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Abstract. The Differentiated Services (Diffserv) architecture is a scal-
able solution for providing Quality of Service (QoS) over packet switched
networks. By its very definition, Diffserv is not intended to provide strict
performance guarantees to its subscribers. We purpose in this paper a
particular form of relative performance guarantees. Specifically, the net-
work manager’s goal is to maintain pre-defined ratios between common
congestion measures over the different service classes. We assume that
each service class is advertised with a constant price. Thus, in order
to induce its goal, the manager dynamically allocates available capac-
ity between the service classes. This scheme is studied within a network
flow model, with self-optimizing users, where each user can choose the
amount of flow to ship on each service class according to its service utility
and QoS requirements. We pose the entire problem as a non-cooperative
game. Concentrating on a simplified single-link model with multiple ser-
vice classes, we establish the existence and uniqueness of the Nash equi-
librium where the relative performance goal is obtained. Accordingly, we
show how to compute and sustain the required capacity assignment. The
extension to a general network topology is briefly outlined.

1 Introduction

Background and Motivation. The need for providing service differentiation
over the Internet has been an ongoing concern in the networking community.
The Differentiated Services (Diffserv) architecture [5] has been proposed by the
IETF as a scalable solution for QoS provisioning. Instead of reserving resources
per session (e.g., as in the Integrated Services (IntServ) model [24]), packets are
marked to create a smaller number of packet classes, which offer different service
qualities. The Diffserv proposal suggests to combine simple priority mechanisms
at the network core with admission control mechanisms at the network edges
only, in order to create diverse end-to-end services.

The two principal Diffserv classes that have been formalized are the Expe-
dited Forwarding (EF) [8] and the Assured Forwarding (AF) [11] services. The
premise of the EF is to provide no-loss and delay reduction to its subscribers.



AF is intended for users who need reliable forwarding even in times of net-
work congestion. Ongoing IETF work concentrates on defining the engineering
and architectural aspects of Diffserv-enabled routers (e.g., [2]). However, current
technical specifications deliberately do not quantify the actual service character-
istics, which users will obtain by using the above mentioned classes. Apparently,
service characteristics would have to be defined and publicly declared in order
to make the distinction between the service classes meaningful to the user (and
possibly worth paying for).

The Diffserv network cannot offer strict quality guarantees, as resources are
allocated to the service classes based on some average network conditions [7]. In-
stead, the provider may declare upper-bounds on QoS measures, or alternatively
provide looser guarantees, such as probabilistic or time-dependent guarantees.
Another option is to offer relative quality guarantees. This option can be eas-
ily quantified and advertised, as illustrated by the following exemplifying rule:
“service class Q will offer an end-to-end average delay, which is at least two
times less than any other class, independent of the level of congestion”. When
a user buys class Q it is aware of what it gets, and expects the provider to up-
hold the agreement conditions. In this paper, we focus on the proportional QoS
model, whereby QoS ratios between the classes are announced. Specifically, we
concentrate on delay ratios, although analogous definitions may be suggested
when considering other QoS measures. The proportional QoS model benefits
from implementation-related pros. Ratios are easier to maintain in comparison
with absolute end-to-end guarantees, primarily because they may hold for dif-
ferent levels of congestion, and secondly because keeping the ratios locally (on a
node basis) leads to fulfilling this objective on the network level.

We shall examine capacity allocation as the main network management tool
for achieving the proportional QoS design objective. The goal of capacity allo-
cation is to keep the announced delay ratios, irrespectively of complementary
means for network traffic control, such as pricing and admission control. Our
focus in this paper is on a simplified single link network, where the network
manager owns a fixed amount of capacity to be divided among the link’s offered
service classes in order to maintain the QoS ratios objective. Generally, it is
easy to calculate the appropriate capacity allocation when the traffic in each
service class is fixed. In this paper, however, we consider the interaction of the
user behavior and network conditions. Within a standard flow model (see [4],
Sec. 5.4) we represent the user population as a finite set of self-optimizing de-
cision makers. The users are heterogenous with respect to their cost functions,
which reflect their price-quantity-quality tradeoffs. Furthermore, users may mod-
ify their flow quantities (i.e., elastic users [12]), and may also shift their traffic
from one service class to the other in response to current congestion conditions.
We pose the overall problem as a non-cooperative game between the manager
and the (selfish) users, and explore the associated capacity management policies
and equilibrium conditions.

In a recent paper [15], we have considered a similar problem with static
(fixed) user demand in the general network context. The present paper extends



this work (for a single-link network) to the case of elastic demand, as well as
adding a price term to the overall user’s cost.

Related Literature. Service differentiation approaches: Several research
papers have addressed the model of finitely many classes, in which no strict
performance guarantees are given. The simplest approach for providing differen-
tiated services is Odlyzko’s Paris Metro Pricing (PMP) proposal [19]. The idea
of PMP is to create service differentiation by giving a different price to each
service class. Other papers [10, 14, 17] explicitly consider elements such as the
user model, the scheduling mechanism and the network objective (e.g., a social
or an economic objective). The major concern is usually in calculating the prices
that would lead to the network objective. An additional common ground is that
the network does not declare any kind of QoS guarantees. Users are assumed
to acquire the best deal there is with respect to their quality-price tradeoff. We
deviate from the last assumption, by considering the upholding of the service
characteristic as a primary management priority.

Selfish routing: Since our model assumes that users are allowed to split traffic
between the service classes, our work is related to selfish routing models. Game-
theoretic analysis is widely used to study the working conditions of these models.
The involved issues include the existence and uniqueness of an equilibrium point,
its calculation, and its properties (such as the degradation of performance due to
selfish behavior, known as the “price of anarchy” [23]). A common routing model,
originated from the field of transportation networks, has considered networks
shared by infinitesimal users (see [1] for a survey). The case of finitely many users,
each carrying substantial flow has been introduced to the networking literature
more recently (see [13, 20, 21]). In [13], the equilibrium properties are applied
for network design (namely, link capacity assignment), where the objective is to
obtain the socially optimal working point. We use a similar routing model to
represent the user’s choice of service class.

Proportional QoS: Dovrolis et al. [9] proposed a class of schedulers, based on
the Proportional Delay Differentiation (PDD) model. This model aims at pro-
viding predetermined delay ratios. The schedulers are implemented by observing
the history of the encountered delays (or alternatively, by measuring the delay
of the packet at the head of each service class), and serving the class which most
deviates from its nominal delay ratio. In the present work we do not rely on PDD
schedulers, but rather use a capacitated links model that may be considered a
proxy to existing scheduling schemes such as GPS.

Contribution and Organization. This paper proposes schemes for induc-
ing proportional QoS through capacity allocation, when users can react to the
allocation decisions. The precise definitions of the network and user models are
given in Section 2. The analysis of this model is presented in Section 3, which
establishes the existence and uniqueness of the equilibrium point for the network-
users game, and presents an algorithm for its computation. An explicit formula
is obtained for the best response map of the network, namely the capacity as-
signment that ensures the QoS-ratio objective for fixed network flows, which may
be used as a basis for an adaptive capacity assignment scheme. Due to length



constraints, the proofs of some claims are omitted, the reader is referred to [16]
for full details.

2 The Single Link Model

Our basic model considers a single link, which supports several service classes.
As a stand-alone model, it may be viewed as an approximation of a single path
in a network, where the variations in traffic due to other (intersecting) network
paths are neglected. Let I = {1, 2, . . . , I} be a finite set of users, which share a
link that offers a set of service classes A = {1, 2, . . . , A}. Since each service class
is characterized by its own price and performance measure (to be described in the
sequel), it would be convenient to consider the link with its respective service
classes as a two terminal (source-destination) network, which is connected by
a set of parallel arcs. Each arc represents a different service class. Thus, the
set of arcs is also denoted by A, and the terms service class and arc are used
interchangeably. We denote by f i

a the flow which user i ships on arc a. User i
is free to choose any assignment of f i

a ≥ 0. The total demand of each user will

be denoted by f i 4=
∑

a∈A f i
a. Turning our attention to an arc a ∈ A, let fa be

the total flow on that arc, i.e., fa =
∑

i∈I f i
a. Also, denote by fa the vector of

all user flows on arc a, i.e., fa = (f1
a , . . . , f I

a ). The user flow configuration f i is
the vector f i = (f i

1, . . . , f
i
A). The flow configuration f is the vector of all user

flow configurations, f = (f1, . . . , f I). A user flow configuration is feasible if its
components obey the nonnegativity constraints, as described above. We denote
by Fi the set of all feasible user flow configurations f i, and by F the set of all
feasible flow configurations f .

The network manager has a constant capacity C, to be divided between the
service classes. This capacity cannot be statically assigned, since the manager
cannot predict in advance the number of customers and their preferences. Prac-
tically, the network manager would modify the current capacity assignment at
slower time scales than the user routing decisions, after periodically measuring
class performance. We denote by ca the allocated capacity at arc a. The capac-
ity allocation of the manager is the vector c = (c1, . . . , cA). An allocation c is
feasible if its components obey the nonnegativity and total capacity constraint,
namely (i) ca ≥ 0, a ∈ A and (ii)

∑
a∈A ca = C. The set of all feasible capacity

allocations c is denoted by Γ . Finally, a system configuration is feasible if it is
composed of a feasible flow configuration and a feasible capacity allocation.

Pricing. Each service class a ∈ A has a constant price pa per unit traffic.
Thus, the network usage price of user i is

∑
a∈A f i

apa. Prices may be viewed as
an indirect mean for admission control [7], and (among other things) prevent
flooding of the better service classes. In this paper, however, we concentrate on
capacity assignment as the management tool, assuming that prices are static (or
change on a slower time scale). The issue of price setting in our context is left
for future work.

The performance measures of both the users and the manager are specified
through their respective cost functions, which they wish to minimize. We denote



by J i(f , c), i ∈ I the cost function of user i, and by JM (f , c) the cost function of
the manager. The costs of the users and the manager are related to the congestion
level at each of the service classes. We shall use the well known M/M/1 latency
function

Da(fa, ca) =

{
1

ca−fa
fa < ca

∞ otherwise
(1)

as a congestion measure of each service class. Here ca is the transmission capacity
measured in the same units as the flow fa. This latency function is often used
to model delay costs in communication networks [4], and provides a clear sense
of link capacity.

User cost functions. Users are distinguished by their utility function U i(f i),
which quantifies their utility for shipping a total flow f i. We make the following
assumption on U i.

Assumption 1 For every user i ∈ I, the utility function U i : [0, C] → < is
increasing, bounded, concave and continuously differentiable.

We note that utility functions with the above characteristics are commonly used
within the networking pricing literature [7, 12]. We define U i in the set [0, C]
only, since a total flow of f i > C cannot be accommodated by the network. We
note that a user may split its flow among different service classes in order to
minimize the total cost. The total cost J i of each user i is comprised from its
delay cost, its network usage price, minus its utility, namely

J i(f , c) = βi
A∑

a=1

f i
aDa(fa, ca) +

A∑
a=1

f i
apa − U i(f i), (2)

where βi > 0 represents the delay sensitivity of user i, and Da is defined in (1).
Manager cost function. The objective of the manager is to impose certain

predetermined ratios between the average delays of the service classes. Taking
the delay of class 1 as a reference, the ratios are described by a vector ρ =
(ρ2, . . . , ρA), 0 < ρa < ∞, where the manager’s objective is to have the delays
D1, . . . , DA obey

Da(fa, ca) = ρaD1(f1, c1), (3)

where ρ1
4
= 1. We refer to that relation as the fixed ratio objective. For concrete-

ness, we may assume that ρ1 ≤ ρ2 ≤ · · · ≤ ρA, so that service classes are ordered
from best to worst. Similarly, prices are expected to satisfy p1 ≥ p2 ≥ · · · ≥ pA,
although this is not essential for our results. In functional terms, the manager’s
cost function may thus be defined as

JM (f , c) =

{
0 if (3) holds,
∞ otherwise.

(4)

An alternative objective of the manager that will be considered, is to minimize
a weighted sum of the delay functions, that is

J̄M (f , c) =
∑

a∈A
waDa(fa, ca), (5)



where wa > 0, a ∈ A. As we shall see, there is a close relation between the fixed
ratios objective and the weighted sum objective (5).

The interaction between the manager and the users will be referred to as
the users-manager game. A Nash Equilibrium Point (NEP) of that game is a
feasible system configuration (f̃ , c̃) such that

JM (f̃ , c̃) = min
c∈Γ

JM (f̃ , c), (6)

J i(f̃ i, f̃−i, c̃) = min
f i∈Fi

J i(f i, f̃−i, c̃) ∀i ∈ I,

where f̃−i stands for the flow configurations of all users, but the ith user. Namely,
the NEP is a network working point, where no user, nor the manager, finds it
beneficial to change its flow or capacity allocation. Our users-manager game is
characterized by the finiteness of the NEP costs, since users can always ship a
flow of zero to encounter a finite cost. We shall formally prove this attribute in
the next section.

3 Capacity Assignment and Equilibrium Analysis

In this section we analyze the equilibrium point and suggest capacity assignment
schemes that induce the ratios objective. First, we show that the manager has
a unique best response with respect to the ratio objective (3). This response
is a simple solution to a set of linear equations. Then we prove the existence
and uniqueness of an equilibrium point, in which the desired ratios are met.
Accordingly, we show the equivalence between the best response with respect
to (3) and the best response with respect to the modified manager objective
function (5) and discuss its implications.

Theorem 1 considers the best response capacity assignment of the manager,
given any (fixed) flow configuration.

Theorem 1. Consider a fixed flow configuration (f1, . . . , fA) and a desired ratio
vector ρ. If

∑
a∈A fa < C, there exists a unique capacity allocation c ∈ Γ such

that (3) is met. This allocation is explicitly given by

ca − fa = (C −
∑

α∈A
fα)

ρ−1
a∑

α∈A ρ−1
α

. (7)

Proof. The allocation (7) is derived from solving the following set of linear equa-
tions: ρa(ca − fa) = (c1 − f1), a = 2, . . . , A; and

∑A
a=1 ca = C. ut

The above result allows the manager to explicitly calculate its best response
assignment, namely the capacity assignment that will satisfy the fixed ratio
objective given the current network flows. This calculation requires just the
total flows in each service class, which are easy to measure. The next theorem
establishes the existence and uniqueness of the equilibrium point.

Theorem 2. For every delay ratios vector ρ, there exists a unique Nash equi-
librium point. This NEP has finite costs for the manager and for the users. In
particular, the ratios objective of the manager is satisfied.



Proof. The proof follows from the next four lemmas.

Lemma 1. For every delay ratio vector ρ, there exists a NEP. Furthermore,
in every NEP the costs of the users and the manager are finite and the ratio
objective is met.

Proof. See Appendix A.2.

Lemma 2. Let D1, . . . , DA be the class delays at some NEP. Then the following
equations are met at the equilibrium for every i ∈ I and every a ∈ A

βi
(
Da + f i

aD2
a

)
+ pa = U i′(f i) if f i

a > 0,

βiDa + pa ≥ U i′(f i) if f i
a = 0. (8)

Proof. Observe that

dJ i(f , c)
df i

a

= βi

(
1

(ca − fa)
+

f i
a

(ca − fa)2

)
+ pa − U i′(f i)

= βi
(
Da(fa, ca) + f i

aD2
a(fa, ca)

)
+ pa − U i′(f i). (9)

Then (8) may be readily seen to be the KKT optimality conditions [6] for mini-
mizing the cost function (2) of user i subject to the flow constraint f i

a ≥ 0. ut

Lemma 3. Consider a NEP with given class delays D1, . . . , DA. Then the re-
spective equilibrium flows f i

a are uniquely determined.

Proof. Consider the following optimization problem in (f i
1, . . . , f

i
A):

{
min

∑A
a=1

1
2βiD2

af i
a
2 + f i

a

(
βiDa + pa

)− U i(
∑

a f i
a)

s.t f i
a ≥ 0

, (10)

where we assume that the delays Da are fixed. Note that (10) is a strictly con-
vex optimization problem, since the objective function is the sum of a diagonal
quadratic term (with βiD2

a > 0 for every a) and the negation of U i, where U i is
concave by Assumption 1. Thus, this problem has a unique minimum, which is
characterized by the KKT optimality conditions. It is now readily seen that the
KKT conditions for (10) coincide with the conditions in (8). Thus, by Lemma 2,
any set of equilibrium flows (f i

a)a∈A is a solution of (10). But since this solution
is unique, the claim is established. ut

Lemma 4. Consider two Nash equilibrium points (f , c) and (f̃ , c̃). Then Da(fa) =
Da(f̃a) for every a ∈ A.

Proof. Define Da
4
= Da(fa) and D̃a

4
= Da(f̃a). Assume that

D̃α > Dα for some α ∈ A. (11)



Then D̃a > Da for every a ∈ A since the ratios are met in both equilibria
(Lemma 1). Noting (4) and (7) it follows from (11) that

∑
a∈A f̃a >

∑
a∈A fa,

which implies that there exists some user j for which

f̃ j =
∑

a∈A
f̃ j

a >
∑

a∈A
f j

a = f j . (12)

We next contradict (12) by invoking the next two implications:

f j
a = 0 ⇒ f̃ j

a = 0 (13)

f j
a > 0 ⇒ f j

a > f̃ j
a . (14)

Their proof is based on the KKT conditions (8). Since the utility U j is concave,

then by (12) we have λj 4= U j′(f j) ≥ U j′(f̃ j)
4
= λ̃j . If f j

a = 0, then βjDa + pa ≥
λj ≥ λ̃j . Since D̃a > Da, then βjD̃a +pa > λ̃j , hence f̃ j

a = 0. To prove (14) note
first that it holds trivially if f̃ j

a = 0. Next assume f̃ j
a > 0. Then by (8)

βjDa + βjD2
af j

a + pa = λj ≥ λ̃j = βjD̃a + βjD̃2
af̃ j

a + pa. (15)

Since D̃a > Da (hence D̃2
a > D2

a), and βj are positive, we must have f j
a > f̃ j

a in
order for (15) to hold, which establishes (14). Summing user j’s flows according
to (13)-(14) yields

∑
a∈A f̃ j

a ≤
∑

a∈A f j
a , which contradicts (12). Thus D̃α ≤ Dα.

Symmetrical arguments will lead to D̃α ≥ Dα, i.e., D̃α = Dα, hence D̃a = Da

for every a ∈ A. ut
The last two lemmas imply that the user flows and the class delays in equi-

librium are unique. The capacities in the equilibrium must also be unique since
ca = fa + 1

Da
, where fa =

∑
i∈I f i

a. This establishes the uniqueness of the NEP,
and completes the proof of Theorem 2. ut

A possible criticism of the fixed ratio objective, as defined in (3), is that
it does not account at all for absolute congestion measures, namely the delays
themselves rather then their ratios. However, the next result shows that by
achieving the ratio objective, the manager in fact minimizes the cost function
J̄M (defined in (5)), which is just an appropriately weighted sum of the delays
over the different service classes.

Theorem 3. Consider the users-manager game, whose NEP is defined in (6),
and an additional game, which is similar except that JM is replaced by J̄M . If
the parameters are such that wa = 1

ρ2
a

for every a ∈ A, where ρ1
4
= 1, then

the two games are equivalent in the sense that their (unique) equilibrium points
coincide.

Proof. See Appendix A.1.
Note that the weights wa are inversely proportional to ρ2

a, which assigns
higher weight to better (lower relative delay) service classes, as might be ex-
pected. From an algorithmic point of view, it should be noted that J̄M is a
convex and continuous function, and therefore may provide a sound basis for an
iterative (e.g., gradient-based) algorithm that may be used by the manager to



minimize this cost, with the goal of eventually reaching the desired fixed-ratio
equilibrium. Yet, a specific consideration of such an algorithm is beyond the
scope of this work.

We conclude this section by considering the computation of the NEP. Re-
call that the uniqueness of the user flows was established in Lemma 3 via the
definition of strictly convex optimization problems. Hence, by solving the same
optimization problems, the NEP can be efficiently calculated. The only unknown
variable which is required for the computation is D1. In our case, an iterative
search for D1 may be easily performed, by comparing the total flow

∑
fa (for

a given D1), which is obtained from both the best response formula (7) and
also from the solutions to (10). More details on the search method are given in
Appendix B.

Remark 1. General Networks. It is obviously of interest to extend the results of
this section to a general network topology. In a recent paper [15], we have made
such an extension for a model with fixed (plastic) user demands. Since the same
extension can be similarly used here, we briefly outline its key features. The
following setup is applied: (i) each user has a unique fixed path from its source
to its destination; (ii) the QoS ratio objective is maintained on a link basis,
i.e., management is performed via a distributed approach, where the capacity
adaptation is performed locally, at the link level. Observe that if the above two
features are maintained, then the QoS ratios are met end-to-end for every user.
The game framework now includes network managers, one for every link. Due to
the locality of the capacity management, the formula for the best response map
(Theorem 1) and the use of J̄M instead of JM (Theorem 3) are trivially extended
to the general network case; so is the proof for the existence of the equilibrium.
The issue of uniqueness of the equilibrium (as in Lemma 4) is however more
complicated in the general network case and is currently an open problem.

4 Conclusion

The proposed approach to QoS provisioning in Diffserv networks focuses on
maintaining relative congestion measures in the different service classes. Our
analysis demonstrates the feasibility of this approach, and in particular estab-
lishes the existence and uniqueness of a working point, which satisfies this QoS
objective in an elastic, reactive and heterogenous user environment. Our results
provide an efficient algorithm for computing the Nash equilibrium. However,
from the manager’s viewpoint, this computation requires complete knowledge
of the users’ preferences, which may not be available. An alternative scheme is
to use adaptive capacity assignment, for example by utilizing the best-response
map (7), which requires only the total flows in each service class, which are easy
to measure. The analysis of such a scheme is an important issue for future re-
search. Additional research topics include the price setting issue, proportional
QoS with other cost functions and QoS measures, and the equilibrium dynamics
of capacity allocation algorithms.
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APPENDIX

A Proofs

A.1 Proof of Theorem 3

The proof is based on characterizing the manager’s best response. The charac-
terization is established in the following lemma.

Lemma 5. Consider a fixed flow vector (f1, . . . , fA),
∑

a∈A fa < C, and a man-
ager whose cost function is given by (5). Then c = (c1, . . . , cA) is the manager’s
best response to (5) if and only if the following relations hold for every a, a′ ∈ A:

√
waDa(ca, fa) =

√
wa′Da′(ca′ , fa′). (16)

Proof. Observe first that the manager’s optimal capacity allocation must obey
0 < ca < C for every a = 1, . . . , A. Indeed, if ca = 0 for some a ∈ A then
the manager cost is infinite, as the summand waDa(fa, 0) in (5) is infinite; if
ca = C for some a ∈ A then the manager cost is also infinite, as all summands
wαDα(fα, cα) α ∈ A, α 6= a in (5) are infinite. Thus, the only active constraint of
the manager is

∑
a∈A ca = C. Consequently, the KKT optimality conditions for

minimizing the cost function J̄M (which are necessary and sufficient in our case,
since waDa(fa, ca) is convex in ca) imply that dJ̄M

dca
= dJ̄M

dca′
for every a, a′ ∈ A

(this equality is due to the equality of each dJ̄M

dca
to the Lagrange multiplier of

the active constraint). Noting that dJ̄M

dca
= −wa

(ca−fa)2 , we get

wa

(ca − fa)2
=

wa′

(ca′ − fa′)2
. (17)

Taking a square root from both sides of the last equation (and noting that
ca − fa > 0 for every a ∈ A) gives the required relations (16). ut

Now substituting wa = 1
ρ2

a
for every a = 1, . . . , A, ρ1

4
= 1 in (16) yields the

delays whose ratios are described by ρ. These ratios are obviously the manager’s
best response to (f1, . . . , fA) when using JM with ρ as the desired ratio vector.
Thus, the best responses of JM with ρ and J̄M with w = (w1, . . . , wA) coincide.
Since the user’s cost function is given by (2) in both users-manager games, the
Nash equilibrium points of both games coincide. ut



A.2 Proof of Lemma 1

As in Rosen [22], we shall apply the Kakutani fixed point theorem for the proof.
Hence we first state it precisely, along with the necessary mathematical defini-
tions. These are taken from [3].

Definition 1. (Upper semicontinuity) Let Λ be a function defined on a normed
linear space X, and associating with each x ∈ X a subset Λ(x) of some (other)
normed linear space Y . Then, Λ is said to be upper semicontinuous (usc) at
a point x0 ∈ X, if for any sequence {xi} converging to x0 and any sequence
{yi ∈ Λ(xi)} converging to y0, we have y0 ∈ Λ(x0). The function Λ is upper
semicontinuous if it is usc at each point of X.

Theorem 4. (Kakutani) Let S be a compact and convex subset of Rn. and let
Λ be an upper semicontinuous function which assigns to each x ∈ S a closed and
convex subset of S. Then there exists some x ∈ S such that x ∈ Λ(x).

The proof of Lemma 1 is obtained by the following steps:

1. Definition of S. Let r1, . . . , rI be (arbitrary) positive constants such that
ri > C for every i ∈ I. Define S ⊂ F × Γ to be the following compact and
convex product set

S =
{
(f , c) ∈ S :

∑

a∈A
f i

a ≤ ri, f i
a ≥ 0 ∀i;

∑

a∈A
ca = C, ca ≥ 0

}
. (18)

Note that a NEP cannot exist outside S, since in case that the flow exceeds
the total capacity (which is the case for (f , c) /∈ S), there exists a user with
infinite cost (due to the infinite delay cost) which can improve its cost (make
it finite) by shipping, e.g., a zero flow to all service classes.

2. Definition of Λ. We define the point-to-set mapping (f , c) ∈ S → Λ(f , c), as
follows.

Λ(f , c) =
{
(f̂ , ĉ) ∈ S : (19)

f̂ i ∈ argmin
f̃ i∈Fi

J i(f̃ i, f−i, c) ∀i ∈ I, ĉ = argmin
c̃∈Γ

J̄M (f , c̃)
}
.

Note that for every (f , c) ∈ S we have (f , c) → Λ(f , c) ⊂ S from the same
reasoning that was used in the definition of S.

3. Upper semicontinuity of Λ.
– It is straightforward that Λ is usc for the points (f , c) ∈ S such that∑

a fa < C. Indeed, when
∑

a fa < C, the best response map of J i(f , c)
and J̄M (f , c) is continuous (by the continuity of the cost functions), and
finite. In fact, by the strictly convexity property of the cost functions
in their respective decision variables, Λ is a point-to-point mapping, in
which continuity holds element-wise and thus point-wise.



– For the case where
∑

a fa ≥ C, observe that the user’s best response still
maintains the continuity and finiteness properties. As to the manager,
let

{
(fk, ck)

}
be a sequence converging to (f , c) such that

∑
a fa ≥ C.

The manager is indifferent as to its “best response” to f (since the man-
ager will obtain an infinite cost regardless of the chosen capacity alloca-
tion), thus

{
c̃|(f̃ , c̃) ∈ Λ(f , c)

}
= Γ, which implies that for any sequence{

Λ(fk, ck)
}

converging to some (f0, c0), we have that (f0, c0) ∈ Λ(f , c).
4. Λ(f , c) is closed and convex. In case that

∑
a fa < C, we have a point-to-

point mapping which is also closed and convex. For the case where
∑

a fa ≥
C, Λ(f , c) is a set of points (f̃ , c̃), where f̃ is uniquely determined and c̃ ∈ Γ.
This is obviously a close and convex set.

5. Replacing J̄M with JM . We may replace J̄M by JM as described in Theorem
3. This replacement is justified by the equivalence of the best response of
both functions, under proper weight setting of the latter, as described in
Theorem 3.

6. Finiteness of the NEP. Note that for every system configuration (f , c), if
not all costs are finite, then at least one game-player (user or manager) with
infinite cost can change its own flow configuration to make its cost finite. This
argument is true, since the users can always change their flow allocation to
make their cost finite. For the case where the manager is the only game-
player with infinite cost, we have

∑
a fa < C (as user costs are finite). For

this case, the manager can apply its best response (7) to obtain a finite cost.
7. Applying the Kakutani fixed point theorem. Applying the Kakutani fixed

point theorem with the above definitions of S and Λ, we conclude that there
exists a NEP. This NEP is finite as shown above, and it is also a NEP where
the ratios are met (by a proper replacement of J̄M with JM ).

ut

B On the computation of the Nash equilibrium

In this section, we describe how to efficiently calculate the NEP (6). Given D1,
the equilibrium is calculated via the solution of I optimization problems (10) of
A variables each. Since each problem is convex, it may be solved in polynomial
time by non-linear optimization techniques [6]. The only issue that needs to be
resolved is the calculation of D1. We next describe how to derive this (scalar)
value, via a standard search procedure. The following observations are needed
for the establishment of the search procedure.

1. We conclude from the manager’s best response map (7) that the quantity∑
fa strictly increases with D1. This follows from taking the inverse of both

sides of (7), followed by simple algebraic operations:

∑

a∈A
fa = C −

∑
a∈A ρ−1

a

D1
. (20)



2. The same quantity strictly increases with D1 as the (aggregate) solution to
the user optimization problems (10). This fact was formally established in
Lemma 4.

3. For the sake of exposition, let us denote the total flow which is obtained
from (20) (for a fixed D1) as fMBE and the total flow which is obtained from
(10) (for the same fixed D1) as fUBE (MBE and UBE stand for manager
best response and user best response, respectively). Since fMBE is strictly
increasing in D1 and fUBE is strictly decreasing in D1, then there is a unique
value of D1 where these quantities have the same value. The value of D1

which equalizes fMBE and fUBE is obviously the value of D1 at the NEP.
4. Following the last argument, we observe that fUBE − fMBE monotonously

decreases with D1. We may thus use standard search techniques [6, 18], such
as the bisection method, in order to obtain the scalar value of D1 for which
fUBE − fMBE = 0.


