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Abstract: Production systems transients describe the process of reaching the steady state
throughput. Reducing transients’ duration is important in a number of applications. This
paper is intended to analyze transients in systems with machines obeying the geometric
reliability model. The Markov chain approach is used, and the second largest eigenvalue of
the transition matrices is utilized to characterize the transients. Due to large dimensionality
of the transition matrices, only two-machine systems are addressed, and the second largest
eigenvalue is investigated as a function of the breakdown and repair rates. Conditions under
which shorter, rather than longer, up- and downtimes lead to faster transients are provided.
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1. INTRODUCTION

Production systems often operate in transient regimes. Ex-
amples include paint shops of automotive assembly plants,
where some buffers are emptied at the end of each shift due
to technological constraints; this leads to production losses
in the subsequent shift (until the buffer occupancy reaches
its steady state). Another example are machining depart-
ments operating with so-called floats, where additional
work-in-process is built up by slow machines after the end
of a shift in order to prevent starvations of fast machines
in the subsequent shift, leading to increased production
during the transients. Clearly, to quantify the performance
of these systems, a method for analysis of their transients
is necessary.

Unfortunately, the literature offers very few publications
in this regard. Specifically, Narahari and Viswanadham
(1994) study transients in one-machine production sys-
tems, using the idea of Markov process absorption time.
Mocanu (2005) develops an algorithm for a numerical so-
lution of the partial differential equation, which describes
the evolution of the probability density function of a buffer
with Markov-modulated input and output flows. The clos-
est to the current study is the paper by Meerkov and Zhang
(2008), which studies transients of serial production lines
with machines obeying the Bernoulli reliability model. Ac-
cording to this model, each machine, being neither starved
nor blocked, produces a part during a cycle time with
probability p and fails to do so with probability 1−p, irre-
spective of what had happened in the previous cycle time.
Thus, Bernoulli machines are memoryless, which simplifies
the analysis of the resulting systems. While the Bernoulli
model is applicable to some assembly operations, it does
not describe well many others, including machining, heat

treatments, washing, etc. Thus, an extension of the results
reported by Meerkov and Zhang (2008) is necessary. This
is carried out in the current paper for machines obeying
the geometric reliability model, which is applicable to the
manufacturing operations mentioned above. Due to the
complexity of the resulting mathematical description, only
the case of two-machine systems is addressed; longer lines
will be analyzed in the future work.

The outline of this paper is follows: Section 2 presents
the model and the problem formulation. In Section 3,
transients of individual machines are analyzed. Sections 4
and 5 are devoted to two-machine lines with short and long
buffers, respectively. The conclusions and future work are
given in Section 6. All proofs and numerical justifications
are included in the Appendix.

2. MODEL AND PROBLEM FORMULATION

2.1 Model

We consider a two-machine production line (see Figure
2.1) defined by the following assumptions:
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N 

Fig. 2.1. Two-machine geometric line

(i) Both machines have an identical cycle time, τ . The
time axis is slotted with the slot duration τ . The state



of each machine (up or down) is determined at the
beginning of each time slot.

(ii) Both machines obey the geometric reliability model,
i.e., if s(n) ∈ {0 = down, 1 = up} denotes the state of
a machine at time slot n, the transition probabilities
are given by

P [s(n + 1) = 0|s(n) = 1] = P,

P [s(n + 1) = 1|s(n) = 1] = 1− P,

P [s(n + 1) = 1|s(n) = 0] = R,

P [s(n + 1) = 0|s(n) = 0] = 1−R,

where P and R are referred to as the breakdown and
repair probabilities, respectively.

(iii) The buffer is characterized by its capacity 1 ≤ N <
∞. The state of the buffer is determined at the end
of each time slot.

(iv) Machine m1 is never starved; it is blocked during a
time slot if it is up and the buffer is full.

(v) Machine m2 is never blocked; it is starved during a
time slot if it is up and the buffer is empty.

Note that these assumptions imply, in particular, that time
dependent failures are addressed and the blocked before
service convention is used; that is why N ≥ 1. Note also
that the average up- and downtime of the machines are
Tup = 1/P and Tdown = 1/R and the machine efficiency is
e = Tup/(Tup + Tdown).

2.2 Problems

Given the above model, the production system at hand
is described by an ergodic Markov chain. As it is well
known (Meerkov and Zhang (2008)), the transients of such
a system are characterized by the second largest eigenvalue
(SLE) of its transition matrix. With this in mind, the
problems addressed in this paper are as follows:

• Analyze the second largest eigenvalue of an individual
geometric machine as a function of P and R. In
particular, investigate the effect of Tup and Tdown

on SLE, under the assumption that the machine
efficiency e is fixed.

• Carry out similar analyses for two-machine lines. In
addition, investigate explicitly the transients of the
production rate, PR(n), i.e., the probability that
m2 is up and the buffer is not empty at time slot
n = 1, 2, . . . .

Note that the steady state production rate, PR(∞) =:
PRss, of a production line defined by assumptions (i)-
(v) can be evaluated using the method developed in Li
and Meerkov (2003). Here we are interested in how PR(n)
approaches the steady state value PRss.

The interest in the effect of Tup and Tdown on the transients
stems from the following: It is well known (see Li and
Meerkov (2009)) that

• for a fixed e, shorter Tup and Tdown lead to a larger
PRss than longer ones;

• decreasing Tdown by a given factor leads to a larger
PRss than increasing Tup by the same factor.

Do similar effects exist in the case of transients as well?
In other words, do shorter Tup and Tdown lead to faster

transients than longer ones? These and other similar
questions are answered in this paper.

3. TRANSIENTS OF INDIVIDUAL MACHINES

Let xi(n), i ∈ {0, 1}, be the probability that the machine
is in state i during time slot n. Then, the evolution of the
vector x(n) = [x0(n) x1(n)]T can be described by

x(n + 1) = Ax(n), x0(n) + x1(n) = 1, (3.1)

where

A =
[

1−R P
R 1− P

]
. (3.2)

The eigenvalues of A are

λ0 = 1,

λ1 = 1− P −R,

and, therefore, the dynamics of the machine states can be
expressed as

x0(n) = (1− e) + [x0(0)− (1− e)](1− P −R)n

= (1− e)
(

1− ∆
1− e

λn

)
, (3.3)

x1(n) = e + [x1(0)− e] (1− P −R)n

= e

(
1 +

∆
e

λn

)
, (3.4)

where

∆ = x1(0)− e = (1− e)− x0(0). (3.5)

To investigate the effects of up- and downtime on the
transients, consider λ1 as a function of R for a fixed e,
i.e.,

λ1(R) = 1−
(

1
e
− 1

)
R−R = 1− R

e
.

The behavior of |λ1| as a function of R is illustrated in
Figure 3.1. From this figure, we conclude:

• For 0 < R < e, longer up- and downtimes lead longer
transients.

• For R = e, the machine has no transients. Such a
machine can be viewed as a Bernoulli machine.

• For e < R < 1, The evolution of the machine states
is oscillatory (since λ1 < 0) and, more importantly,
shorter up- and downtimes lead to longer transients.
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Fig. 3.1. Behavior of |λ1| as a function of R



Next, we address the issue of separate effects of uptime and
of downtime on the transients. Recall that, as mentioned
in Section 2, increasing the uptime by a factor 1+α, α > 0,
or decreasing the downtime by the same factor lead to the
same steady state performance for an individual machine
since

e′ =
1

1 + Tdown

(1+α)Tup

. (3.6)

However, the transient properties resulting from both
cases are different. Indeed, consider a geometric machine
with breakdown and repair probabilities P and R, respec-
tively. Let λu

1 denote the SLE of the machine with the
uptime increased by (1+α), α > 0 and λd

1 denote the SLE
for the same machine with the downtime decreased by the
same factor. Then,
Theorem 3.1. For an individual geometric machine,

|λu
1 | > |λd

1|, (3.7)

if

e > 0.5,
Tdown

1 + α
> 2. (3.8)

This theorem implies that if the machine efficiency is
larger than 0.5 and the decreased downtime is larger
than two cycle times, decreasing the downtime leads to
faster transients than increasing the uptime, preserving
the steady state production rate in both cases the same.

4. TRANSIENTS OF 2-MACHINE LINES WITH N = 1

For a serial line with two geometric machines, the state
of the system can be denoted by a triple (h, s1, s2), where
h ∈ {0, 1, . . . , N} is the state of the buffer and si ∈ {0, 1},
i = 1, 2, are the states of the first and the second machine,
respectively. The behavior of the system is described by
an ergodic Markov chain. For N = 1, the transition
probability matrix is:

A =
[

A1 0 A2 0
0 A3 0 A4

]
, (4.1)

where

A1 =




(1−R)2 (1−R) P

(1−R) R (1−R) (1− P )

R (1−R) R P

R2 R (1− P )


 ,

A2 =




(1−R) P

(1−R) (1− P )

R P

R (1− P )




A3 =




(1−R) P P 2 (1−R)2

R P P (1− P ) (1−R) R

(1− P ) (1−R) (1− P ) P R (1−R)

(1− P ) R (1− P )2 R2


 ,

A4 =




(1−R) P P 2

R P P (1− P )

(1− P ) (1−R) (1− P ) P

(1− P ) R (1− P )2




and 0’s are zero-matrices of appropriate dimensionalities.
The eight eigenvalues of A are:

[1, 1− P −R, 1− P −R, (1− P −R)2, (1−R)2,

0, 0, 0]. (4.2)

Clearly, the two eigenvalues 1 − P − R represent, as it
follows from Section 3, the dynamics of the individual
machines; the eigenvalue (1 − P − R)2 represents the
transients of a pair of individual machines (note that the
states of the machines in model (i)-(v) are determined in-
dependently); therefore, the remaining non-zero eigenvalue
(1−R)2 can be viewed as describing the transients of the
buffer. The last statement is supported by the following
two arguments:

First, using the notations

λm = 1− P −R, λb = (1−R)2,
the transients of the states, i.e.,

xh,i,j(n) = P [h(n) = h, s1(n) = i, s2(n) = j], n = 0, 1, . . . ,

can be represented as

xh,i,j(n) = xh,i,j

(
1 + Bλn

b + Cλn
m + D(λ2

m)n

)
, (4.3)

h ∈ {0, 1}, i, j ∈ {0, 1}, n = 0, 1, 2, . . . ,

where

xh,i,j = lim
n→∞

xh,i,j(n)

and B, C and D are constants defined by initial conditions.
Theorem 4.1. Consider a serial line with two identical
geometric machines and N = 1. Assume that initially the
machines are in the steady states, i.e.,

P [s1(0) = 1] = P [s2(0) = 1] = e. (4.4)
Then, in expression (4.3),

C = D = 0, ∀i, j, h ∈ {0, 1}.
Thus, if the machines are in the steady states, the eigen-
value (1 − R)2 indeed characterizes the transients of the
buffer.

The second argument is as follows: Recall that if R = e, the
machines can be viewed as obeying the Bernoulli reliability
model. In this case, the machines have no transients, and
the transients of the system are defined by λb = (1− e)2,
which, as it follows from Meerkov and Zhang (2008), is
equivalent to the Bernoulli case with p = e.

From (4.2), it is not immediately clear which of the
eigenvalues is the SLE. Obviously, the SLE can be either
1 − P − R or (1 − R)2, i.e., either λm or λb. Which one
is, in fact, the SLE depends on the relationship between P



and R. To investigate when λm or λb is SLE, consider
the simplex 0 < P < R < 1 in the (P, R)-plane (see
Figure 4.1). Each point (P, R) implies e > 0.5 and each
line, P = kR, k < 1, represents a set of points (P, R) with
identical efficiency e = 1

1+k . Let λ1 denote the SLE, i.e.,

|λ1| = max{|λm|, λb}.
Then, it can be shown that

|λ1| =
{

λm, if 0 < P < R(1−R),
λb, if R(1−R) < P < (1−R)(2−R),
−λm, if (2−R)(1−R) < P < 1.

(4.5)

This leads to the partitioning of the simplex according to
SLE as shown in Figure 4.1. Thus, in area I, the transients
of the system are defined by an individual machine; in area
II, the transients are defined by the buffer; in area III,
the transients are again defined by the machine, however,
since the eigenvalue in this area is negative, the transients
in area III are oscillatory.
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Fig. 4.1. Partitioning of the simplex 0 < P < R < 1
according to SLE

Next, we characterize the effects of shorter and longer up-
and downtimes on the duration of transients.
Theorem 4.2. Consider a geometric line with two identical
machines and N = 1. Then, for any fixed e > 0.5,
the SLE is a monotonically decreasing function of R for
R ∈ (0, 0.5).

Thus, for Tdown > 2, shorter up- and downtimes lead
to faster transients than longer ones, even if machine
efficiency e > 0.5 remains the same. This phenomenon
is illustrated in Figure 4.2.
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Fig. 4.2. Transients of PR for e = 0.9

In addition, the following can be obtained regarding the
effects of increasing uptime or decreasing downtime on
system transients:

Theorem 4.3. Consider a geometric line with two identical
machines and N = 1. Let |λu

1 | and |λd
1| denote the SLEs

resulting from increasing the uptime by (1+α), α > 0, and
decreasing its downtime by the same factor, respectively.
Then, under assumption (3.8),

|λu
1 | > |λd

1|. (4.6)

Thus, the qualitative effect of the uptime and the down-
time on the transients in two-machine lines with N = 1
remains the same as that for individual machines: under
(3.8), it is better to reduce the downtime than increase
the uptime in order to shorten the transients. This phe-
nomenon is illustrated in Figure 4.3.
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Fig. 4.3. Transients of PR with increased uptime or
decreased downtime for e = 0.7, R = 0.1 and e′ = 0.9

5. TRANSIENTS OF 2-MACHINE LINES WITH N ≥ 2

A direct analytical investigation of transients in two-
machine geometric lines with N ≥ 2 is all but impossible
due to high dimensionality of the resulting Markov tran-
sition matrices. Therefore, we resort to approximations.

Clearly, the dynamic behavior of the production rate is
given by

PR(n) = P [buffer is not empty at n]P [m2 is up at n].

(5.1)
The second term in the right hand side of this expression,
as it follows from Section 3, is given by

1 +
∆
e

λn
m, (5.2)

where ∆ is defined in (3.5). We approximate the first term
by reducing the geometric line to a Bernoulli one with the
machines defined by

pBer =
R

P + R
(5.3)

and the buffer capacity

NBer = [NR + 1] , (5.4)
where [x] denotes the nearest integer to x. For such a
line, PRBer(n), n = 0, 1, . . . , can be easily calculated
(see Meerkov and Zhang (2008)). We use PRBer(n) to
approximate the first term in (5.1) taking into account
that one time slot in the Bernoulli line is considered as
one downtime in the original geometric line. In addition,
since in the Bernoulli line, the flows in and out of the



buffer are stationary, we assume that the first machine of
the geometric line also reaches its steady state. This leads
to the approximation

P̂R(n) = PRBer

(
n

Tdown

)(
1 +

∆
e

λn
m

)2

, (5.5)

where the additional multiplier (1+ ∆
e λn

m) accounts for the
transients of the first machine.

The accuracy of (5.5) has been investigated numerically
using 50,000 lines constructed by selecting the parameters
randomly and equiprobably from the following sets:

e∈ [0.6, 0.95], (5.6)

R ∈ [0.05, 0.5], (5.7)

N ∈ {2, 3, . . . , 40}. (5.8)

A typical example is shown in Figure 5.1, where the
accuracy ε(n) is defined by

ε(n) =
P̂R(n)

P̂R(∞)
− PR(n)

PR(∞)
. (5.9)

As one can see, the accuracy is sufficiently high.
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Fig. 5.1. Illustration of the accuracy of expression (5.5) for
e = 0.9 and R = 0.1

Using approximation (5.5), the effects of up- and downtime
on the transients can be evaluated. Since this is carried out
numerically, we formulated the results as numerical facts.
Numerical Fact 5.1. Consider a geometric line with two
identical machines having e > 0.5 and N ≥ 2. Then, for
any Tdown > 2, shorter up- and downtimes lead, practically
always, to faster transients than longer ones.
Numerical Fact 5.2. Under condition (3.8), reducing down-
time leads, practically always, to shorter transients than
increasing uptime.

As it is shown in the justification of these numerical facts,
the term “practically always” is quantified as 99% for
Numerical Fact 5.1 and 96% for Numerical Fact 5.2.

6. CONCLUSIONS AND FUTURE WORK

This paper provides a characterization of transients in
two-machine geometric production lines. It is shown that,
in some cases, the system’s transients can be analyzed
by separating the transients of the machines and the
transients of the buffer. When the buffer is of capacity 1,
this separation is exact; for longer buffers the separation
is approximate. In either case, it is shown that if the
machines’ efficiency is greater than 0.5 and the average
downtime is larger than two cycle times, shorter up-
and downtimes lead to faster transients than longer ones.
Under the same condition, it is shown that a reduction in
downtime leads to faster transients than a similar increase
of the uptime.

Future work will address transients in geometric lines with
more than two machines and production lines with other
machine reliability models, e.g., exponential, Weibull, log-
normal, etc. For non-Markovian machines, the effect of
the coefficients of variation of up- and downtime on the
duration of transients will be investigated.
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Appendix A. PROOFS AND JUSTIFICATIONS

Proof of Theorem 3.1: It follows from (3.3) that

λu
1 = 1− P

1 + α
−R, (A.1)

λd
1 = 1− P − (1 + α)R. (A.2)

Solving inequalities |λu
1 | − |λd

1| > 0 and |λu
1 | − |λd

1| > 0
results in

• |λu
1 | − |λd

1| > 0, if (1 + α
2 )R < e′,

• |λu
1 | − |λd

1| < 0, if (1 + α
2 )R > e′.

It follows immediately from (3.8) that

(1 +
α

2
)R < (1 + α)R < 0.5 < e < e′.



Thus, under condition (3.8),
|λu

1 | > |λd
1|.

Proof of Theorem 4.1: For matrix A given in (4.3),
there exists a nonsingular matrix Q such that

A = Q−1ÃQ, (A.3)
where

Ã = diag[1 λb λm λm λ2
m 0 0 0].

Thus,

x(n + 1) = Ax(n) = Q−1ÃQx(n) = Q−1ÃnQx(0),
where

Ãn = diag[1 λn
b λn

m λn
m (λ2

m)n 0 0 0].
Hence, the evolution of the states can be expressed as

xh,i,j(n) = xh,i,j [1 + B̃x̃2(0)λn
b + (C̃1x̃3(0) +

C̃2x̃4(0))λn
m + D̃x̃5(0)(λ2

m)n],

h ∈ {0, 1}, i, j ∈ {0, 1}, n = 1, 2, . . . , (A.4)

where B̃, C̃1, C̃2 and D̃ are constants,

x̃i(0) = qix(0) (A.5)
and qi is the i-th row of Q.

Then, it follows from (4.3) that

C = C̃1x̃3(0) + C̃2x̃4(0), (A.6)

D = D̃x̃5(0). (A.7)

For matrix Q, it can be obtained that
[

q3

q4

q5

]
=

P 2

(−R + P + R2) (R + P )2




R2 −RP R2 −RP R2 −RP R2 −RP
R R −P −P R R −P −P

−R3

P 2

R2

P

R2

P
−R −R3

P 2

R2

P

R2

P
−R


 .

Moreover, initial condition (4.4) implies that
∑

h,j

xh,1,j(0) =
∑

h,i

xh,i,1(0) = e,

∑

h,j

xh,0,j(0) =
∑

h,i

xh,i,0(0) = 1− e.

In addition, since m1 and m2 are independent,
∑

h,i 6=j

xh,i,j(0) = 2e(1− e),

∑

h

xh,0,0(0) = (1− e)2,

∑

h

xh,1,1(0) = e2.

Thus, under (4.4),

x̃3(0) =
P 2[R2(1− e)−RPe]

(−R + P + R2) (R + P )2
= 0,

x̃4(0) =
P 2[R(1− e)− Pe]

(−R + P + R2) (R + P )2
= 0,

x̃5(0) =
R[2RPe(1− e)−R2(1− e)2 − P 2e2]

(−R + P + R2) (R + P )2
= 0.

Therefore, due to (A.6) and (A.7),

C = D = 0.

Proof of Theorem 4.2: Since |1−P−R| and (1−R)2 are
both monotonically decreasing functions of R on (0, 0.5)
for a fixed e, the SLE of the system is a monotonically
decreasing function of R on (0, 0.5).

Proof of Theorem 4.3: It follows from Theorem 3.1 that

|λu
m| > |λd

m|. (A.8)
In addition,

λu
b = (1−R)2 > [1− (1 + α)R]2 = λd

b .

Thus,

|λu
1 | = max(|λu

m|, λu
b ) > max(|λd

m|, λd
b) = |λd

1|.

Justification of Numerical Fact 5.1: This justification
was carried out by evaluating the settling time of produc-
tion rate, tsPR, which is the time necessary for PR to reach
and remain within ±5% of its steady state value, provided
that the buffer is initially empty. A total of 10,000 lines
were generated with e and N randomly and equiprobably
selected from the sets (5.6) and (5.8), respectively. For each
line, thus constructed, tsPR is evaluated using approxima-
tion (5.5) as a function of R. As a result, we obtained
that tsPR is a monotonically decreasing function of R on
R ∈ (0, 0.5) in 99% of all cases studied. Thus, we conclude
that shorter up- and downtimes lead, practically always,
to faster transients, i.e., Numerical Fact 5.1 holds.

Justification of Numerical Fact 5.2: To justify this
numerical fact, the 50,000 lines generated as mentioned in
Section 5 were used to investigate the effects of increasing
uptime or decreasing downtime on tsPR. To accomplish
this, we selected α randomly and equiprobably from the
set

α ∈ {0.05, 0.1, . . . , 1}
and evaluated the settling times tusPR and tdsPR, resulting
from increasing uptime by (1+α) and decreasing downtime
by (1+α), respectively. It turned out that tusPR was longer
than tdsPR in 96.12% of all cases studied. For the remaining
3.88% of cases, tusPR was shorter than tdsPR by at most 1
cycle time. Therefore, we conclude that Numerical Fact
5.2 takes place.


