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Abstract— Clock synchronization in a network is a crucial
problem due to the wide use of networks with simple nodes,
such as the internet, wireless sensor networks and Ad Hoc
networks. We present novel algorithms for synchronization
of pairs of clocks based on Maximum Margin Estimation of
the offset and skew between pairs of clocks. Our algorithms
are inspired by the well known Support Vector Machines
algorithm from the Machine Learning literature and have
sound geometrical intuition for our model. In addition, we
provide a modification to our algorithms (also relevant for
the existing LP algorithm) to enhance their robustness to
measurement outliers. Finally, we analytically derive the Mean
Square Error for the estimation of offset, in the special case
when the skew is given. Simulation experiments demonstrate
that our algorithms have significantly better performance than
state of the art synchronization algorithms.

I. INTRODUCTION

Synchronization between pairs of clocks in a network is
a very important task which has been treated extensively in
the literature. Synchronization has specific standards such as
the IEEE 1588 standard PTP [1] for LAN, specifically used
for networked measurement and control systems. Specific
protocols are used, the most prevalent of which is NTP [2].
In Wireless Sensor Networks (WSN), where multiple sensors
observe parts of the same phenomenon and communicate
over wireless protocols, synchronization is crucial to process
the measurements correctly. See [3] for a comprehensive
review. In these problems each computer (or node) has its
own clock, where different clocks may differ in their current
time indication (time offset), as well as in their frequency
rate (skew).

Skew estimation can be performed using one-directional
communication. In this model one clock sends its neighbor
time-stamped messages. The second clock then measures
its own time upon receiving these messages. To estimate
both the offset and the skew bidirectional communication
between the clocks is required. In this model the delays
measured in both directions provide immunity against the
constant network propagation delay. To estimate the offset
and skew using bidirectional measurements between the
clocks the two groups of measurements (outgoing and in-
coming messages) have to be separated by the line which
estimates the offset and skew in the most accurate way. The
bidirectional Linear Programming (BLP) presented in [4] es-
timates this line by finding two separate lines, one bounding
the outgoing messages from below and one bounding the
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incoming messages from above, such that the sum of vertical
distances between the line and all the measurement points
is minimal. In Machine Learning, Support Vector Machines
(SVM) [5] are used to separate between two classes, leading
to state of the art classification results, see [6]. Inspired
by SVM, we choose to estimate the offset and skew using
Maximum Margin estimation. We seek for the two parallel
lines farthest from each other which lie beneath all the
points representing the outgoing communication and above
all the points representing the incoming communication. We
use simulations to show our method provides much more
accurate synchronization results compared to state of the art
methods, and brings the performance a step closer to the
CRLB (Cramer Rao Lower Bound).

Previous Work: The Network Time Protocol (NTP) was
presented in [2] and is today the standard protocol in the In-
ternet. It performs online clock synchronization in a network,
each measurement updating the skew and offset estimations
of all the neighbors which receive the synchronization mes-
sages. However, high noise variations across networks make
individual measurements very prone to significant errors. For
this reason, real-life protocols such as NTP have gradually
evolved over the years to obtain filters which allow the
algorithm to neglect increasingly more noisy measurements.
On the other hand, batch synchronization algorithms exist,
which process a large set of measurements at once, in-
corporating different types of robustness in the algorithm.
In [7] and [8] Paxson uses a robust line fitting technique
to decrease the influence of the changing delay between
measurements which introduces a lot of noise to the delay
measurements. In [9], Moon, Skelly and Towsley dealt with
one-way measurements. Their solution is a Linear Program
which finds the line which lies beneath all the measurement
points and has the lowest sum of vertical distances to all
the points. The linear programming algorithm was compared
to Paxson’s algorithm in [9] and provided better results.
Later in [10] it was shown that the linear program coincides
with the Maximum Likelihood estimator for the one-way
measurements case with additive i.i.d. exponential noise and
unknown delay. In [4] Bletsas proposed to use bidirectional
communication and solve two independent Linear Programs
for the outgoing and the incoming messages. The average
of the results comprises the algorithm’s estimation. It was
shown that the bidirectional LP algorithm (now not an ML
estimator due to the change of setting) had superior perfor-
mance to the Kalman filter and Average Time Difference. A
large body of work has been devoted to finding Maximum
Likelihood estimators for clock offset and skew in the two-
way measurements case with exponential i.i.d noise, see



[11], [12], [13] and [14]. Finally, in [15] the presentation
is complete with ML estimators for known and unknown
constant delay. However, the resulting algorithms have very
high complexity.

For further details refer to our full technical report [16]
and to the review paper [3].

Paper Overview: We begin by presenting the problem
formulation and existing LP algorithms in section II. This
forms the basis for the understanding of our Max Margin
algorithms presented in section III. Then, in section IV we
provide initial analysis of the offset estimation error of our
algorithms and the LP algorithm. In section V we then
show how it is possible to make our algorithms, and the
Linear Programming algorithm robust to negative outliers.
Section VI discusses the basic properties of the Max Margin
algorithms we have presented. Finally, section VII shows
simulations of the presented algorithms and section VIII
concludes the article and discusses our future work.

II. MODEL FORMULATION AND EXISTING LP
ALGORITHMS

Consider two clocks C1 and C2, situated in distant lo-
cations and connected by a (possibly wireless) network.
Assume the first clock is a reference clock and we would like
to estimate the offset and skew of the second clock relative to
the first one. When the first clock shows the time C1(t) = t,
the second clock shows the time C2(t) = st + o, assuming
o and s are constants, i.e. that the clocks have no frequency
drift.

A. One Directional Communication

We adapt the noise model of [10]. In this model we assume
that clock C1 sends L “outgoing” messages to clock C2 at
C1’s times t1, . . . , tL. Each message sent at time tl reaches
C2 at tl + d where d is the unknown constant part of the
propagation time in the network between the two clocks.
Clock C2 then shows its time:

yl = C2(tl + d) = stl + d + o + εl (1)

where εl represents the variable portion of the propa-
gation delay and the measurement noise. This noise has
been modeled in the literature to be distributed mostly as
Exponential, but also as Gaussian, Gamma and Weibull, see
[17], [18] and [19]. We too model it as an exponentially
distributed random variable with mean β, εl ∼ Exp(β−1),
pεl

(x) = β−1e−β−1x, x ≥ 0. The noise distribution is one-
sided since the messages can only arrive after being sent and
having traversed the network. See figure 1 for an illustration
of the one directional measurement model.

The Linear Programming algorithm to estimate the offset
and skew in one directional communication was proposed in
[9]. The geometric intuition behind this algorithm is finding
the straight line which lies beneath all the measurement
points in the (t, y) plane, and has the lowest sum of vertical
distances to all the measurement points. The inclination of
this line is the estimated skew, and its offset at t = 0 is the
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Fig. 1. The one directional Linear Programming algorithm seeks for the
line which lies beneath all the measurement points but has the smallest sum
of vertical distances to all the points.

estimated clock offset. This amounts to solving the following
Linear Program:

Algorithm 1: One Directional LP algorithm [9]

minimize
o,s

L∑
l=1

β(yl − stl − o)

subject to yl − stl − o ≥ 0, l = 1, . . . , L (2)
There are L linear constraints stating that all L measurements
must be above the estimated line, and the cost function
has L terms, summing the distance from the line to the L
measurement points. Later, in [10] it was shown that for
the one directional measurements case, this algorithm is the
Maximum Likelihood estimator. In addition, this algorithm
possesses high robustness to exponential noise due to its
minimum-like behavior. In [9] its performance was shown
to be better than that of Paxson’s algorithm presented in [8].
See figure 1 for an illustration of the one directional LP
algorithm.

B. Bidirectional Communication

However, in one directional communication it is impos-
sible to separate offset from additional constant network
delay, unless the delay is known (or zero). To estimate
the offset as well, bidirectional communication must be
used. In bidirectional communication, clock C2 also sends
L “incoming” messages back to C1. Message l is sent at
C2’s time ξl. Recalling the offset and skew of clock C2

from the reference time we get ξ = sτ̃l + o where τ̃ is the
reference time at the sending moment. The message reaches
clock C1 after traversing the network and suffering constant
propagation delay d. Thus, upon receiving the message clock
C1 shows the time τl = C1(τ̃l + d + ηl) = τ̃l + d + ηl,
the delay d is measured in the receiver’s clock. Hence, the
relation between the sender and the receiver times is:

ξl = sτl − d − ηl + o (3)

where ηl represents the variable portion of the propagation
delay and the measurement error, ηl ∼ Exp(β−1).

In [4] it was proposed to solve two independent Linear
problems, one for the outgoing messages and one for the
incoming messages, and to take the average between the
solutions. This results in the following algorithm:



Algorithm 2: Bidirectional LP algorithm (BLP) [4]

minimize
o1,s1

L∑
l=1

β(−s1tl − o1)

subject to yl − s1tl − o1 ≥ 0, l = 1, . . . , L (4)

minimize
o2,s2

L∑
l=1

β(s2τl + o2)

subject to s2τl + o2 − ξl ≥ 0, l = 1, . . . , L (5)
Output : o = (o1 + o2)/2, s = (s1 + s2)/2 (6)
This algorithm cannot be shown to be a Maximum

Likelihood estimator for this problem but it showed good
performance in [4] relative to the authors’ implementation
of a Kalman filter and relative to simple averaging of the
measured delays.

III. MAX MARGIN ALGORITHMS FOR CLOCK
SYNCHRONIZATION

In this section we present our proposed algorithms for
clock synchronization, based on Max Margin optimization.

A. MM1-LP: Linear Max Margin Algorithm

The first Max Margin algorithm we present is similar
in spirit to the BLP algorithm we presented earlier. Our
algorithm too seeks to minimize the vertical difference
between the estimated line and the measurement points.
The difference is that in the bidirectional LP algorithm two
separate lines are estimated, each minimizing the sum of
vertical distances between the line and the measurement
points. Our algorithm, on the other hand, seeks a single
line to begin with, and seeks it so that it has the maximal
margin to the closest measurement points of both outgoing
and incoming measurements. See figure 2 for an illustration.

Our algorithm takes a very simple form – a Linear
Program very similar to the one solved in the bidirectional
LP algorithm. The estimated line has to satisfy all the linear
constraints, and we demand that it stays at least M away
from all the constraints and seek for the maximal M possible.
The mathematical formulation is as follows:

Algorithm 3: MM1-LP

maximize
o,s

M

subject to sτl + o − ξl ≥ M, l = 1, . . . , L

yl − stl − o ≥ M, l = 1, . . . , L (7)
In the simulations section we will show that this algorithm

outperforms state of the art synchronization algorithms.

B. MM2-QP: Quadratic Max Margin Algorithm

Instead of using the vertical distance between the lines,
we may choose to use the Euclidean distance, as used in
SVM. We denote this algorithm by MM2-QP. This algorithm
showed performance very similar to that of MM1-LP and
thus we leave its details to [16].
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Fig. 2. MM1-LP seeks for two parallel lines with the greatest vertical
distance between them that both lie beneath all the outgoing measurements
and above all the incoming measurements.

C. MM3-AP: Approximate Max Margin Algorithm

The two Max Margin algorithms discussed above provide
excellent estimation results, as well as some additional ben-
efits which are discussed below. However, both algorithms
need to have the measurements of both clocks to perform
their optimization. This is a disadvantage relative to the
bidirectional LP algorithm which works independently on
each clock’s measurements and then only sends the computed
offset and skew to the other clock for averaging.

Here we present an approximate algorithm which com-
bines the advantages of both approaches. It is distributed
and does not require passing all the measurements of both
nodes to a central processor like the bidirectional LP on one
hand, but on the other hand it uses Maximum Margin to gain
synchronization accuracy.

As we will show in the simulations section, the bidirec-
tional LP and the Max Margin algorithms provide similar
performance in skew estimation. It is the offset estimation
where the max margin algorithms have significant superior-
ity. Thus our approximated algorithm has two stages:

Algorithm 4: MM3-AP
1) Calculate the skew according to Algorithm 2, i.e. each

node calculates a skew using a Linear Program and its
own measurements only. The total skew is calculated
as the average of the two skew values.

2) Find the offset according to a Max Margin optimization
using the calculated skew, see (10) below.

Let us elaborate on step 2 of this algorithm. First, we note
that this step is identical to the optimization problem in (7),
except that the skew s is obtained from the first step and not
optimized. Since s is given, the Maximum Margin parallel
lines have a given slope s. Thus, to find the maximum
margin they will strive to move away from one another
until they meet a single measurement point of the outgoing
messages and a single point of the incoming messages
respectively. These points are the lowest point among the
outgoing messages and the highest point among the incoming
messages if we rotate the plane (t, y) by atan(s) clockwise.
Recall the measurement model from (1) and (3). The first
measurement point of the outgoing messages the Maximum
Margin line will meet going up is minl=1,...,L(yl − stl).



Assume this minimal difference was obtained for l = l′,
then this difference is equal to:

∆1 = yl′ − stl′ = d + εl′ + o (8)

Similarly, the first measurement point of the incoming mes-
sages the Maximum Margin line will meet going down is
maxl=1,...,L(ξl − sτl). Assume this maximal difference was
obtained for l = l′′, then this difference is equal to:

∆2 = ξl′′ − sτl′′ = −d − ηl′′ + o (9)

Thus, to find the offset by Maximum Margin we simply av-
erage the minimal and maximal differences correspondingly
achieving:

ôMM3−AP = (∆1 + ∆2)/2 = o + s(ε(1) − η(1))/2 (10)

where ε(1), η(1) are the minimal values of noise attained in
the outgoing and incoming messages correspondingly. This
algorithm is fully distributed and very simple. In addition,
we will show in the simulations sections it performs almost
as well as the exact Max Margin algorithms.

IV. OFFSET ERROR ANALYSIS

In this section we analytically derive the MSE for the
estimation of the offset by the BLP algorithm and by our
Max Margin algorithms for the simple case when the skew is
known. Error analysis for the skew estimation of all the above
mentioned algorithms appears to be a very difficult task.
We therefore provide error analysis for the offset estimation
in the case when the skew is given. This analysis becomes
explicit in the case of exponential measurement noise, due
to the fortunate fact that the minimum of an ensemble of
random exponential variables is itself a random exponential
variable. In addition, our error analysis is elegant since, as
we will show, in the case when the skew is given, several
of the above mentioned algorithms estimate the offset in the
same manner, and thus our error analysis is compatible for
all of them.

As we showed in the development of MM3-AP, when
the skew is known, the Maximum Vertical Margin algo-
rithm becomes simply finding the minimal value of {yl −
stl}l=1,...,L and the maximal value of {ξl − sτl}l=1,...,L. It
is easy to see that the bidirectional LP algorithm behaves
the same with known skew. It seeks to minimize the sum
of vertical distances between the measurement points and
the estimated lines, while maintaining the constraints saying
that the outgoing (incoming) measurements must be above
(below) the estimated lines. Thus the estimated lines will
again be the highest and lowest possible lines with slope s
which touch the lowest yl −stl and the highest ξl −sτl. The
offset estimation is then the average of the lines’ offsets and
the result is again the same as in (10). Likewise, MM2-QP
will also have exactly the same estimation, since it looks
for the two furthest lines with maximal Euclidean distance
between them, while satisfying all the constraints. Since the
slope of the lines is equal to s the furthest lines by vertical
distance will also be the furthest lines by Euclidean distance.

Thus, we have shown that the BLP algorithm and our
three Maximum Margin algorithms MM1-LP, MM2-QP and
MM3-AP all estimate the offset in the same way when the
skew is given. We now turn to analyze the error of this
estimation analytically.

Using equation (10) we get that the offset estimation error
is:

õ = ô − o = s(ε(1) − η(1))/2 (11)

that is, the error is s/2 times the difference between the
minima of two samples of L i.i.d. exponential RV’s. The
minimum of a sample of L i.i.d. exponential RV’s with mean
β is also an exponential RV with mean β/L. The difference
of two i.i.d. exponential RV’s is a Laplacian RV with mean
0 and scale parameter b equal to the Exponential RV’s mean,
in our case b = β/L. The multiplication by s/2 makes the
scale parameter b = (βs)/(2L).

Hence the estimation error is a Laplacian RV with mean
µ = 0 and scale b = (βs)/(2L). Thus, the estimation is
unbiased and the MSE is:

E(õ2) = Var(õ) + E(õ)2 = 2b2 = (β2s2)/(2L2) (12)

That means the standard deviation of the estimator is
(βs)/(

√
2L). Since s ∼ 1 we notice the standard deviation

is proportional to the mean of the measurement noise and
inverse proportional to number of measurements.

V. ROBUSTNESS TO NEGATIVE OUTLIERS

The synchronization algorithms discussed above are based
on the assumption that the measurement noise values can
only be positive. This is due to the fact that the noise is
thought to be the excess delay (beyond the constant propa-
gation delay) between the pair of nodes, due to congestion
and packet processing overhead. However, in reality a few
lower-than-normal delay values might be measured, e.g. due
to registration errors or an attack on the network designed to
disrupt the synchronization process. The above mentioned
algorithms all perform some kind of minimum operation
on the measurements, making them extremely vulnerable
to negative values of noise. In fact, a single measurement
with negative noise would totally change the result of any
of these algorithms. In this section we propose a simple
modification to our Max Margin algorithm and to the BLP
algorithm which can render them robust to negative outliers.
Our modification is inspired by the way slacks are added
in Support Vector Machines for classification of inseparable
classes, see [5].

A. Robust MM1-LP

Similarly to the way slacks are added to the quadratic
problem used in SVM, we can add slack variable to the
linear program used in MM1-LP. We simply allow every
linear constraint to be violated up to a positive slack and
add the sum of the slacks to the cost function.



Algorithm 5: Robust MM1-LP

maximize
o,s

M − C

(
L∑

l=1

ρl +
L∑

l=1

σl

)
subject to sτl + o − ξl + ρl ≥ M, l = 1, . . . , L

yl − stl − o + σl ≥ M, l = 1, . . . , L

ρl, σl ≥ 0, l = 1, . . . , L (13)
Robust BLP and MM2-QP The bidirectional LP algorithm

and MM2-QP may be made robust in a similar way by adding
positive slack variables. We leave the details to [16].

VI. DISCUSSION OF BASIC PROPERTIES

Here we would like to discuss existing synchronization
algorithms and our own.

a. Robustness to Spiky Noise: The delay measurements
between a pair of clocks are prone to very strong noise effects
with occasional high valued spikes. The averaging approach
taken in [20] is good for two-sided Gaussian noise but gives
too much weight to noise spikes. The next idea for dealing
with the spiky noise was Paxson’s in [7], where local minima
and medians are used. This solution is more robust to spiky
noise, but each minimum and median operation is performed
on a small number of measurements, which may still lead to
a high estimation of the minimum. In [9] Moon, Skelly and
Towsley improved the robustness further by searching for the
line which lies beneath all the measurement points. However,
the cost function of the linear programming problem still
depends on the values of all the measurements. Finally,
our new algorithms use Max Margin optimization. In our
algorithms the cost function depends on the width of the
band separating the outgoing and incoming measurements
only. This means that our algorithms are perfectly robust to
spiky noise - only the measurements with the lowest noise
values effect the result and determine the line which is the
solution to the problem, while the measurements with high
values of noise are ignored.

b. Robustness to Synchronization Attacks: Malicious at-
tacks on network synchronization are a serious concern for
distributed networks, see [21] for a review. Our algorithms
do not provide protection against attacks which change the
values of all the measurements. However, if an attack consists
of a few exceptionally large or small delay values designed
to disrupt the synchronization, then our methods provide a
good level of robustness as we have shown earlier.

c. Connection to the Convex Hull: Our Max Margin
algorithms may take as input only the points which lie on the
lower (upper) boundary of the convex hull of the outgoing
(incoming) measurements. This may speed up the algorithms
and the network communication required to execute them.

d. Measurement Requirements: Most of the previous work
on synchronization assumes bidirectional messages always
arrive in pairs. In contrast, our Max Margin algorithms work
on an arbitrary batch of measurements.

For further discussion refer to [16].
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Fig. 3. Offset and skew estimation under different noise levels. MM1-
LP and MM2-QP significantly outperform existing algorithms. MM3-AP
still has very good performance despite its simplicity. In skew estimation,
MM3-AP has the same performance as LP.

VII. SIMULATION EXPERIMENTS

To test the performance of our algorithms we compared
them to the bidirectional LP algorithm from [4] and to the
MLE developed in [15]. We simulate two nodes exchanging
messages. The first node is considered as a reference clock,
while the second node has offset and skew. The measure-
ments are performed according to the model we have pre-
sented in section II. Each experiment is repeated many times
to obtain sufficient statistics on the estimators’ performance.
The mean square error of the offset and skew estimations in
all the experiments is plotted for comparison. We plot the
performance of the bidirectional LP algorithm (’LP’), the
MLE presented in Algorithm 4 in [15] (’ML4’), our Maxi-
mum Margin algorithms (’MM1-LP’,’MM2-QP’,’MM3-AP’)
and for the offset estimation plot, also the Cramer Rao lower
bound (’CRLB’) according to [13] for comparison. In each
stage we performed several experiments, changing the mean
of the noise while keeping all other parameters constant. The
different stages are designed to test different aspects of the
algorithms’ performance and they are planned as follows:

• Stage 1: Only basic algorithms and no negative outliers.
• Stage 2: Including modified robust algorithms.

– Stage 2a: With negative outliers.
– Stage 2b: No negative outliers.

Stage 1 – Only Basic Algorithms and No Negative Out-
liers: See figure 3 for the results of these experiments.

Stage 2a – With Negative Outliers: In this set of experi-
ments we test the robustness of the algorithms to negative
outliers. We assume that most noise values are positive
according to the noise model, but several noise values are
negative outliers. In our simulations we used 10% outliers,
each outlier being a negative exponential variable with the
same mean as the measurement noise. Hypothetically, an
algorithm may identify these few outliers and exclude them
from the estimator’s input. We compare our modified robust
algorithms (denoted by the prefix ’s’) against this perfect
algorithm (denoted by the prefix ’fk’). The results are pre-
sented in figure 4.

Stage 2b – No Negative Outliers: To finalize our simu-
lations, we test our modified algorithms for the case where



10
−6

10
−4

10
−2

10
−15

10
−10

10
−5

10
0

10
5

10
10

β [sec]

M
S

E
(θ

) 
[s

ec
2 ]

 

 

LP
ML4
MM1−LP
MM2−QP
MM3−AP
sLP
sMM1−LP
sMM2−QP
fkLP
fkMM1−LP
fkMM2−QP
fkMM3−AP

10
−6

10
−4

10
−2

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

β [sec]

M
S

E
(φ

)

Fig. 4. Offset estimation under different noise levels with negative
outliers. The standard unmodified algorithms perform very poorly, while
our modified robust algorithms deal well with the outliers, and perform
almost as well as algorithms with full knowledge on the outliers’ positions.
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Fig. 5. Offset estimation under different noise levels without negative
outliers. The modified algorithms with slacks perform less due to mistaking
some of the measurements for outliers. However, the degradation is not
severe and might be worth the risk if outliers are expected. Notice the
degradation for MM1-LP is negligible

actually no negative outliers exist, to make sure that introduc-
ing slacks into the optimization does not cause great damage
in the case when no outliers appear in the measurements. See
the results in figure 5.

VIII. CONCLUSION

In this article we have presented novel clock synchroniza-
tion algorithms based on Maximum Margin. Our Linear al-
gorithm MM1-LP and the related Quadratic algorithm MM2-
QP outperform state of the art algorithms, while the third one
is an approximation which still has very good performance,
but in addition, requires simpler calculations and can be
performed in a distributed manner in the individual nodes
to be synchronized, with minor exchange of measurement
data. We then proposed how to add robustness to our pro-
posed algorithms (as well as to the existing bidirectional LP
algorithm) to negative-valued noise outliers without major
additions to the optimization problems to be solved. The
offset estimation error of the presented algorithms for the
special case when the skew is given was derived.

Future Work: An important problem left to be solved is
error analysis of the algorithms both for offset and skew
estimation. There exists literature on synchronizing networks
by exploiting network constraints, see ,e.g., [22]. We are

currently working on ways to exploit the same network
constraints to improve the performance of existing algorithms
such as the Linear Programming algorithm and our Max
Margin algorithms presented above. We believe that exploit-
ing these network constraints may give a significant boost
in performance, even if we only use small cliques in the
network for the constraints data.
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