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Abstract—We consider a time-slotted multipacket reception
channel, shared by a finite number of mobile users who transmit
to a common base station. Each user is allocated a fixed data rate,
which may be imposed by the base station or self-determined.
For sustaining the required rate over time, each user may adjust
a single parameter which determines the individual transmission
probability in a given slot. An equilibrium point is attained when
the assigned data rates are met with equality. This paper analyzes
the equilibrium points which result in this system, with a focus
on power efficiency of the solution.

While multiple equilibrium points exist in general, we establish
that one of these equilibria is best for all users, in the sense
that the transmission probability (hence the power investment)
of each user is minimal. Further to the existence of worse
equilibrium points, we point to the possibility of a partial-
equilibrium with starvation, where stronger users (in terms of
received power) satisfy their data rates, while preventing weaker
ones from obtaining their respective rates. To avoid these sub-
optimal working points, we suggest a distributed mechanism
that converges to the best equilibrium point. Further analysis
is provided for a specific channel model which involves perfect
capture.

I. INTRODUCTION

A. Background and Motivation

The emerging use of wireless technologies (such as WIFI
and WIMAX) for data communication has brought to focus the
resource allocation and management task, with the objective
of satisfying mobile users with heterogenous requirements.
An effective management scheme needs to cope with scarce
wireless resources such as bandwidth and power. On top of
that, wireless channel conditions are often time-varying (e.g.,
due to channel fading [1]), and are greatly affected by network
topology and mobility of individual nodes. As a result, efficient
resource management becomes a complicated task.

Centralized scheduling algorithms have been suggested
(e.g., [2]–[4] and references therein) to allow for QoS differen-
tiation in non-stationary wireless platforms, and also support
diverse fairness criteria such as maxmin and proportional fair-
ness. These algorithms are designed to accommodate the addi-
tional wireless specific features. To understand the complexity
involved, consider a single–cell uplink model where all mobile
stations should be given an equal rate share. While scheduling
the mobiles’ transmission, a scheduler must consider the mo-
bile’s location (specifically, the distance from the base station),
and also its power capabilities and current channel quality.

Hence, a high-quality scheduler requires substantial central-
ized data and computational resources, and might become
hard to implement in some wireless domains. Decentralized
MAC algorithms represent a significantly different viewpoint
for resource management. The classical Aloha protocol was
designed at the early 70’s as a unified distributed mechanism
which can allow efficient media sharing. This protocol and
its variants, such as CSMA-CD and tree-algorithms [5], have
gained prominence due to their relative simplicity and their
decentralized nature which allows for a large number of
network users. In fact, Aloha-related concepts are still useful
in modern wireless network protocols (for example, the 802.11
standards [6]). However, Aloha-based protocols are currently
not fully adjusted to the distinctive features of the wireless
medium, such as limited power and channel fading.

This paper attempts to find a middle ground between
fully distributed mechanisms (such as Aloha) and centralized
scheduling algorithms. Focusing on a single-cell uplink with
throughput as the performance measure, we suggest a partially-
distributed framework, which allows for users with different
throughput requirements, while eliminating the need for on-
line scheduling. Our approach consists of two phases. At the
first (preliminary) phase, each mobile user is assigned a fixed
data rate (or throughput). This assignment can be based on
some fairness criterion, or can be the outcome of a price-based
negotiation process (the rate assignment process is exogenous
to our model). Subsequently, users adjust their transmission
protocol in a distributed manner for obtaining the assigned
rates. An equilibrium is obtained when all mobiles obtain their
rates. We note that in some circumstances the required data
rates for the users may be dictated by their application. In this
case the required data rate may be regarded as self-enforced
rather than explicitly allocated by the network. Our results
apply to this case as well.

In this work, we restrict mobiles to a simple single-
parameter transmission protocol, where the adjustable para-
meter stands for the individual’s transmission probability. We
assume that the transmission power is kept fixed in the time-
frame considered (e.g., possibly through external power con-
trol), hence the transmission probability directly determines
the station’s average power investment. Allowing users to
adjust their transmission probability in a distributed manner
naturally adds an uncertainty factor to the system, as it is
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not apparent at which working point will the network operate.
Equilibrium analysis plays a major role in understanding the
network behavior. Our main interest in this paper is in charac-
terizing the possible equilibrium points which may result from
the user interaction, with emphasis on power-implications. An
additional objective is to examine whether a reasonable update
rule for the user transmission probabilities can be formulated
in order to lead the network to efficient working points.

B. Related Literature

Distributed schemes in wireless networks have been well
studied in the context of power control (e.g., in CDMA
networks [7]). The research in this area also relates to scenarios
in which the network users are self-optimizing [8], [9]. Re-
cently, some papers have considered Aloha-like random access
networks from a non-cooperative perspective ( [10]–[12] and
references therein), where users are allowed to modify their
transmission parameters (e.g., the Aloha protocol parameters
as in [12]) for their own best interest.

Of specific relevance to our work is a paper by Jin and
Kesidis [10], which considers a shared collision channel with
users who obtain fixed throughput assignments. A dynamic
scheme where users adapt their transmission probabilities in
order to satisfy their assigned throughput is proposed and
studied in simulation. This work provides an analysis of an
extended model with general channel characteristics, which in
particular include capture and multipacket-reception channel
models. In a related paper [13], we provide a detailed analysis
of collision channels with channel state information (CSI).

C. Contribution and Paper Organization

This paper presents a detailed analysis of the fixed-rate
equilibrium and further focuses on a dynamic mechanism
which may lead the system to a power-efficient working point.

We start with a general wireless channel model, which may
accommodate a variety of uplink reception models such as
collision, capture [14], [15] and multipacket-reception [16]
channels. When the assigned rates are feasible, we establish
the existence of a uniformly best equilibrium point in terms
of the power-investment. Consequently, we suggest a fully
distributed mechanism which converges to this equilibrium.

Further equilibrium analysis is carried out for a more
specific network model. We focus on a perfect capture channel
where users can be divided to subgroups of equal strength.
Under this specific model, we are able to characterize the
feasible equilibrium region, bound the number of equilibrium
points, and numerically compute all these points. In addition,
we provide an upper-bound for the power investment at the
best equilibrium. Finally, we show that the distributed mecha-
nism suggested before is resilient to changes in the transmitters
population, which obviously occur in wireless networks.

The structure of the paper is as follows. We first present
the general model (Section II), and identify basic properties
related to the average rate of each user. The existence of
a best equilibrium is proven in Section III, followed by a
mechanism which converges to this point (Section IV). The

perfect capture model and the analysis thereof are given in
Section V. Conclusion and further research directions are
drawn in Section VI.

II. THE MODEL AND PRELIMINARIES

Our model consists of a finite set of mobile users (or
transmitters) I = {1, . . . , n} who transmit to a common base
station over a shared channel. The transmission power level
for each user is pre-determined: it may be either fixed, or
adjusted through some transmitter-receiver protocol. In either
case, power level is not a decision variable in our model.
Time is slotted, so that each transmission attempt takes place
within slot boundaries that are common to all. To specify
our model, we start with a description of a general multi-
reception wireless channel (Section II-A), and list some central
special cases thereof. In Section II-B, we characterize the
user transmission regime, and define the notion of a fixed-rate
equilibrium which is central in this paper.

A. Multipacket Reception Channels

We consider a shared wireless medium, where multiple
transmissions arrive at the receiver at different power levels.
In general, the per-slot throughput of each mobile increases
with its own received power and decreases with the received
power of other users, as we specify below.

We consider a single slot and omit the slot index for
simplicity. Let Ii denote an indicator which equals one if
user i transmits at a given slot and zero otherwise, and let
I = (I1, . . . , In) be the vector of all user indicators. In
addition, we use the notation I−i for the indicator vector of
all users but the ith one, so that I = (Ii, I−i). Denote by
Ri(I) the average per-slot throughput for user i, given the
set I−i of other users that transmit simultaneously. Obviously,
Ri(Ii = 0, I−i) = 0. Naturally, Ri(I) should decrease as more
users transmit, as we formalize below.

Assumption 1: For every vector I−k, i ∈ I and k 6= i,

Ri(Ik = 0, I−k) ≥ Ri(Ik = 1, I−k). (1)

Several common models comply with this assumption:
1) Collision channel. Simultaneous transmissions of two or
more users result in a collision. Thus, Ri(I) = R > 0 if
Ii = 1 and Ik = 0 for every k 6= i, and Ri(I) = 0 otherwise.
This model was extensively used, for example in the study of
Aloha-like protocols [5].
2) Capture Channels. The so-called capture effect takes place
when a single (the strongest) user can be successfully received
even in the presence of other simultaneous transmissions,
provided that its power dominates the others’ transmissions.
This reception model is most common in WLAN receivers.
Denote by wi the received power of user i (in case of a
transmission), and let w

4
= (w1, . . . , wn) be the vector of all

received powers. A broadly studied capture model is based on
the signal to interference plus noise ratio (SINR) (see, e.g.,
[15] and references therein). The SINR for user i is given by

SINRi(I,w) =
Iiwi∑

j 6=i Ijwj + σ0
. (2)
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A transmission is successful if the SINR is large enough,
namely if SINRi > β > 1 (where σ0 is the ambient noise
power). The per-slot throughput Ri is given by Ri(I) =
Ew {Di1{SINRi(I,w) > β}}, where Di is the data rate in
case of a successful transmission, 1{·} is a standard indicator
function, and Ew is the expectation operator, which averages
all the stochastic elements at the network which determine the
received powers. A more optimistic capture model assumes
that the transmission with the strongest received power (say
wi) is received whenever wi

wk
> β, for all k 6= i (see, e.g.,

[14]). A special case of the latter model, which we focus on
in Section V, is β = 1, known as the perfect capture model.
3) Multipacket reception (CDMA). In some wireless systems,
such as cellular networks, multiple simultaneous receptions are
possible. For example, in CDMA systems, the momentarily
data rate of each user is given by log

(
1 + SINRi(I,w)

)
,

where the average throughput is obtained by averaging the
last quantity, namely Ri(I) = Ew

{
log

(
1 + SINRi(I,w)

)}
.

B. User Model and Equilibrium

We associate with each user i a fixed data rate (or through-
put) ρi (in bits per slot), assigned as an upper bound on
the allowed throughput. This rate may be assigned (and
policed) by the system, as a control and management tool,
or determined by the user’s application. In either case, the
rate assignment procedure is exogenous to our model.

Each user sets its transmission schedule in a distributed
manner for obtaining the allowed data rate ρi. In the paper we
consider a stationary transmission schedule, determined by a
single parameter pi, which stands for the user’s transmission
probability in each slot. We assume that users always have
packets to send, yet they may delay transmission to a later
slot to accommodate their assigned throughput.

The transmission probability of each user affects the average
throughput of the other users over the shared wireless channel.
Let ri(p) ≡ ri(pi,p−i) denote user i’s average throughput, as
determined by the transmission probabilities p = (p1, . . . , pn)
of all users, namely ri(p) =

∑
I∈{0,1}n

∏n
i=1

(
pIi

i (1 −
pi)1−Ii

)
Ri(I). In view of Ri(Ii = 0, ·) = 0, this can be

written as

ri(p) = piR̄i(p−i), (3)

where R̄i(p−i) is the expected rate obtained in any transmis-
sion attempt of user i. The next lemma summarizes some basic
properties of ri. The proof is straightforward, with property
(iii) following by Assumption 1.

Lemma 1: The average throughput function ri(pi,p−i)
obeys the following properties:
(i) ri(pi = 0,p−i) = 0.
(ii) ri(p) is continuous in each of its arguments.
(iii) ri(pi,p−i) (when positive) strictly increases in pi and
decreases in pj , j 6= i.

An equilibrium point is attained when the average through-
put ri of each user i is equal to the assigned data rate ρi.
Formally, an equilibrium point is a vector of user probabilities

3
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Fig. 1. The four node network. Stations 1 and 2 are closer to the base station,
thus not interrupted by transmissions from Stations 3 and 4.

p = (p1, . . . , pn), which obeys the following set of equations:

ri(p) = ρi, i ∈ I. (4)

We shall refer to these equations as the equilibrium equations.
Apparently, each user is interested in an equilibrium point
where its transmission probability is minimal, as the quantity
is proportional to its respective power investment.

III. EXISTENCE OF A BEST EQUILIBRIUM

A significant factor in our model is that users are allowed to
adjust their transmission probability in a distributed manner.
The clear advantage of this framework lies in the substantial
reduction of management overhead, compared, for example, to
detailed scheduling mechanisms. At the same time, however,
an uncertainty factor is added to the system, in the form of
the user choices. Equilibrium analysis plays a major role in
this context. We are interested in characterizing the possi-
ble equilibrium points in which all users satisfy their rate
requirements, their number and quality (in terms of power
investment). Consequently, we wish to examine whether the
system dynamics (namely, the iterative process by which the
user determines its transmission probability) can be channeled
in some reasonable manner to lead the network to power-
efficient working points.

Under our general assumptions on the multiuser wireless
channel, we provide in this section a partial answer to the
issues raised above, by showing the existence of a uniformly
best equilibrium point. Several equilibrium aspects can be
analyzed only while considering a more specific channel, as
we do in Section V.

A motivating numerical example is presented below.
Example 1. Consider the network depicted in Figure 1. As
users 1 and 2 are closer to the base station, their received
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power is larger than that of users 3 and 4. As a special
case of the SINR-based capture rule (see Section II-A), we
assume that β ≈ 1, thus the transmissions of users 1 and
2 are not interrupted by transmissions from users 3 and
4. Consequently, user 1’s transmission fails only if user 2
transmits simultaneously (and vice versa). User 3, as well
as user 4, require that no other user will simultaneously
transmit for proper reception of their transmissions (note that
the same relations can be obtained in a different network
scenario where users 1 and 2 dominate users 3 and 4 as a
result of transmitting at a higher power level). For simplicity,
we assume that a successful transmission is of one unit. The
equilibrium equations (4) for this specific case are given by

p1(1− p2) = ρ1,

p2(1− p1) = ρ2,

p3(1− p1)(1− p2)(1− p4) = ρ3,

p4(1− p1)(1− p2)(1− p3) = ρ4. (5)

Let the users’ required data rates be the following: ρ1 =
ρ2 = 0.23; ρ3 = ρ4 = 0.05. As we shall prove in Section
V-A, there are exactly two different transmission probabilities
for users 1 and 2 which yield their required rates, namely
p1 = p2 = 0.36 or p1 = p2 = 0.64. In the latter case
(irrespectively of user 3 and 4 choices), a partial equilibrium
is obtained, as these users satisfy their own rates, while the
data rates of users 3 and 4 cannot be sustained (i.e., there is
no assignment of p3 and p4 such that the third and fourth
equations in (5) are satisfied). However, if users 1 and 2
use the lower probability of 0.36 (which is better for them
in terms of power investment), two equilibria are obtained:
(0.36, 0.36, 0.14, 0.14) and (0.36, 0.36, 0.86, 0.86). Note that
the first of the two equilibria is best for all users. Note further
that if users 1 and 2 indeed choose the lower transmission
probability, the starvation effect shown above can be avoided.

The example above clearly demonstrates that multiple equi-
libria are possible, and that starvation of some users might
occur even if a feasible equilibrium point does exist. These
observations raise the following basic questions:

1) Is there always an equilibrium point which is preferable
to all users?

2) If there exists such an equilibrium, could it be reached
in a distributed manner?

A positive answer to these questions can avoid power-
expensive equilibria and unnecessary user starvation, as all
users should be willing to adopt a mechanism which converges
to an equilibrium point that is optimal from their point of view.

A “best equilibrium” is an equilibrium point where all
users transmit with minimal probability, compared to their
transmission probabilities at any other equilibrium. As such,
the best equilibrium is power-superior to all other equilibria,
uniformly over all users. We assert below that when an
equilibrium point exists, one of the equilibrium points is a
best equilibrium.

Theorem 1: In case that an equilibrium point defined by
(4) exists, one equilibrium is best for all users. That is, there

exists an equilibrium point p∗ such that p∗ ≤ p̃ for any other
equilibrium point p̃.

Proof: The idea of the proof is to apply Tarski’s fixed
point theorem (see, e.g., [17]) on an increasing function h :
[0, 1]n 7→ [0, 1]n, defined so that every equilibrium (4) is a
fixed point of that function.

For each p = (p1, . . . , pn), consider the following best-
response mapping,

p = (p1, . . . , pn) ∈ [0, 1]n 7→ (h1(p), . . . , hn(p)) ∈ [0, 1]n,

where

hi(p) =

{
p∗i if ∃p∗i so that ri(p∗i ,p−i) = ρi

1 otherwise,
(6)

Note that this mapping is uniquely defined by the strict
monotonicity of ri in pi (Lemma 1). It is evident that every
equilibrium point p is such that p =

(
h1(p), . . . , hn(p)

)
,

where hi is given by (6). Yet, additional “artificial” equilibria,
such as pi = 1 for every i ∈ I may arise by this definition.
Let h(p) =

(
h1(p), . . . , hn(p)

)
. The following monotonicity

property easily follows.
Lemma 2: h(p) is an increasing function, that is hi(p) is

(weakly) increasing in pj for all i and j.
Proof: Let p̃ and p be two probability vectors such that

p̃ ≥ p. It is required to show that hi(p̃) ≥ hi(p). If hi(p) = 1
then obviously hi(p̃) = 1, as ri decreases in p−i by Lemma
1. Next, consider the case where hi(p) < 1. If hi(p̃) = 1 we
are done. Otherwise,

ri(hi(p̃), p̃−i) = ri(hi(p),p−i) = ρi. (7)

The required result follows directly from (7) by recalling that
ri decreases with p−i and increases with pi. ¤

We can now apply Tarski’s fixed point theorem to obtain
the required result. Define S

4
= [0, 1]n. Note that S is a

complete lattice (see, e.g., [17] for definition). h(p) is an
increasing function from S to S (by Lemma 2). Then by
Tarski’s fixed point theorem the set of fixed points of h is
non-empty. Moreover the supremum and the infimum of the
set are fixed points themselves. The supremum fixed point is
always pi = 1 for every i, which is not an equilibrium point
in the sense of (4), as required throughput demands are not
met. In case there is no equilibrium in the original game, the
fixed points obtained by Tarski’s theorem are all artificial (i.e.,
include users with pi = 1 who cannot obtain their throughput
demands). Yet, when throughput demands are feasible, Tarski’s
theorem implies that an infimum equilibrium point exists. ¤

We emphasize that Theorem 1 is valid under our general
assumptions on the rate function ri. The issue of the existence
of an equilibrium, however, requires a specific study for each
network under consideration. Obviously, if the overall data
rates of the users are too high there cannot be an equilibrium
point, since the network naturally has limited traffic capacity.
Explicit network features, such as the reception model, the
uplink channel quality (or gain) of each user and the user
topology, determine the capacity of the network, hence the
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existence of an equilibrium for given data rates ρi. We address
the existence issue for the perfect capture model in Section V.

We conclude this section with a comment on
sub/supermodular (or just S-modular) games [17], [18]
and their relation to our model. Roughly, S-modular games
is a subclass of non-cooperative games, in which the user
(or player) utility functions obey certain monotonicity
properties. These properties lead to strong results regarding
the existence and structure of Nash equilibria, along with
some convergence properties thereof. In particular, a best
and worst Nash equilibrium always exist in these games,
and synchronous greedy mechanisms convergence to an
equilibrium under certain conditions (see [17], [18]).

In our model, users are not utility maximizers, and therefore
the general framework is not that of a non-cooperative game.
We do use monotonicity properties of the rate functions
(Lemma 1) for proving the existence of a best equilibrium, by
applying similar tools (such as Tarski’s fixed point theorem) to
the ones used in the general theory of S-Modular games. We
could thus conjecture that, as in S-modular games, there exists
a worst equilibrium in our model, however we show through a
simple example (Example 2, Section V-A) that this is not case.
Moreover, the mechanism we suggest next for converging to
the best equilibrium is fully asynchronous, a case not explicitly
considered in the S-modular games literature.

IV. CONVERGENCE TO THE BEST EQUILIBRIUM

We have shown so far that when an equilibrium point exists
under our multipacket reception channel model, there is always
a best equilibrium point, which all users would prefer, as
their power investment is minimal. This leads us to find a
mechanism which converges to the best equilibrium.

The distributed mechanism we suggest is informally de-
scribed as follows. Each user updates its transmission prob-
ability from time to time, by matching its average throughput
ri to the required rate ρi. Formally, let the update time-
slots of each user i be given by an increasing sequence {tki },
k = 1, 2, 3, . . . . At time slot tki , user i sets its transmission
probability as follows.

pi(tki ) :=
ρi

R̄i(p−i(tki − 1))
, (8)

where R̄i is defined in (3), and p−i(tki −1) is the transmission
probability vector of all users (but the ith one) just before
time slot tki . In case that ρi

R̄i(p−i(tk
i−1))

exceeds the value of
one, pi(tki ) can be set to an arbitrary probability. Note that
(8) is in fact the best-response (a term often used in game-
theoretic context [19]) of the user to a given network situation,
in the sense that the maximal allowed rate is obtained. We
emphasize that the suggested mechanism does not require any
synchronization between users, as each user independently
chooses the update times tki . The motivation for using the
above rule follows directly from (3) and (4), noting that (8) sets
(whenever possible) the current user throughput at ρi which
is the required throughput at equilibrium. For the convergence

analysis of the mechanism we require the following set of
assumptions.

Assumption 2:
(i) The user population is fixed.
(ii) Transmission probabilities are initialized to zero (“slow
start”).
(iii) Users repeatedly update their transmission probabilities
(i.e., tki →∞ as k →∞).
(iv) The effective quantity R̄i(p−i(tki − 1)) is perfectly esti-
mated by the user before each update.
Our convergence result is summarized below.

Theorem 2: Assume an equilibrium point exists. Then un-
der Assumption 2, the distributed mechanism (8) asymptoti-
cally converges to the best equilibrium.

Proof: The proof of the above result relies on showing
that the vector of user probabilities p monotonously increases
until convergence. A full proof is given in the appendix.

We briefly list here some important considerations regarding
of the presented mechanism.
1) The slow start requirement (Assumption 2(ii)) is essential
for preventing excessive transmissions which lead to subopti-
mal equilibria.
2) The quantity R̄i(p−i(tki − 1)) required in (8), can be esti-
mated by keeping track of the history of previous transmissions
(note that the particular value of each pk, k 6= i is not essential
here).
3) Assumption 2(iv) entails the notion of a quasi-static system,
in which each user responses to the steady state reached
after preceding user updates. This assumption approximates
a natural scenario where users update their transmission
probabilities at much slower time-scales than their respective
transmission rates.
4) The convergence results obtained in the section would
still hold for a relaxed variation of (8), given by pi(tki ) :=
βi

ρi

R̄i(p−i(tk
i−1))

+ (1 − βi)pi(tki − 1), 0 < βi ≤ 1. This
update rule can be more robust against inaccuracies in the
estimation of R̄i(p−i(tki−1)), perhaps at the expense of slower
convergence to the desired equilibrium.

Our convergence result is obviously idealized and should
be supplemented with further analysis of the effect of possible
deviations from the model and possible remedies. In case that
a worse equilibrium point does occur, users can reset their
probabilities and restart the mechanism (8) for converging
to the best equilibrium. This procedure resembles the basic
ideas behind TCP protocols. The exact schemes for detecting
suboptimal equilibria, and consequently directing the network
to the best equilibrium are beyond the scope of the present
paper.

V. THE MULTI-RING NETWORK

In this section we focus on a specific channel model,
under which we extend the scope of the equilibrium analysis,
addressing issues such as existence and number of equilibria,
the overall power investment, and stability.

We consider an uplink model, where mobiles are divided
into subgroups I1, . . . , IM of approximately equal power
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strength. We assume that these subgroups are ordered in
decreasing strength. We further assume perfect capture (see
Section II-A), meaning that a transmission is successful if no
other user with equal or larger power attempts transmission.
Accordingly, the transmission of a user i ∈ Im is successful if
no other user j ∈ I1∪I2∪ · · ·∪Im transmits simultaneously.
The average data rate in a successful transmission is given by
the constant Di for every i ∈ I.

The above model fits the following network scenarios:
• Discrete power levels. The transmission power of each

mobile is chosen from a finite set of power levels W1 >
W2 > · · · > WM . The above capture model is valid
when mobiles are located at similar distances from the
base station.

• Multi-ring topology. Mobiles with equal transmission
powers are positioned in a multi-ring topology, as in
Figure 1, where each ring contains mobiles with approx-
imately equal distance from the base station.

For convenience, we shall refer to our network as a multi-
ring network, where a subset Im will be considered as the
mth ring. The term M -ring network is used for a network
with M rings. The content of this section is as follows.
In Section V-A we provide a detailed equilibrium analysis
for the multi-ring network, investigating the possible number
of equilibrium points and their structure, with focus on the
best equilibrium point. In light of the distributed mechanism
presented in Section IV, we examine whether the mechanism
re-converges to the best equilibrium point when changes in
the user population occur (Section V-B).

A. Equilibrium Analysis

Let us start by revisiting the two-ring, four user network
configuration, depicted in Figure 1. Consider the following
numerical example:
Example 2. We use the same network parameters as
in Example 1 (Section III), except for the user data
rates which are now given by ρ1 = ρ2 = 0.23;
ρ3 = ρ4 = 0.02. In this case there are exactly
four equilibria: p(1) = (0.36, 0.36, 0.05, 0.05), p(2) =
(0.36, 0.36, 0.95, 0.95), p(3) = (0.64, 0.64, 0.19, 0.19),
p(4) = (0.64, 0.64, 0.81, 0.81).

While a best equilibrium exists (p(1)), Example 2 reveals
that, generally, there is no common worst equilibrium for all
users (p(2) is worst for users 3 and 4, while p(3) and p(4) are
worst for users 1 and 2). As to the possible number of equilib-
ria, we show below that four is indeed the maximal number
of equilibrium points for any two-ring configuration. More
generally, we prove that the maximal number of equilibria for
an M -ring network is given by 2M . Our ability to bound the
maximal the number of equilibrium points is a significant step
in calculating all equilibria (as we demonstrate in the sequel),
thus predicting the overall network behavior.

Our equilibrium analysis relies on first examining the colli-
sion channel model (see Section II-A), which is a special case
of the multi-ring network with M = 1.

0Ω  

+Ω  

1ρ
 

2ρ 

 

(0,1) 

(1/4,1/4) 

(1,0) 

Fig. 2. The set of feasible throughput vectors Ω for a two user network with
Di = 1, i = 1, 2. Ω0 is the interior of Ω and Ω+ is the pareto-optimal set
of rates.

1) Collision Channel Analysis (M = 1): Properties of the
equilibrium and feasible throughputs for a collision channel
were studied in detail in [13] (where more general individual
channel properties were considered). We repeat here some
results from [13] that will be useful for the M -ring model.

Recall that in a collision channel simultaneous transmissions
of two or more users result in a collision and loss of all data.
Thus, the equilibrium equations for this capture channel are
given by

Dipi

∏

j 6=i

(1− pj) = ρi, i ∈ I. (9)

Obviously, if the overall throughput demands of the users
are too high there cannot be an equilibrium point, since
the network naturally has limited traffic capacity. Denote by
ρ = (ρ1, . . . , ρn) the data rate vector of all users, and let Ω
be the set of feasible vectors ρ, for which there exists at least
one equilibrium point (equivalently, for which there exists a
feasible solution to (9)). Figure 2 illustrates the set of feasible
throughput vectors for a simple two-user case, with Di = 1,
i = 1, 2.

We do not specify here the exact structure of Ω; details are
given in [13]. It is easily verified that Ω is a closed set with
nonempty interior. In addition, we provide in [13] a sufficient
condition for the feasibility of ρ, given by

∑
i

ρi

Di
≤ e−1.

We specify below the number of equilibrium points for any
throughput demand vector ρ = (ρ1, . . . , ρn) in the interior of
Ω.

Proposition 3 ( [13], Theorem 3): Consider a collision
channel, and let Ω be the set of feasible data rate vectors
ρ = (ρ1, . . . , ρn). Denote by Ω0 the interior of Ω. Then for
each ρ ∈ Ω0 there exist exactly two equilibria.

Proof: (outline) We sketch the proof idea for complete-
ness. The idea is to reduce the equation set (9) to a single
scalar equation in a single variable pi, for some arbitrarily
chosen user i, and investigate this scalar equation.

Let yi = ρi

Di
, and define aji

4
= yj/yi. It can be seen that
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Fig. 3. The scalar function fi(pi) used in the proof of Proposition 3. The
values of fi(pi) equal the throughput which user i will obtain, assuming that
the required throughput ratios between user i and other users are kept.

the following relation holds in every equilibrium point and for
every i, j ∈ I .

pj =
ajipi

1− pi + ajipi

4
= pj(pi). (10)

This relation is immediately obtained by dividing the equi-
librium equation (9) of the ith user by the equation of the
jth one. Substituting (10) in the i-th equilibrium equation, we
obtain the following scalar equation for pi:

fi(pi) = Dipi

∏

j 6=i

(1− pj(pi)) = ρi. (11)

Unimodality of fi(pi) will establish the required result, as a
unimodal function can obtain a given value ρi at most twice
(see Figure 3). The required unimodality is established in [13,
Theorem 3]. ¤

Certain computational properties of an equilibrium point
may be directly observed from the proof of Proposition 3. It
can be seen that verifying the existence of an equilibrium (for
given data rates ρ) is computationally equivalent to finding
the maximum of a scalar unimodal function. Similarly, the
equilibrium points themselves are computed by finding the
zeros of the function fi(pi) − ρi. This suggests that the
computation of the equilibrium can be efficiently accomplished
by standard search techniques, such as the bisection method
or the golden section search method (see, e.g., [20]).

2) The General Case (M ≥ 1): For a concrete study of the
existence and number of equilibria, we introduce the notion
of a partial equilibrium. Let I1:m

4
= I1∪I2∪ · · ·∪Im denote

the users in the inner m rings.
Definition 5.1 (Partial Equilibrium): A partial equilibrium

for I1:m, denoted pm ∈ [0, 1]|I1:m|, is a vector of user
probabilities such that the equilibrium equations (4) are met
for every i ∈ I1:m.

For any partial equilibrium pm , we denote by Qm(pm)
4
=∏

i∈I1:m
(1− pi) the idle probability of users belonging to the

m inner rings.
Based on Proposition 3, we are able to bound the maximal

number of equilibrium points for any number of rings M ≥ 1.
In addition, we can characterize the feasible set of data rates
ρm+1 = (ρi)i∈Im+1 for the (m + 1)-ring users as a function
of the partial equilibrium probabilities pm of users at inner
rings.

Theorem 4: Consider a ring network with M ≥ 1. Then
(i) The maximal number of equilibrium points is 2M .
(ii) Given a partial equilibrium pm, a throughput vector ρm+1

for the (m + 1)st ring is feasible if an only if Q−1
m (pm)ρm+1

is feasible in a collision channel with |Im+1| users.
Proof: Note that given a partial equilibrium pm, the

(m+1)st ring can be considered as a collision channel, with a
(constant) idle probability Qm(pm) multiplying the left hand
side of the equilibrium equations (9), namely

Qm(pm)Dipi

∏

j∈Im+1\i
(1− pj) = ρi, i ∈ Im+1. (12)

Choosing an arbitrary user i ∈ Im+1, we can reduce the
equilibrium equations to a similar scalar equation to the one
used in the proof of Proposition 3, where the only difference
is that the left-hand side is now multiplied by the constant
Qm(pm), namely

f̃i(pi) = Qm(pm)Dipi

∏

j∈Im+1\i
(1− pj(pi)) = ρi, (13)

where pj(pi) is given in (10). We are now ready to prove
the theorem’s claims: (i) The constant factor in (13) would
obviously not change the unimodality property of the function
(11), which is used for proving the two-equilibria property,
hence f̃i(pi) is unimodal in pi. Thus, each partial equilibrium
pm creates at most two equilibrium values for the (m + 1)st
ring, leading to the required result. (ii) It can be easily
observed that if Q−1

m (pm)ρm+1 obtains a feasible solution for
(11), ρm+1 obtains a feasible solution for (13), and vice versa.
¤

A smaller number of equilibrium points is obtained in cases
such as the one described in Example 1, where strong users
might prevent weaker users from obtaining their required data
rates. We briefly discuss how to calculate all equilibrium
points. It turns out that all equilibria can be calculated by an
iterative procedure which is based on our ability to compute
the equilibrium point of a collision channel. The first step
in the procedure is to calculate the equilibrium probabilities
for i ∈ I1, as these users are not affected by transmissions
from outer rings. For each partial-equilibrium p1 we proceed
to calculate the equilibrium probabilities for I2 as if this ring
is an independent collision channel, where an idle probability
Q1(p1) multiplies the left-hand side of (9). This procedure
carries over to outer rings, creating a tree-like structure of
equilibria.

We conclude our analysis by addressing the quality of the
best equilibrium in terms of the total transmission probability.
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Corollary 1: Let p be the best equilibrium for the multi-
ring network. Then

∑
i∈Im

pi < 1 for every m = 1, . . . , M .
Proof: In [13, Theorem 5] we established that the best

equilibrium p in a collision channel satisfies
∑

i pi < 1. By
Theorem 4(ii) we can treat each ring as a collision channel,
hence the above inequality must hold separately at every ring.
¤

The significance of the above theorem is that the overall
transmission power at the best equilibrium is bounded by a
known quantity. For example, assuming that mobiles at the
mth ring transmit at the same power level of Wm, the overall
power investment (per slot) is bounded by

∑M
m=1 Wm. We

note that this result is also used in the proof of Theorem 5
below

B. Resilience to Changing User Population

Convergence to the best equilibrium has been established
under the assumption of a fixed user population (Section IV,
Theorem 2). However, the user population (and the assigned
data rates) change over time. Hence, it is important to study
the system dynamics when users join or leave the network, as
is often the case in wireless networks. For our analysis, we
assume that the network is at equilibrium, i.e., the required
throughput demands are met for the present users, when new
users join or leave. The next result shows that the network
is resilient to a change in user population, in the sense that
the mechanism (8) re-converges to the best equilibrium of the
presently active users.

Theorem 5 (Changing user population): Consider a net-
work which is at its best equilibrium, and the next two scenar-
ios: (i) some users join the network (not necessarily at the same
time slot). (ii) some users leave the network (not necessarily
at the same time slot). Then under Assumptions 2(iii) and
2(iv), the mechanism (8) will asymptotically converge to best
equilibrium of the active users.
The case of joining users essentially follows from Theorem 2,
as the initial transmission probabilities are below the best equi-
librium probabilities, thus are increased by the user updates.
However, when users leave the network, present users are
required to lower their transmission probabilities for obtaining
the best equilibrium. Hence, in the latter case, a different proof
method is required. A detailed proof of Theorem 5 is thus
provided in the appendix. The case where some users join
and some abandon before convergence is more involved, and
requires further investigation.

VI. CONCLUSION

This paper suggests a framework for MAC management
in wireless networks, in which the system assigns the user
performance levels, while users are responsible for sustaining
the assigned quantities in a distributed manner. We focused
here on a general uplink model where users are allocated an
allowed data rate, which they wish to maintain over time.
Restricting users to a single-parameter transmission protocol,
we showed that while multiple equilibrium points exist in
general, one of these equilibria is best for all users. To avoid

sub-optimal working points, we suggested a distributed mech-
anism that converges to the uniformly best equilibrium point.
Concentrating on a perfect capture channel, we characterized
the power investment at the best equilibrium, and showed that
this equilibrium is stable.

The framework and results of this paper may be extended
in several ways. First, additional specific channel models
may be investigated. A central issue in any specific model
would be how to detect suboptimal equilibria and lead the
network to the best equilibrium point. Additionally, one may
consider more complicated transmission protocols, which take
into account channel feedbacks (such as an indication for a
successful transmission). A central question is whether the
system benefits from the use of more complex protocols by
the individuals. An additional degree of freedom which we did
not consider here, is to allow users to autonomously modify
their transmission power, in conjunction with adjusting the
transmission schedule.

At a somewhat higher level, a challenging direction would
be to extend the scope of the two-phase rate-based framework
suggested here to multi-hop networks, while considering ad-
ditional performance criteria (such as delay).
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APPENDIX

For the proofs in this section we use the following notations.
Let {tk} =

{{tk1} ∪ {tk1} ∪ . . . {tkn}
}

, k = 1, 2, . . . . Note
that at each tk at least a single user updates its transmission
probability. We shall use the notation pk

i for the transmission
probability of user i at time tk (similarly, pk is the trans-
mission probability vector at time tk), with the convention of
p0

i = 0 for every user i.
Proof of Theorem 2: For the proof of the theorem we require
the next lemma.

Lemma 3: The sequence pk is increasing.
Proof: The result follows by induction. Obviously, 0 =

p0 ≤ p1. Assume that p0 ≤ p1 ≤ . . .pk−1. We next show
that pk−1 ≤ pk. Denote by Ik the set of users who update
their probabilities at time k (so that pk−1

i = pk
i ∀i /∈ Ik). For

each i ∈ Ik, let ki < k be the last time epoch at which user
i updated its probability. Note that

ri(pk−1
i ,pki−1

−i ) = ri(pk
i ,pk−1

−i ) = ρi. (14)

Since ri(p) = pi

∏
j 6=i(1 − pj) is decreasing in p−i and, by

assumption, pki−1
−i ≤ pk−1

−i , it follows that pk−1
i ≤ pk

i (as ri

is increasing in pi). ¤
It follows from the above lemma that either some compo-

nent of p must exceed 1 at some iteration, or else p approaches
a limit, say p∗, and in this limit the equilibrium equations (4)
are obviously satisfied (by continuity), i.e., it is an equilibrium
point.

To conclude the proof, we now turn to show that if p̃ is
(another) equilibrium point, then p∗ ≤ p̃. To see this, we
apply a similar induction as that of Lemma 3, and also use the
notations thereof. Obviously 0 = p0 ≤ p̃. Assume p0 ≤ p1 ≤
· · · ≤ pk−1 ≤ p̃. Noting that ri(pk

i ,pki−1
−i ) = ri(p̃i, p̃−i) =

ρi and pki−1
−i ≤ p̃−i for every i ∈ I , it follows that pk

i ≤ p̃i,
i.e., pk ≤ p̃. This argument also shows that if some component
of pk exceeds 1 for some k, then there is no equilibrium point
(i.e., the set of the assigned throughputs {ρi} is infeasible). ¤
Proof of Theorem 5: Convergence of case (i) (joining users)
follows directly from the convergence property of the mech-
anism itself (Theorem 2), as joining users can be regarded
as users who have been present at the network, yet decide to
update their probabilities at late times.

For case (ii), we restrict the discussion to a single departure,
for simplicity of exposition. Results for multiple departures are
obtained through the same arguments. We start our analysis

with a lemma which compares the best equilibria for two
throughput vectors.

Lemma 4: Let ρ and ρ̃ be two throughput demand vectors
such that ρ̃ ≥ ρ (component-wise), and let p and p̃ denote
the respective best equilibria. Then p̃ ≥ p. Consequently,
fixing some ρ for n users, the best equilibrium transmission
probabilities are lower (component-wise) with n − 1 users
present, in comparison to the best equilibrium transmission
probabilities with n users present.

Proof: For the proof, we track the distributed mechanism
for the case of parallel updates (where tki does not depend on
i), which are guaranteed to converge to an equilibrium point by
Theorem 2. We next show that p̃k ≥ pk for every k, thus also
at the limit. Note that since ri(p̃1

i ,0) = ρ̃i ≥ ri(p1
i ,0) = ρi,

then by the monotonicity of ri, p̃1
i ≥ p1

i for every i. At the
next iteration, ri(p̃2

i , p̃
1
−i) = ρ̃i ≥ ri(p1

i ,p
1
−i) = ρi. Since

p̃1
−i ≥ p1

−i, it follows that p̃2
i ≥ p2

i for every i. The same
argument carries over to subsequent iteration, thus it is valid
also at the limit. The case of (n − 1) users is obtained as a
special case of the above, by setting ρn = 0. ¤

We are now ready to prove convergence for the case of a
leaving user. The impact of an abandoning user (say the nth
one) is equivalent to setting pn = 0. Let p̂ denote the initial
probability vector, representing the best equilibrium when n
users were present and let p0 denote the same vector, except
that pn = 0. For the proof of the claim, we require the next
two lemmas.

Lemma 5: In case of an abandoning user, the sequence pk

is decreasing.
Proof: Denote by I1 the subset of users who update their

probabilities at k = 1. For every i ∈ I1, since ri(p1
i ,p

0
−i) =

ri(p0
i , p̂−i) = ρi, it follows by the monotonicity of ri that

p1
i ≤ p0

i Thus overall, p1 ≤ p0. The result of the lemma
follows by proceeding similarly in subsequent iterations (see
a similar proof idea in Theorem 2). ¤

Lemma 6: The sequence pk is bounded below by the best
equilibrium of the n− 1 users.

Proof: Denote by p∗ the best equilibrium with n − 1
users. Then by Lemma 4 p0 ≥ p∗. Denote by I1 the subset
of users who update their probabilities at k = 1. For these
users we have ri(p1

i ,p
0
−i) = ri(p∗i ,p

∗
−i). Since p0

−i ≥ p∗−i

it follows that p1
i ≥ p∗i for every i. This argument may be

carried over to subsequent iterations (pk
−i ≥ p∗−i for every

k) and the result follows. ¤
An immediate consequence of the last two lemmas is that

the mechanism reobtains an equilibrium in the case that a
user leaves the network. We now show that the mechanism
converges to the best equilibrium. Recall by Corollary 1 that
the best equilibrium obeys

∑
i∈Im

pi < 1 for every m =
1, . . . ,M . This is true, in particular, for the equilibrium point
with n users. Since the sequence pk decreases due to the
abandonment of a single user, it follows that

∑
i∈Im

pk
i < 1

for every k. Accordingly, the convergence of the sequence
(guaranteed by the above two lemmas) must be to the best
equilibrium of the (n− 1) users. ¤


