, with similar conclusions. In view of its efficiency, the Reduced-State Dijkstra is used

as the underlying algorithm in the remainder of our simulation experiments.

We next examine briefly the effect of varying the weights of the cost function components.

Figure 9 depicts the results for different weights of the altitude cost as compared to the riding

qualities cost. The first run is conducted with unit weights to both cost criteria, resulting in the

reference trajectory. The second run is conducted with the altitude weight, waltitude, increased four-

fold. Finally, the third run is conducted with the riding qualities weight, wriding qualities, increased

four-fold.

At the top left we show a 3D view of the trajectories. The main figure is a horizontal projection of

these trajectories. The bottom right shows a ’stretched’ sidewise projection (altitude versus range-

to-go) of the trajectories. We can see that the riding-qualities-aware trajectory offers a smooth

ride and does not follow closely the finer features of the terrain contour. The reference trajectory

descends into such ’valleys’ to a certain degree, while the altitude-aware trajectory dives deep into

them. It also important to notice, looking at the top view of the trajectories, that every trajectory

passes through a slightly different area of the map, hence the terrain under each trajectory is not

the same. Overall, we achieve a smoothing effect, where the weights of the different cost criteria

enable us to tune the degree of trajectory smoothness. Regarding the difference in run-time, the

altitude-aware trajectory barely probes into the vertical degree of freedom – thus concluding the

search more rapidly.

23

Next, we consider the A∗ variant of the algorithm with the time-to-go heuristic. Figure 9 shows

the effect of different time heuristic factors. The heuristic is taken to be h(X) = wTg(X), where

Tg is the straight-line underestimate of the remaining time to the goal position. The algorithm

was tested with weights w = 0.3, 1, 2, 4, to which we refer as the slow, medium, fast and faster

heuristics. All runs were conducted with the Reduced-State A∗ algorithm. Figure 9 depicts the

obtained trajectories, and Table 2 summarizes the run-times and cost degradation (compared to

the Reduced-State Dijkstra reference) for these runs.

The two smaller weights (slow and medium) give rise to an underestimating heuristic, and

should not affect the optimal solution. However, they may affect the results of the (suboptimal)

Reduced-State Dijkstra. It is indeed seen that the slow heuristic did not modify the quality of the

obtained solution, while the medium heuristic led to a slight degradation of the cost, while the

computation time was about halved. The two more aggressive heuristics, on the other hand, led

the trajectory to a different area of the map, with a considerable cost degradation. Thus, despite

some added speedup, we consider them to be unacceptable.

Algorithm Cost degradation Run-time [sec]
Reduced-State Dijkstra Reference 126 sec
Reduced-State A∗ (slow) 0.0% 71 sec
Reduced-State A∗ (medium) 0.8% 56 sec
Reduced-State A∗ (fast) 22.1% 47 sec
Reduced-State A∗ (faster) 48.5% 14 sec

Table 2: A∗ heuristics comparison

The hierarchical variant of the Dijkstra algorithm is considered next. The hierarchical algorithm

has two important parameters: the degree of down-sampling of the original grid and the width of the

corridor to explore around the top-level trajectory. The corridor concept is illustrated in Figure 10.

In Figure 10 we use a down-sampling of k = 2 in each axis. The algorithm first performs a search

in the coarser (60 × 60 × 20) map. It then returns to the original map, opens a corridor 7 vertices

wide on each side of the coarse level trajectory, and performs a detailed search in that corridor. The

detailed search was not similarly constrained in the vertical axis. It is important to emphasize that

the same basic algorithm is used for both hierarchical levels, namely The Reduced-State Dijkstra

is used at both hierarchical levels.

The total run-time of the Hierarchical Reduced-State Dijkstra algorithm (down-sample: 2,

corridor: 7) is 57 seconds, while the cost degradation is 9.1%. The top-level trajectory (diagonals)

24

is found in just a few seconds, and the remaining time is used to find the detailed trajectory. It

may be seen that the corridor around the coarse-level solution is not wide enough to encompass

the optimal solution, so that the latter is not found by the finer search.

We next consider the effect of the two parameters of the hierarchical approach. First, we hold

the down-sampling of the map at a fixed value of 2, and consider several corridor widths. This is

shown in Figure 11. As expected, increasing the width of the corridor improves the accuracy of

the hierarchical algorithm, and vice-versa. In particular, a corridor of 10 vertices gives a close-to-

optimal performance. Table 3 summarizes the run-times and cost degradation (compared to the

Reduced-State Dijkstra reference) of different corridor parameters presented in Figure 11.

Algorithm Cost degradation Run-time [sec]
Reduced-State Dijkstra Reference 126 sec
Hierarchical Reduced-State Dijkstra (20) 0.0% 83 sec
Hierarchical Reduced-State Dijkstra (10) 0.9% 63 sec
Hierarchical Reduced-State Dijkstra (7) 9.1% 57 sec
Hierarchical Reduced-State Dijkstra (3) 20.7% 40 sec

Table 3: Hierarchical Dijkstra – performance for different corridor parameters

Next, we consider different down-sampling values while holding the corridor parameter constant

at 10 vertices to each side. The results are shown in Figure 12; the time improvement due to

increased down-sampling is marginal, as most of the times is spent on the detailed find-level search.

However, down-sampling by 4 or more moves the search to a different area of the map altogether,

and the solution deviates to an unacceptable degree from the optimal. Table 4 summarizes the

run-times and cost degradation (compared to the Hierarchical Reduced-State Dijkstra with down-

sampling of 2) of the different down-sampling parameters presented in Figure 12.

Algorithm Cost degradation Run-time [sec]
Hierarchical Reduced-State Dijkstra (2) Reference 63 sec
Hierarchical Reduced-State Dijkstra (3) 1.4% 55 sec
Hierarchical Reduced-State Dijkstra (4) 21.9% 67 sec

Table 4: Hierarchical Dijkstra - performance for different down-sampling factors

The main results obtained in the above-described experiments are summarized in Table 5, to

give a more complete perspective of the tradeoff of run-time speedup versus cost degradation.

According to our previous findings, the A∗ scheme utilizes the medium time heuristic, and the

hierarchical algorithm uses a corridor parameter of 10 vertices to each side and a down-sampling

25

factor of 3. The last entry refers to a combined use of the A∗ and hierarchical variants, yielding

the fastest run time of 29 seconds, with mild performance degradation.

Algorithm Cost degradation Run-time [sec]
Full-state Dijkstra Reference 7595 sec
Reduced-State Dijkstra 2.9% 126 sec
Reduced-State A∗ 3.7% 56 sec
Hierarchical Reduced-State Dijkstra 4.3% 55 sec
Hierarchical Reduced-State A∗ 4.4% 29 sec

Table 5: Run-time vs. cost degradation comparison of main algorithms

Obviously, the use of a more powerful computer and judicious programming will further improve

the run-time. These results clearly indicate the potential for real-time, on-board, applicability.

6 Conclusion

This paper examines the applicability of global graph-search techniques to realistic trajectory op-

timization problems for General Aviation applications. A central element of our model is the

inclusion of acceleration-dependent cost, which accounts for passenger comfort (or riding qualities)

and pilot workload. The complexity of the suggested algorithms was examined with respect to the

goal of obtaining computation times that allow the use of the algorithm for on-board trajectory

planning, namely in the sub-minute area. Our results indicate that this goal is indeed feasible, by

combining the computational acceleration methods that were considered.

Global search techniques enjoy some distinct advantages. The basic Dijkstra algorithm indeed

performs an exhaustive search over all possible paths, and consequently obtains the globally optimal

solution (up to the discretization error introduced in the discrete model setup). Even the reduced-

state and other sub-optimal acceleration schemes that were proposed perform an exhaustive search

in Cartesian space, although with some restrictions on angular configurations. As a consequence

these algorithms do not need initialization with a candidate path or multiple runs with different

initial condition, but rather obtain their best estimate for the global solution after a single run.

Unstructured hard constraints that may induce multiple local optima, such as forbidden flight zones,

are easily accommodated and merely reduce the search space. Moreover, the suggested algorithms

are finite in nature, namely they terminate with their solution after a finite number of steps. Thus,

the computation time can be strictly bounded, and the question of convergence does not arise at

26

all.

The reduction to a graph-search problem is obtained by discretizing the state space at some

finite resolution. The selected resolution will obviously have a major impact on the accuracy of the

obtained solution, as well as on computation time. We have outlined here some basic considerations

that may lead to an appropriate choice of resolution for the intended application, so that the

quantitative qualities of the continuous model are retained.

Many issues remain for further research. It would obviously be useful to obtain a theoretical

handle on the approximation errors of the proposed algorithms, both those introduced due to the

finite grid discretization, and those that are due to the sub-optimality of the accelerated search

algorithms. These should be accompanied by additional numerical experimentation. It would

also be interesting to compare the results obtained here with standard solvers based on Nonlinear

Programming, using direct or indirect methods. It should be appreciated, however, that these

algorithms are essentially local in nature, so that they may not be suitable for problems with

multiple local minima. The combination of global search methods with local refinement using

other (local) algorithms poses another potentially interesting that requires further inquiry.

The graph search algorithms themselves may obviously be further enhanced. For example, the

search may proceed simultaneously from both ends of the trajectory, and terminate when these two

parts meet. The effect of this and other possible enhancements should be evaluated empirically.

The discretization scheme that was used in this paper considers only trajectories that pass

through the discrete grid points. As we mentioned in the Introduction, some recent Dijkstra-like

algorithms for the continuous shortest-path problems rely on more elaborate discretization schemes

that allow paths that proceed in-between grid points [25, 26], and therefore have the potential

for better accuracy for a given grid resolution. It would be therefore interesting to extend these

methods to include the dynamic aspects of our problem, namely the acceleration-related costs and

constraints. From the end-user viewpoint, further work is required concerning the proper choice

of cost function. This includes also the quantification of the pilot workload cost that was not

elaborated in the present paper.

27

Acknowledgements

We appreciate the valuable comments, provided by Professor J.L. Speyer and his research team and

by Professor M. Feron and his seminar group – during informal presentations of this research at

UCLA and MIT, respectively. We would like to thank the Associate Editor and the three referees

for their helpful comments. This research was supported by the Fund for the Promotion of Research

at the Technion.

References

[1] Hewitt C., Henley A. J. and Boyes J. D., “A Ground and Obstacle Collision Avoidance Tech-
nique (GOCAT)”, IEEE Aerospace and Electronic Systems Magazine, Vol. 6, Number 8, 1991,
pp. 13–20.

[2] Tymczyszyn B. and Wilson G., “Development and flight testing of a general/corporate aviation
terrain awareness and warning system,” 2002 Report to the Aerospace Profession; 46th Society
of Experimental Test Pilots (SETP) Symposium Proceedings, Los Angeles, CA, 2002, pp. 94-
107.

[3] Clarke K. C., Getting Started with Geographic Information Systems, Prentice-Hall, New Jersey,
1990 (pp. 34–137).

[4] Fountain J. R., “Digital Terrain Systems”, IEE Colloquim on Airborne Navigation Systems
Workshop, (Digest No. 1997/169), 1997, pp. 4/1-4/6.

[5] Bryson A. E., Dynamic Optimization, Addison Wesley, Menlo Park, CA, 1999.

[6] Bryson A. E. and Ho Y. C., Applied Optimal Control, Wiley, New York, 1975 (pp. 1–127).

[7] Bertsekas D. P., Dynamic Programming and Optimal Control, 2nd Ed., Athena Scientific,
Belmont, MA, 2000.

[8] Betts J. T., “Survey of Numerical Methods for Trajectory optimization”, Journal of Guidance,
Control and Dynamics, Vol. 21, No. 2, March-April 1998, pp. 193–207.

[9] Kushner H. J. and Dupuis P. G., Numerical Methods for Stochastic Control Problems in Con-
tinuous Time, Springer, New York, 1992.

[10] Funk J. E., “Optimal-Path Precision Terrain-Following System” Journal of Aircraft, Vol. 14,
No. 2, 1977, pp. 128–134.

[11] Hargraves C. R. and Paris S. W., “Direct Trajectory Optimization Using Nonlinear Program-
ming and Collocation”, Journal of Guidance, Control and Dynamics, Vol. 10, No. 4, 1998,
pp. 338–342.

28

[12] Asseo S. J., “Terrain Following/Terrain Avoidance Path Optimization Using the Method of
Steepest Descent”, Proceedings of the IEEE National Aerospace and Electronics Conference,
vol. 3, IEEE, New York, 1988, pp. 1128–1136.

[13] Menon P. K. A., Kim E. and Cheng V. H. L., “Optimal Trajectory Synthesis for Terrain-
Following Flight”, Journal of Guidance, Control and Dynamics, Vol. 14, No. 4, 1991, pp. 807–
813.

[14] Lu P. and Pierson B. L., “Optimal Aircraft Terrain-Following Analysis and Trajectory Gener-
ation”, Journal of Guidance, Control and Dynamics, Vol. 18, No. 3, 1995, pp. 555–560.

[15] Lu P., “Inverse Dynamics Approach to Trajectory Optimization for an Aerospace Plane”,
Journal of Guidance, Control and Dynamics, Vol. 16, No. 4, 1993, pp. 726–732.

[16] Spong M. W., Thorp J. S. and Kleinwaks J. M. M., “The Control of Robot Manipulators
with Bounded Input”, IEEE Transactions on Automatic Control, Vol. AC-31, No. 6, 1986,
pp. 483–490.

[17] Lee S. M., Bien Z. and Park S. O., “On-Line Optimal Terrain-Tracking System”, Optimal
Control Applications and Methods, Vol. 11, No. 4, 1989, pp. 289–306.

[18] Rehbock V., Teo K. L. and Jennings L. S., “A Linear Programing Approach to On-Line
Constrained Optimal Terrain-Tracking Systems”, Optimal Control Applications and Methods,
Vol. 14, No. 4, 1993, pp. 229–241.

[19] Barnard R., “Terrain Tracking Based On Optimal Aim Strategies”, Optimal Control Applica-
tions and Methods, Vol. 15, No. 2, 1994, pp. 145–150.

[20] Hess R. A. and Jung Y. C., “Generalized Predictive Control of Dynamic Systems”, Proceedings
of the 1988 IEEE International Conference on Systems, Man and Cybernetics, 1988, pp. 844–
849.

[21] Jung Y. C. and Hess R. A., “Precise Flight-Path Control Using a Predictive Algorithm”,
Journal of Guidance, Control and Dynamics, Vol. 14, No. 5, 1991, pp. 936–942.

[22] Lu P., “Nonlinear Predictive Controllers for Continuous Systems”, Journal of Guidance, Con-
trol and Dynamics, Vol. 17, No. 3, 1994, pp. 553–560.

[23] Lu P. and Pierson B. L., “Aircraft Terrain-Following based on a Nonlinear Continuous Pre-
dictive Control Approach”, Journal of Guidance, Control and Dynamics, Vol. 18, No. 4, 1995,
pp. 817–823.

[24] Mitchell J. S. B. and Keirsey D. M., “Planning strategic paths through variable terrain data”,
SPIE Vol. 485: Applications of Artifical Intelligence, 1984, pp. 172–179.

[25] Tsitsiklis J. N., “Efficient Algorithms for Globally Optimal Trajectories”, IEEE Transactions
on Automatic Control, Vol. 40, No. 9, September 1995, pp. 1528-1538.

[26] Sethian J. A., Level Set Methods and Fast Marching Methods, 2nd ed., Cambridge University
Press, 1999.

29

[27] Dijkstra E. W., “A Note on Two Problems in Connection with Graphs”, Numerische Mathe-
matik, 1959.

[28] Cormen T. H., Leiserson C. E., and Rivest R. L., Introduction to Algorithms, 2nd ed., MIT
Press, Cambridge, MA, 2001, pp. 527–531.

[29] Nilsson N. J., Principles of Artificial Intelligence, Tioga Publishing Co., 1980, pp. 72–88.

30

Figure 1: Airspace position and orientation

Figure 2: Horizontal-plane neighbors of a grid point

31

Figure 3: A vertex and its feasible neighbors

Figure 4: A trajectory segment

32

Figure 5: Basic vs. Constrained Dijkstra trajectories – top view. Darker parts of the map indicate
lower ground levels.

Figure 6: Illustration of the hierarchical scheme

33

Figure 7: Full vs. Reduced-State Dijkstra

Figure 8: Cost Function Criteria – Trajectory Smoothness Tuning

34

Figure 9: The A∗ time heuristic within the Reduced-State Dijkstra

Figure 10: The hierarchical algorithm – illustration of the corridor concept

35

Figure 11: Hierarchical Reduced-State Dijkstra – different corridor widths

Figure 12: Hierarchical Reduced-State Dijkstra – different down-sampling factors

36

