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Abstract
We consider the Max K-Armed Bandit prob-
lem, where a learning agent is faced with several
stochastic arms, each a source of i.i.d. rewards
of unknown distribution. At each time step the
agent chooses an arm, and observes the reward of
the obtained sample. Each sample is considered
here as a separate item with the reward designat-
ing its value, and the goal is to find an item with
the highest possible value. Our basic assumption
is a known lower bound on the tail function of
the reward distributions. Under the PAC frame-
work, we provide a lower bound on the sample
complexity of any (ε, δ)-correct algorithm, and
propose an algorithm that attains this bound up
to logarithmic factors. We provide an analysis
of the robustness of the proposed algorithm to
the model assumptions, and further compare its
performance to the simple non-adaptive variant,
in which the arms are chosen randomly at each
stage.

1. Introduction
In the classic stochastic multi-armed bandit (MAB) prob-
lem, the learning agent faces a setK of stochastic arms, and
wishes to maximize the cumulative reward (in the regret
formulation), or find the arm with the highest expected re-
ward (the pure exploration problem). This model has been
studied extensively in the statistical and learning literature,
see for example (Bubeck & Cesa-Bianchi, 2012) for a com-
prehensive survey.

We consider a variant of the MAB problem called the Max
K-Armed Bandit problem (Max-Bandit for short). In this
variant, the objective is to obtain a sample with the highest
possible reward (namely, the highest value in the support
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of the probability distribution of any arm). More precisely,
considering the PAC setting, the objective is to return an
(ε, δ)-correct sample, namely a sample whose value is ε-
close to the overall best with a probability larger than 1−δ.
In addition, we wish to minimize the sample complexity,
namely the expected number of samples observed by the
learning algorithm before it terminates. To minimize the
sample complexity, a learning agent should ideally be able
to focus on sampling the best arm, at the expense of the
other, sub-optimal ones. To facilitate that, some assump-
tions on the reward distributions, or at least their tails, are
required. These assumptions may be parametric, such as
those used in (Cicirello & Smith, 2005; Streeter & Smith,
2006a; Carpentier & Valko, 2014). In this paper we use a
more relaxed approach, by assuming a known lower bound
on the tail of each distribution near its maximal value (As-
sumption 1). This assumption is further relaxed in Section
5.

The scenario considered in the Max-Bandit problem is
most relevant when a single best item needs to be selected
from a large collections of items, which are divided among
several distinct sets. Here each set represented as a sin-
gle arm. These sets may represent, for example, parts that
come from different sources or produced by different pro-
cesses, or job candidates that are referred by different em-
ployment agencies. Relevant problems include finding the
best single match to certain genetic characteristics in sev-
eral distinct populations, choosing the best channel among
different frequency bands in a cognitive radio wireless net-
work, or searching in multiple data bases for a match to a
given image or document. Another application of interest
is the search of a chemical compound which is suited for
a given task (e.g., (Amis, 2004; Apostolidis et al., 2004)).
Here, one empirically searches for a material (or a com-
position of materials) that provides the best result for the
given task, with the number of tested compositions often
reaching hundreds of thousands variations, coming from
different families of materials.

For the classical MAB problem, algorithms that find the
best arm (in terms of its expected reward) in the PAC
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sense were presented in (Even-Dar et al., 2002; Audibert
& Bubeck, 2010; Kalyanakrishnan et al., 2012; Gabillon
et al., 2012; Karnin et al., 2013), and lower bounds on the
sample complexity were presented in (Mannor & Tsitsiklis,
2004; Audibert & Bubeck, 2010; Kaufmann et al., 2016).
The essential difference with respect to this work is in the
objective, which is to find an (ε, δ)-correct sample in our
case.

The Max-Bandit problem was apparently first proposed in
(Cicirello & Smith, 2005). For reward distribution func-
tions in a specific family, an algorithm with an upper bound
on the sample complexity that increases as − ln(δ)

ε2 was pro-
vided in (Streeter & Smith, 2006a). For the case of dis-
crete rewards, another algorithm was presented in (Streeter
& Smith, 2006b), without performance analysis. Later, a
similar model in which the objective is to maximize the
expected value of the largest sampled reward for a given
number of samples (n) was studied in (Carpentier & Valko,
2014). In that work the attained best reward is compared
with the expected reward obtained by an oracle that sam-
ples the best arm n time. An algorithm is suggested and
shown to secure an upper bound of order n−b/((b+1)α) on
that difference, where α > 0 and b > 0 are determined by
the properties of the distribution functions and b decreases
as they are further away from a specific functions family.
Recently, a similar model in which the goal is to find the
arm for which the value of a given quantile (τ ) is the largest
was studied in (Szörényi et al., 2015). Their model can be
compared to ours by allowing an error ε of the same size
as the given quantile. In this case, the bound on the sample
complexity provided in (Szörényi et al., 2015) increases as
− ln(τ)−ln(δ)

τ2 .

Our basic assumption in the present paper is that a known
lower bound (G∗(ε), formally defined in Section 2) is avail-
able on the tail distributions, namely on the probability that
the reward of each given arm will be close to its maxi-
mum. A special case is a lower bound on the probability
densities near the maximum. Under that assumption, we
provide an algorithm for which the sample complexity in-
creases at most as − ln(G∗(ε)δ)

G∗(ε)
. In the context of (Streeter &

Smith, 2006a), G∗(ε) ' ε and in the context of (Szörényi
et al., 2015) G∗(ε) = τ . Therefore, the proposed algorithm
provides an improvement by a factor of ε−1 over the re-
sult of (Streeter & Smith, 2006a), which was obtained for
a more specific model, and an improvement by the same
factor over the result of (Szörényi et al., 2015) which was
derived for a similar, but different objective. To compare
with the result in (Carpentier & Valko, 2014), we note that
by considering the expected maximal value as the maximal
possible value, it follows that G∗(ε) ' εα. With a choice
of δ = 1

n2 in our algorithm, we obtain that the expected
deficit of the largest sample with respect to the maximal

reward possible is at most of order O( ln(n)
n1/α ) (as compared

to O(n−b/((b+1)α)) with b > 0). Furthermore, we provide
a lower bound on the sample complexity of every (ε, δ)-
correct algorithm, which is shown to coincide, up to a log-
arithmic term, with the upper bound derived for the pro-
posed algorithm. To the best of our knowledge, this is the
first lower bound for the Max-Bandit problem. In addition,
we analyze the robustness of the algorithm to our choice of
the tail function bound G∗(ε), both for the case where this
choice is too optimistic (i.e., the actual distributions do not
obey the assumed bound) and for the case where our choice
it overly conservative.

A basic feature of the Max-Bandit problem (and the asso-
ciated algorithms) is the goal of quickly focusing on the
best arm (in term of maximal reward), and sampling from
that arm as much as possible. It is natural to compare the
obtained results with an alternative approach, which ig-
nores the distinction between arms, and simply draws a
sample from a random arm at each round. This can be
interpreted as mixing the items associated with each arm
before sampling; we accordingly refer to this variant as the
unified-arm problem. This problem actually coincides with
the so-called infinitely-many armed bandit model studied
in (Berry et al., 1997; Teytaud et al., 2007; Wang et al.,
2008; Chakrabarti et al., 2009; Bonald & Proutiere, 2013),
for the specific case of deterministic arms studied in (David
& Shimkin, 2014) and (David & Shimkin, 2015). As may
be expected, the unified-arm approach provides the best re-
sults when the reward distribution of all arms are identi-
cal. However, when many arms are suboptimal, the multi-
armed approach provides superior performance.

The paper proceeds as follows. In the next section we
present our model. In Section 3 we provide a lower bound
on the sample complexity of every (ε, δ)-correct algorithm.
In Section 4 we present an (ε, δ)-correct algorithm, and
provide an upper bound on its sample complexity. The al-
gorithm is simple and its bound has the same order as the
lower bound up to a logarithmic term in |K|ε (where |K|
stands for the number of arms). Then, in Section 5, we
provide an analysis of the algorithm’s performance for the
case in which our assumption does not hold. In Section 6,
we consider for comparison the unified-arm approach. In
Section 7 we close the paper by some concluding remarks.
Certain proofs are differed to the Appendix due to space
limitations.

2. Model Definition
We consider a finite set of arms, denoted by K. At each
stage t = 1, 2, . . . the learning agent chooses an arm
k ∈ K, and a real valued reward is obtained from that
arm. The rewards obtained from each arm k are indepen-
dent and identically distributed, with a distribution function



The Max K-Armed Bandit: PAC Lower Bounds and Efficient Algorithms

(CDF) Fk(µ), µ ∈ R. We denote the maximal possible
reward of each arm by µ∗k = infµ∈R{µ|Fk(µ) = 1}, as-
sumed finite, and the maximal reward among all arms by
µ∗ = maxk∈K µ

∗
k. The tail function Gk (ε) of each arm is

defined as follows.

Definition 1. For every arm k ∈ K, the tail functionGk(ε)
is defined by

Gk(ε) , 1− Fk(µ∗k − ε), ε ≥ 0 .

For example, when µ is uniform on [a, b], then G(ε) =
ε

b−a . In addition, we note that CDFs are nondecreasing
functions and therefore the tail functions are nondecreas-
ing. It should be observed that Gk(ε) does not reveal the
maximal value µ∗k, which remains unknown.

Throughout the paper, we shall use the following assump-
tion.

Assumption 1. There exists a known function G∗(ε) and
a known constant ε0 > 0 such that, for every k ∈ K and
0 ≤ ε ≤ ε0, it holds that

Gk(ε) ≥ G∗(ε) , (1)

We note that for every k ∈ K, P (µk > µ∗k − ε) ≥ G∗(ε)
where µk stands for a random variable with distributionFk.
Furthermore, noting that the tail functions are non-negative
and non-increasing, we assume the same for their lower
bound G∗(ε). Moreover, for convenience we shall assume
that G∗(ε) is strictly decreasing in ε, and denote its inverse
function by G−1

∗ (ε).

An important special-case is when one assumes that the
probability density function (pdf) of each arm is lower
bounded by a certain constant A > 0, so that G∗(ε) = Aε.
We shall often use the more general bound of the form
G∗(ε) = Aεβ to illustrate our results.

An algorithm for the Max-Bandit model samples an arm at
each time step, based on the observed history so far (i.e.,
the previously selected arms and observed rewards). We
require the algorithm to terminate after a random number
T of samples, which is finite with probability 1, and return
a reward V which is the maximal reward observed over the
entire period. An algorithm is said to be (ε, δ)-correct if

P (V > µ∗ − ε) > 1− δ .

The expected number of samples E[T ] taken by the algo-
rithm is the sample complexity, which we wish to minimize.

3. A Lower Bound
Before turning to our proposed algorithm, we provide a
lower bound on the sample complexity of any (ε, δ)-correct

algorithm. The bound is established under Assumption 1,
and the additional provision that G∗(ε) is concave. The
case of non-concave G∗(ε) turns out to be more compli-
cated for analysis, and it is currently unclear whether our
lower bound holds in that case.

For example, when G∗(ε) = Aεβ for some known con-
stants A > 0 and β > 0,

P (µk > µ∗k − ε) ≥ Aεβ , (2)

the required concavity holds for β ≤ 1. The bound in Equa-
tion 2 is usually referred as β-regularity and is similar to
those assumed in (Berry et al., 1997), (Wang et al., 2008),
(David & Shimkin, 2014) and (Carpentier & Valko, 2015).

The following result specifies our lower bound.
Theorem 1. Let k∗ denote some optimal arm, such that
µ∗k∗ = µ∗. Let Assumption 1 holds with a concave function
G∗(ε) and let ε ≤ ε0 and δ ≤ 3

20e
−3. Then, for every

(ε, δ)-correct algorithm,

E[T ] ≥
∑

k∈K\{k∗}

1

32G∗ (Θk)
ln

(
3

20δ

)
(3)

where Θk = min {max (ε, µ∗ − µ∗k) , ε0}.

We note that the specific requirement on δ is not fundamen-
tal, and can be released at the cost of a smaller constant in
the bound.

This lower bound can be interpreted as summing over the
minimal number of times that each arm, other than the opti-
mal arm k∗, needs to be sampled. It is important to observe
that if there are several optimal arms, only one of them is
excluded from the summation. Indeed, the bound is large
when there are several optimal (or near-optimal) arms, as
the denominator of the summand is small for such arms.
This follows since the algorithm needs to obtain more sam-
ples to verify that a given arm is ε-optimal.

The proof of Theorem 1 proceeds by considering any given
set of reward distributions that obeys the Assumption, and
showing that if an algorithm samples some suboptimal arm
less than a certain number of times, it cannot be (ε, δ)-
correct for some related set of reward distributions for
which this arm is optimal.

Proof of Theorem 1. We begin by defining the following set
of hypotheses {H0, H1, . . . ,H|K|}, where FHkl (µ) stands
for the CDF of arm l under hypothesis k and 1Θ stands for
the indicator function of the set Θ. Hypothesis H0 is the
true hypothesis, namely,

FH0

k (µ) = Fk(µ) ∀k ∈ K.

For k = 1, . . . , |K|, we defineHk as follows. For each arm
l 6= k, its CDF coincides with the true one, namely,

FHkl (µ) = Fl(µ), l 6= k.
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For arm k, we construct a CDF FHkk such that its maximal
value is µ∗,Hkk = µ∗ + ε, while it still satisfies Assumption
1. To define FHkk , we use the notation

F∗(µ) =

{
1−G∗(µ∗ + ε− µ) µ < µ∗ + ε

1 µ ≥ µ∗ + ε

where ε is provided to the algorithm. We consider two
cases.

Case 1: µ∗k < µ∗ + ε− ε0. Let

FHkk (µ) =γk,1Fk(µ)1(−∞,µ∗k)(µ)

+ γk,1Fk(µ∗k)1[µ∗k,µ
∗+ε−ε0)(µ)

+ F∗(µ)1[µ∗+ε−ε0,∞)(µ) ,

where γk,1 = 1−G∗ (ε0).

Case 2: µ∗k ≥ µ∗ + ε − ε0. Define P εk , 1 − G∗ (ε0) +
G∗ (µ∗ + ε− µ∗k) ≤ 1, and let

µk = sup
µ≤µ∗k

{µ|Fk(µ) ≤ P εk}

denote the value for which Fk reaches probability P εk . Set

FHkk (µ) =γk,2Fk(µ)1(−∞,µk)(µ)

+ (Fk(µ) + (γk,2 − 1)Fk(µk))1[µk,µ
∗
k)(µ)

+ F∗(µ)1[µ∗k,∞)(µ)

where γk,2 = 1− G∗(µ
∗+ε−µ∗k)

Fk(µk) .

By Lemma 1, which is provided in Section 8.1 in the Ap-
pendix, it follows that assumption 1 holds under all of the
hypotheses {H0, H1, . . . ,H|K|}.

If hypothesisHk (k 6= 0) were true, then µ∗k ≥ µ∗l +ε for all
l 6= k, hence the algorithm should provide a reward from
arm k with probability larger than 1 − δ. We use EHk and
PHk to denote the expectation and probability, respectively,
under the algorithm being considered and hypothesis Hk.
For every k ∈ K let

tk =
1

16γk
ln

(
3

20δ

)
,

where

γk =

{
G∗ (ε0) µ∗k < µ∗ + ε− ε0
G∗ (µ∗ + ε− µ∗k) µ∗k ≥ µ∗ + ε− ε0

,

and let Tk stand for the number of samples from arm k.

Suppose now that our algorithm is (ε, δ)-correct under H0,
and that EH0 [Tk] ≤ tk for some k ∈ K. We will show
that this algorithm cannot be (ε, δ)-correct under hypoth-
esis Hk. Therefore, an (ε, δ)-correct algorithm must have
EH0 [Tk] > tk for all k ∈ K.

Define the following events , for k ∈ K:

• Ak = {Tk ≤ 4tk}. It easily follows from
4tk
(
1− PH0 (Ak)

)
≤ EH0 [Tk] that if EH0 [Tk] ≤ tk,

then PH0 (Ak) ≥ 3
4 .

• Let Bk stand for the event under which the chosen
arm at termination is k, and BCk for its complement.
Since PH0 (Bk′) >

1
2 can hold for one arm at most, it

follows that

∃k′ : PH0
(
BCk
)
>

1

2
, ∀k 6= k′

• Let Ck to be the event under which all the samples
obtained from arm k are on the interval (−∞, µ∗k].
Clearly, PH0 (Ck) = 1.

• For k ∈ K for which µ∗k < µ∗ + ε− ε0, µk is still de-
fined as before, so µk = µ∗k (and Fk(µk) = 1). Now,
for every k ∈ K, we let Dk denote the event under
which for any number of samples t ≤ 4tk from arm
k, the number of samples which are on the interval
(−∞, µk] is bounded as follows:

Dk ,

{
max

1≤t≤4tk

t∑
i=1

(
xki − Fk (µk)

)
< 15tkFk (µk)

}

where xki is a RV which equals to 1 if the i-th sample
from arm k is on that interval and 0 otherwise. Be-
low we upper bound PH0 (Dk) using Kolmogorov’s
inequality.

Kolmogorov’s inequality states that the sum St =∑t
i=1 zi of zero-mean iid random variables (zi) satisfies

P (max1≤t≤n |St| ≥ a) ≤ Var[Sn]
a2 (Theorem 22.4, in

p. 287 of (Patrick, 1995)). By applying it to the RVs
yki = xki − Fk (µk), we obtain

PH0
(
DC
k

)
≤
V ar(

∑4tk
i=1 y

k
i )

(15tkFk (µk))
2 =

4tkFk (µk) (1− Fk (µk))

(15tkFk (µk))
2 ,

where DC
k is the complementary of Dk.

So, for the case of µ∗k < µ∗ + ε − ε0, by the fact that
Fk(µk) = 1, it follows that PH0 (Dk) = 1.

For the case of µ∗k ≥ µ∗+ ε− ε0, it follows that G∗(·) ≤ 1
by its definition, so, again by definition we obtain that
Fk (µk) ≥ G∗(µ∗+ε−µ) = γk and therefore tkFk (µk) ≥
1
16 ln

(
3

20δ

)
. So it follows that since δ ≤ 3

20e
−3 by assump-

tion PH0 (Dk) ≥ 1 − 64

225 ln( 3
20δ )
≥ 9

10 . For simplicity, we

use the bound PH0 (Dk) ≥ 9
10 for every k ∈ K.

Define now the intersection event Sk = Ak∩BCk ∩Ck∩Dk.
We have just shown that for every k 6= k′ it holds that
PH0 (Ak) ≥ 3

4 , PH0 (BCk ) > 1
2 , PH0 (Ck) = 1 and

PH0 (Dk) ≥ 9
10 , from which it follows that PH0 (Sk) > 3

20
for k 6= k′.
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Now, we let h be the history of the process (the sequence
of chosen arms and obtained rewards). For every k ∈ K,
we denote the number of rewards under µk by Nk. For a
given history, at time t′, for every k ∈ K, the probability of
choosing the next arm is the same under H0 and under Hk.
Also, by the hypotheses definition, the reward probability
is the same, unless the chosen arm is k. Therefore, as under
the eventCk, PHk is absolutely continuous w.r.t. PH0 , by the
definition of the hypotheses,

dPHk
dPH0

(h) =

(
1− γk

Fk(µk)

)Nk
, h ∈ Ck

where γk is defined before. Note that for µ∗k < µ∗+ε−ε0 it
holds that Fk(µk) = 1 and it therefore follows that γk,1 =
1− γk

Fk(µk) . Also, note that for µ∗k ≥ µ∗ + ε− ε0 it follows
that γk,2 = 1− γk

Fk(µk) .

Now we assume that the intersection event Sk occurs.
Then, {Ak ∩ Dk} occurs, so Nk ≤ 16tkFk(µk). There-
fore, for αk = γk

Fk(µk) ≤ 1,

dPHk
dPH0

(h) ≥ (1− αk)
1
αk

ln( 3
20δ ) , h ∈ Sk .

Now, by the fact that (1− ε)
1
ε ≥ e−1, we obtain the fol-

lowing inequalities,

PHk
(
BCk
)
≥ PHk (Sk) = EH0

[
dPHk
dPH0

(h)I (h ∈ Sk)

]
≥ EH0

[
(1− αk)

1
αk

ln( 3
20δ ) I (h ∈ Sk)

]
≥ (1− αk)

1
αk

ln( 3
20δ ) PH0 (Sk)

>
3

20
e− ln 3

20δ ≥ δ, ∀k 6= k′ .

We found that if an algorithm is (ε, δ)-correct under hy-
pothesis H0 and E0[Tk] ≤ tk for some k 6= k′, then,
under hypothesis Hk this algorithm returns a sample that
is smaller by at least ε than the maximal possible reward
with probability of δ or more, hence the algorithm is not
(ε, δ)-correct. Therefore, any (ε, δ)-correct algorithm must
satisfy E0[Tk] > tk for all of arms except possibly for one
(namely, for the one k′ for which P0

(
BCk′
)
≤ 1

2 , if such k′

exists). In addition tk∗ ≥ tk′ , where k∗ is the optimal arm
(namely, µ∗k∗ = µ∗). Hence,

EH0 [T ] ≥
∑

k∈K\{k∗}

1

16G∗(min (ε0, ε+ µ∗ − µ∗k)
ln

(
3

20δ

)
.

Now, by the fact that G∗ is concave, it follows that
tG∗(y) + (1− t)G∗(0) ≤ G∗(ty) where y = µ∗+ ε− µ∗k.
So, for the case of ε ≤ µ∗ − µ∗k, for t = ε

y , by the fact that
G∗ is non-negative, it follows that G∗(y) ≥ 2G∗(ε) and

Algorithm 1 Maximal Confidence Bound (Max-CB) Al-
gorithm

1: Input: The tail function bound G∗ = {G∗(ε′), 0 ≤
ε′ ≤ ε0} and its inverse function G−1

∗ , constants δ > 0
and ε > 0.
Define L = 6 ln

(
|K|

(
1 + − ln(δ)

G∗(ε)

))
− ln (δ).

2: Initialization: Counters C(k) = N0, k ∈ K,
where N0 = b L

G∗(ε0)c+ 1.
3: Sample N0 times from each arm.
4: Compute Y kC(k) = V kC(k) + U(C(k)) and set k∗ ∈

arg maxk∈K Y
k
C(k) (with ties broken arbitrary), where

V kC(k) is the largest reward observed so far from arm k
and

U(C(k)) = G−1
∗

(
L

C(k)

)
.

5: If U(C (k∗)) < ε, stop and return the largest sampled
reward.
Else, sample once from arm k∗, setC(k∗) = C(k∗)+1
and return to step 4.

for the case of ε < µ∗ − µ∗k, for t =
µ∗−µ∗k
y , it follows that

G∗(y) ≥ 2G∗(µ
∗−µ∗k). Then sinceG∗ is a non-decreasing

function, the lower bound is obtained.

4. Algorithm
Here we provide an (ε, δ)-correct algorithm. The algorithm
is based on sampling the arm which has the highest upper
confidence bound on its maximal reward.

The algorithm starts by sampling a fixed number of times
from each arm. Then, it repeatedly calculates an index for
each arm which can be interpreted as an upper bound on
the maximal reward of this arm, and samples once from the
arm with the largest index. The algorithm terminates when
the number of samples from the arm with the largest index
is above a certain threshold. This idea is similar to that in
the UCB1 Algorithm of (Auer et al., 2002).

Theorem 2. Under Assumption 1, for any ε ≤ ε0 and δ
such that L + ln (δ) ≥ 10, Algorithm 1 is (ε, δ)-correct
with a sample complexity of

E[T ] ≤
∑
k∈K

L

G∗ (Θk)
+ |K|, (4)

where L = 6 ln
(
|K|

(
1 + − ln(δ)

G∗(ε)

))
− ln (δ) as defined in

the algorithm, and Θk = min {max (ε, µ∗ − µ∗k) , ε0}.

As observed by comparing the bounds in Equations (3) and
(4), the upper bound in Theorem 2 has the same depen-



The Max K-Armed Bandit: PAC Lower Bounds and Efficient Algorithms

dence of ε and ln(δ−1), up to a logarithmic term. It should
be noted though that while the lower bound is currently re-
stricted to concave tail function bounds, the algorithm and
its bound are not restricted to this case.

To establish Theorem 2, we first bound the probability of
the event under which the upper bound of the best arm is
below the maximal reward, using an extreme value bound.
Then, we bound the largest number of samples after which
the algorithm terminates under the assumption that the up-
per bound of the best arm is above the maximal reward.

Proof of Theorem 2. We denote the time step of the algo-
rithm by t, the value of the counter C(k) at time step t by
Ct(k) and L′ , L + ln (δ). Recall that T stands for the
random final time step. By the condition in step 5 of the
algorithm, for every arm k ∈ K, it follows that,

CT (k) ≤ bL
′ − ln(δ)

G∗ (ε)
c+ 1. (5)

Note that by the fact that for x ≥ 6 it follows that d6 ln(x)
dx ≤

1, and by the fact that for x0 = exp
(
1 2

3

)
it follows that

x0 > 6 ln(x0) = 10 it is obtained that

L′′ , |K|
(
− ln(δ)

G∗ (ε)
+ 1

)
> 6 ln

(
|K|

(
− ln(δ)

G∗ (ε)
+ 1

))
= L′,

for L′ ≥ 10. So, by the fact that T =
∑
k∈K C

T (i), for
L′ ≥ 10 it follows that

T ≤ |K|
(
L′ − ln(δ)

G∗ (ε)
+ 1

)
< |K|

(
L′′ − ln(δ)

G∗ (ε)
+ 1

)
≤ L′′2 = e

L′
3 .

(6)
Now, we begin with proving the (ε, δ)-correctness property
of the algorithm. Recall that for every arm k ∈ K the
rewards are distributed according to the CDF Fk(µ). Let
assume w.l.o.g. that µ∗1 = µ∗. Then, for N > 0 and by the
fact that (1 − ε) 1

ε ≤ e−1 for every ε ∈ (0, 1], for U(N) =
G−1
∗
(
L
N

)
it follows that

P
(
V 1
N ≤ µ∗ − U(N)

)
= (F1 (µ∗ − U(N)))

N

≤
(

1−
(
L′ − ln(δ)

N

))N
≤ δe−L

′
,

(7)

where V kN is the largest reward observed from arm k ∈ K
after this arm has been sampled for N times. Hence, at
every time step t, by the definition of Y 1

Ct(1) and Equations

(6) and (7), by applying the union bound, it follows that

P
(
Y 1
Ct(1) ≤ µ

∗
)

= P
(
V 1
Ct(1) ≤ µ

∗ − U(Ct(1))
)

≤
exp

(
L′
3

)∑
N=1

P
(
V 1
N ≤ µ∗ − U(N)

)
≤ δe− 2L′

3 .

(8)

Since by the condition in step 5, it is obtained that when the
algorithm stops

V k
∗

Ct(k∗) > Y k
∗

Ct(k∗) − ε,

and by the fact that for every time step

Y k
∗

Ct(k∗) ≥ Y
1
Ct(1),

it follows by Equation (8) that

P
(
V k
∗

Ct(k∗) ≤ µ
∗ − ε

)
≤ P

(
Y 1
Ct(1) ≤ µ

∗
)
≤ δe− 2L′

3 .

Therefore, it follows that the algorithm returns a reward
greater than µ∗ − ε with a probability larger than 1 − δ.
So, it is (ε, δ)-correct.

For proving the bound on the expected sample complexity
of the algorithm we define the following sets:

M(ε) = {l ∈ K|µ∗ − µ∗l < ε}

and
N(ε) = {l ∈ K|µ∗ − µ∗l ≥ ε}.

As before, we assume w.l.o.g. that µ∗1 = µ∗. For the case
in which

E1 ,
⋂

1≤t<T

{
Y 1
Ct(1) ≥ µ

∗
}
,

occurs, since V kCt(k) ≤ µ
∗
k for every k ∈ K, and every time

step, it follows that the necessary condition for sampling
from arm k,

Y kCk(1) ≥ Y
1
Ct(1),

occurs only when the event

E2(t) ,
{
µ∗k + U

(
Ct(k)

)
≥ µ∗

}
,

occurs. But

E2(t) ⊆
{
Ct(k) ≤ L′ − ln(δ)

G∗ (µ∗ − µ∗k)

}
.

Therefore, it is obtained that

CT (k) ≤ max

(
b L′ − ln(δ)

G∗ (µ∗ − µ∗k)
c+ 1, N0

)
.

(9)
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By using the bound in Equation (5) for the arms in the set
M(ε), the bound in Equation (9) for the arms in the set
N(ε) and the bound in Equation (6), it is obtained that

E[T ] ≤ (1− P (E1)) e
L′
3 + P (E1) Φ (ε) , (10)

where

Φ (ε) ,
∑

k∈N(ε)

(
b L′ − ln(δ)

G∗ (min (ε0, µ∗ − µ∗k))
c+ 1

)

+
∑

k∈M(ε)

(
bL
′ − ln(δ)

G∗ (ε)
c+ 1

)
.

In addition, by Equation (8), the bound in Equation (6) and
by applying the union bound, it follows that

P (E1) ≥ 1−
T∑
t=1

P
(
Y 1
Ct(1) < µ∗

)
≥ 1− δe− 2L′

3 e
L′
3

= 1− δe−L
′

3 .

So,
1− P (E1) ≤ δe−L

′
3 . (11)

Furthermore, by the definitions of L′, the sets N(ε) and
M(ε) and since ε ≤ ε0, it can be obtained that

Φ (ε) ≤
∑
k∈K

b L

G∗ (Θk)
c+ 1. (12)

where Θk = min {max (ε, µ∗ − µ∗k) , ε0}. Therefore, by
Equation (10), (11) and (12) the bound on the sample com-
plexity is obtained.

5. Robustness
The performance bounds presented for our algorithm de-
pend directly on the choice of the lower bound G∗ on the
tail functions. A natural question is what happens if our
choice of G∗ is too optimistic, so that Assumption 1 is vi-
olated. In the opposite direction, how tight is our bound
when our choice ofG∗ is to conservative? We address these
two questions in turn.

5.1. Optimistic Tails Estimate

Here Equation (1) does not hold for G∗(ε), but holds for
G′∗(ε) = αG∗(ε) for some α < 1. The fact that Equation
(1) does not hold for G∗(ε) leads to the situation in which
the probability P

(
Y kC(k) < µ∗k

)
is larger (where Y kC(k) is

the index calculated in step 4 of the algorithm) than the
value on which the proof of Theorem 2 relies. In the fol-
lowing proposition we provide the (ε, δ)-correctness and
sample complexity of Algorithm 1.

Proposition 1. Suppose that Assumption 1 does not hold
for G∗(ε), but holds for G′∗(ε) = αG∗(ε) for some α < 1.
Then Algorithm 1 is (ε′, δ′)-correct with

ε′ = G−1
∗

(
(|K|L)

1−α
(G∗ (ε))

α
)

and δ′ = δα,

and sample complexity bound

E[T ] ≤
∑
k∈K

L

G∗
(
Θk

) + δα
(
|K| L

G∗ (ε)

)1−α

+ |K|,

where L is as in Theorem 2 and Θk =
min {max (ε, µ∗ − ε′ − µ∗k) , ε0}.

The proof of the above proposition bases on the proof of
Theorem 2 and is provided in Section 8.2 in the Appendix.

5.2. Conservative Tails Estimate

Here, Assumption 1 holds for the provided function G∗(ε)
and also holds for G′∗(ε) = αG∗(ε) for some α > 1.
Therefore, in this case the probability P

(
Y kC(k) < µ∗k

)
is

smaller than the value on which the proof of Theorem 2
relies. So, Algorithm 1 returns an ε-optimal value with a
larger probability. The probability of returning a false value
is given in the following proposition.

Proposition 2. When Assumption 1 holds for G∗(ε), and
also forG′∗(ε) = αG∗(ε) for some α > 1, and L+ln (δ) ≥
10, Algorithm 1 is (ε, δ′)-correct where δ′ = δe−(α−1)L

(ε and δ are provided to the algorithm) with the sample
complexity provided in Theorem 2

For proving the above proposition we base on a minor vari-
ation of the proof of Theorem 2. The proof is provided in
Section 8.3 in the Appendix.

6. Comparison with the Unified-Arm Model
In this section, we analyze the improvement in the sample
complexity obtained by utilizing the multi arm framework
(the ability to choose from which arm to sample at each
time step) compared to a model in which all the arms are
unified into a single arm, so that the sample is effectively
obtained from a random arm. In the unified-arm model,
when the agent samples from this unified arm, one of the
original arms is chosen uniformly at random, and a reward
is sampled from this arm. The CDF of the unified arm is
therefore F (µ) = 1

|K|
∑
k∈K Fk(µ), and the correspond-

ing maximal reward is µ∗ = maxk µ
∗
k. Assumption 1, im-

plies that 1− F (µ) ≥ G∗(µ
∗−µ)
|K| .

In the remainder of this section, we provide a lower bound
on the sample complexity and an (ε, δ)-correct algorithm
that attains the same order of this bound for the unified-
arm model. (Note that the lower bound in Theorem 1 is
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Algorithm 2 Unified-Arm Algorithm
1: Input: The tail function bound G∗ = {G∗(ε′), 0 ≤
ε′ ≤ ε0} and its inverse function G−1

∗ , constants δ > 0
and ε > 0.

2: Sample d− ln(δ)|K|
G∗(ε)

e+ 1 times from the unified-arm.
3: Return the best sample.

meaningless for |K| = 1.) Then, we discuss which ap-
proach (multi-armed or unified-arm) is better for differ-
ent model parameters, and provide examples that illustrate
these cases.

6.1. Lower Bound

The following Theorem provides a lower bound on the
sample complexity for the unified-arm model.

Theorem 3. For every (ε, δ)-correct algorithm, under As-
sumption 1, whenG∗(ε) is concave, ε ≤ ε0 and δ ≤ 3

20e
−3,

it holds that

E[T ] ≥ |K|
16G∗ (ε)

ln

(
3

20δ

)
. (13)

The proof is provided in Section 8.4 in the Appendix and is
based on a similar idea to that of Theorem 1.

6.2. Algorithm

In Algorithm 2, a fixed number of instances is sampled,
and the algorithm chooses the best one among them. In
the following Theorem we provide a bound on the sample
complexity achieved by Algorithm 2.

Theorem 4. Under Assumption 1, Algorithm 2 is (ε, δ)-
correct, with a sample complexity bound of

E[T ] ≤ |K| ln(δ−1)

G∗(ε)
+ 2.

The proof is provided in Section 8.5 in the Appendix. Note
that the upper bound on the sample complexity is of the
same order as the lower bound in Theorem 3.

6.3. Comparison and Examples

To find when the multi-armed algorithm is useful, we may
compare the upper bound on the sample complexity pro-
vided in Theorem 2 for Algorithm 1 (multi-armed case)
with the lower bound for the unified-arm model in Theo-
rem 3. We consider two extreme cases.

Case 1: Suppose that arm 1 is best: µ∗1 = µ∗, while all the
other arms fall short significantly compared to the required
accuracy ε: µ∗k � µ∗ − ε, for k 6= 1.

Here 1
ε �

1

(max(ε,µ∗−µ∗k))
, for k 6= 1. Hence the

upper bound on sample complexity of Algorithm 1 (multi-
armed case) will be smaller than the lower bound for the
unified-arm model in Theorem 3. We now provide an
example which illustrates case 1 numerically.

Example 1 (Case 1). Let |K| = 104, µ∗1 = 0.9, µ∗k =
0.1 ∀k 6= 1, G∗(ε) = Aε and A = 0.01. For ε = 10−4 and
δ = 10−3 the sample complexity attained by Algorithm 1 is
3.52 × 108. The lower bound for the unified-arm model is
3.13 × 109. The sample complexity attained by Algorithm
2 (for the unified-arm model model) is 6.9× 1010.

Case 2: Consider next the opposite case, where there are
many optimal arms and few that are worse: say µ∗1 �
µ∗ − ε, while µ∗k = µ∗ for all k 6= 1.
Here 1

ε = 1

(max(ε,µ∗−µ∗k))
, for k 6= 1. Hence, since there

is a logarithmic-in- |K|ε multiplicative factor in the upper
bound on the sample complexity of Algorithm 1, this bound
will be larger than the lower bound for the unified-arm
model in Theorem 3. The following example illustrates
case 2 numerically.

Example 2 (Case 2). Let |K|, G∗(ε), δ and ε remain the
same as in Example 1, and let µ∗1 = 0.1 and µ∗k = 0.9
for k 6= 1. The sample complexity of Algorithm 1 is
1.56 × 1012, which is larger than the sample complexity
of Algorithm 2 which is 6.9× 1010.

As shown in Example 2, in some cases the bound on the
sample complexity of the multi-armed Algorithm 1 is larger
than that of the unified-arm Algorithm 2. We shall further
comment on these finding in our concluding remarks.

7. Conclusion
We have considered in this paper the Max K-armed Ban-
dit problem in the PAC setting, under the assumption of a
known lower bound on the tail function of reward distribu-
tions. We provided a lower bound on the sample complex-
ity of any algorithm, and a UCB-type sampling algorithm
whose sample complexity is essentially of the same order
up to logarithmic terms.

We have further analyzed the robustness of our algorithm
to the violation of Assumption 1 on the tail functions, and
bounded the resulting deterioration in performance.

The performance of the multi-armed Algorithm 1 was com-
pared to a simple unified-arm approach. The benefits of Al-
gorithm 1, which aims to focus sampling on the best arms,
are clear when there are few optimal arms (in term of their
maximal reward), but might diminish when many arms are
close to optimal. Combining these two approaches into a
single algorithm that excels in either case remains a chal-
lenge for future works.
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8. Appendix
8.1. Lemma 1

Lemma 1. Assumption 1 holds under the Hypotheses
{H0, H1, . . . ,H|K|} defined in the proof of Theorem 1.

Proof. For the hypothesis H0 the assumption holds since
that is the true one.

For k ∈ K for which µ∗k < µ∗ + ε − ε0, since the CDF is
F∗(µ) on the interval [µ∗ + ε− ε0, µ∗,Hkk ], which is of size
ε0 and reaches the maximal value, it is easily obtained by
the definition of F∗(µ) that Assumption 1 holds.

Now we will show that Assumption 1 holds in the last case,
k ∈ K for which µ∗k < µ∗ + ε− ε0. We need to show that

1− FHkk (µ∗ + ε− ε′) ≥ G∗(ε′) (14)

for every 0 ≤ ε′ ≤ ε0. For 0 ≤ ε′ ≤ µ∗+ ε−µ∗k, Equation
(14) holds by the definition of F∗. For µ∗ + ε− µk < ε′ ≤
ε0, by the definition of µk it follows that Fk(µ) ≤ P εk for
µ < µk, so FHkk (µ∗ + ε− ε′) ≤ 1−G∗(ε0) and Equation
(14) follows by the monotonicity of G∗(·).

Finally, for the case of µ∗+ ε−µ∗k < ε′ ≤ µ∗+ ε−µk we
use the concavity of G∗. For µk ≤ µ < µ∗k it follows that
FHkk (µ) = Fk(µ) − G∗(µ∗ + ε − µ∗k). Also, by the fact
that Assumption 1 holds for Fk we have thatG∗(µ∗k−µ) ≤
1− Fk(µ), so that

FHkk (µ) ≤ 1−∆k (15)

where ∆k = G∗(µ
∗
k − µ) + G∗(µ

∗ + ε − µ∗k). Then by
the assumed concavity of G∗, and noting that G∗(0) = 0,
it follows that λG∗(µ∗ + ε − µ) ≤ G∗(λ (µ∗ + ε− µ))

for λ ∈ [0, 1]. So by choosing λ = λ1 =
µ∗+ε−µ∗k
µ∗+ε−µ it

follows that λ1G∗(µ
∗+ε−µ) ≤ G∗ (µ∗ + ε− µ∗k) and by

choosing λ = 1− λ1 it follows that (1− λ1)G∗(µ
∗ + ε−

µ) ≤ G∗ (µ∗k − µ). Therefore,

G∗(µ
∗+ ε−µ) ≤ G∗ (µ∗k − µ)+G∗ (µ∗ + ε− µ∗k) = ∆k

(16)
So, by Equations (15) and (16) it follows that

FHkk (µ) ≤ 1−G∗(µ∗ + ε− µ) ,

so that Assumption 1 holds.

8.2. Proof of Proposition 1

Proof. First we denote the inverse function of G′∗(ε) (the
function for which Assumption 1 holds) by G′−1

∗ , and we
note that,

G′−1
∗ (y) = G−1

∗

( y
α

)
. (17)

Recall that L′ , L + ln (δ). Now, we begin with provid-
ing the (ε′, δ′)-correctness of the algorithm. Let assume
w.l.o.g. that µ∗1 = µ∗. Then, by Equation (17) it follows
that U(N) = G′−1

∗
(
αL
N

)
, and therefore similarly to Equa-

tion (7) it follows that

P
(
V 1
N ≤ µ∗ − U(N)

)
= (F1 (µ∗ − U(N)))

N

≤
(

1−
(
α (L′ − ln(δ))

N

))N
≤ δαe−αL

′
,

(18)
Hence, for every time step t ≤ tT where tT = eαL

′/3,
by applying the union bound, the definition of Y 1

Ct(1) and
Equations (18), it follows that

P
(
∪1≤t≤tT Y

1
Ct(1) ≤ µ

∗
)

= P
(
∪1≤t≤tT V

1
Ct(1) ≤ µ

∗ − U(Ct(1))
)

≤
tT∑
t=1

tT∑
t=1

P
(
V 1
N ≤ µ∗ − U(N)

)
≤ δαe−αL

′/3.

(19)

Recall that T stands for the random final time step. Now,
we assume that the algorithm terminated at a time step
larger than tT , namely, T > tT (we consider the case of
T ≤ tT later). We denote the first time step at which
an arm has been sampled for tT

|K| times by tF and we
note that tF ≤ tT . By the fact that for every time step
Y k
∗

Ct(k∗) ≥ Y 1
Ct(1) holds for the chosen arm k∗ it follows

that

V k
∗

CtF (k∗) + U(CtF (k∗)) = Y k
∗

CtF (k∗) ≥ Y
1
CtF (1) . (20)

Then, by Equation (6) it follows that

|K|α−1

(
L′ − ln(δ)

G∗ (ε)

)α
≤ 1

|K|
e
αL′
3 =

tT
|K|

. (21)

Now, by Equation (21), the fact that CtF (k∗) = tT
|K| and

the increasing of G−1
∗ (and the decreasing of U ) it is ob-

tained that
U(CtF (k∗)) ≤ ε′ , (22)

where ε′ = G−1
∗

(
(|K| (L′ − ln(δ)))

1−α
(G∗ (ε))

α
)

.
Therefore, by Equation (19) the (ε′, δ′)-correctness with
δ′ = δα and ε′ = G−1

∗

(
(|K| (L′ − ln(δ)))

1−α
(G∗ (ε))

α
)

is obtained for the case of T > tT .

For the case of T ≤ tT , by the fact that the algorithm
terminated and the condition in step 5 it follows that
U(CT (k∗)) < ε ≤ ε′. Then, since

V k
∗

CT (k∗) + U(CT (k∗)) = Y k
∗

CT (k∗) ≥ Y
1
CT (1) ,

by Equation (19) the (ε′, δ′)-correctness is obtained for the
case of T ≤ tT .
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Now we continue with analyzing the sample complexity.
First we recall that T stands for the random final step. In
additional, by the same considerations as in the proof of
Theorem 2 it follows by Equation (6) that T ≤ eL

′/3. For
the case in which

E1 ,
⋂

1≤t<T

{
max
k∈K

Y kCt(k) ≥ µ
∗ − ε′

}
,

where ε′ is defined above, the necessary condition for sam-
pling from arm k,

Y kCk(1) ≥ Y
1
Ct(1),

occurs only when the event

E
k

2(t) ,
{
µ∗k + U

(
Ct(k)

)
≥ µ∗ − ε′

}
,

occurs. But

E
k

2(t) ⊆
{
Ct(k) ≤ L′ − ln(δ)

G∗ (µ∗ − ε′ − µ∗k)

}
.

Therefore, it is obtained that

CT (k) ≤ max

(
b L′ − ln(δ)

G∗ (µ∗ − ε′ − µ∗k)
c+ 1, N0

)
. (23)

Now, recall the sets M (ε) and N (ε) defined in the proof
of Theorem 2.

By using the bound in Equation (5) for the arms in the set
M(ε′ + ε), the bound in Equation (23) for the arms in the
set N(ε′ + ε) and the bound in Equation (6) it is obtained
that

E[T ] ≤P
(
E1

)
Φ (ε) +

(
1− P

(
E1

))
Ψ(ε), (24)

where Ψ(ε) , |K|
(
L′−ln(δ)
G∗(ε)

+ 1
)

and

Φ (ε) ,
∑

k∈N(ε′+ε)

(
b L′ − ln(δ)

G∗ (min (ε0, µ∗ − ε′ − µ∗k))
c+ 1

)

+
∑

k∈M(ε′+ε)

(
bL
′ − ln(δ)

G∗ (ε)
c+ 1

)
.

In addition, by Equations (19), (20) and (22), it follows that

P
(
E1

)
≥ 1− P

(
∪1≤t≤tT Y

1
Ct(1) ≤ µ

∗
)

≥ 1− δαe−αL
′/3.

(25)

Furthermore, by the definitions of L′ and the setsN(ε′+ ε)
and M(ε′ + ε), it can be obtained that

Φ (ε) ≤
∑
k∈K

b L

G∗
(
Θk

)c+ 1. (26)

where Θk = min {max (ε, µ∗ − ε′ − µ∗k) , ε0}. Therefore,
by Equation (24), (25) and (26) and the facts that Ψ(ε) ≤
e
L′
3 (which is obtained by Equation (6)) and that Φ (ε) ≤

Ψ(ε), the bound on the sample complexity is obtained.

8.3. Proof of Proposition 2

Proof. Recall that L′ = L+ ln (δ). Here, by Equation (18)
it follows that

P
(
V 1
N ≤ µ∗ − U(N)

)
≤ δ′e−L

′
, (27)

where δ′ = δαe−(α−1)L′ . So, by Equation (27), Equation
(7) holds for δ′. Then we can proceed exactly as in the
proof of Theorem 2, but with δ′ and Equation (27) instead
of δ and Equation (7). Therefore the result is obtained.

8.4. Proof of Theorem 3

Proof. Similarly to the proof of Theorem 1, we begin
by defining the following hypotheses {H0, H1}, where
FHl(µ) stands for the CDF of the unified arm under hy-
pothesis Hl (where l ∈ {0, 1}). Hypothesis H0 is the true
hypothesis, namely,

H0 : FH0(µ) = F (µ),

Under hypothesis H1 the maximal value is µ∗,H1 = µ∗ +
ε, and Assumption 1 still holds. Here, similarly to the
proof of Theorem 1 we define P ε , 1 − 1

|K|G∗ (ε0) +
1
|K|G∗ (µ∗ + ε− µ∗k) and let

µ = sup
µ≤µ∗

{µ|F (µ) ≤ P ε} .

Then we set

FH1(µ) =γF (µ)1(−∞,µk)(µ)

+ (F (µ) + (γ − 1)F (µ))1[µ,µ∗)(µ)

+

(
1− 1

|K|
G∗ (µ∗ + ε− µ)

)
1[µ∗,µ∗+ε](µ)

+ 1(µ∗+ε,∞)

where γ = 1 − G∗(ε)
|K|F (µ) and 1Θ stand for the indicator

function of the set Θ.

Here, for showing that Assumption 1 holds under hypothe-
sis H1 we need to show that,

1− FH1(µ∗ + ε− ε′) ≥ 1

|K|
G∗(ε

′)

for every 0 ≤ ε′ ≤ ε0. Therefore, by the same considera-
tions as in the proof of Lemma 1 it follows that Assumption
1 holds under hypothesis H1.

If hypothesis H1 is true, the algorithm should provide a re-
ward greater than µ∗. We use El and Pl (where l ∈ {0, 1})
to denote the expectation and probability respectively, un-
der the algorithm being considered and under hypothesis
Hl. Now, let

t′ =
1

16γ′
ln

(
3

20δ

)
,
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where γ′ = G∗(ε)
|K| .

Recall that T stands for the total number of samples from
the arm. Now, we assume we run an algorithm which is
(ε, δ)-correct under H0 and that E0[T ] ≤ t for this algo-
rithm. We will show that this algorithm cannot be (ε, δ)-
correct under hypothesis H1. Therefore, an (ε, δ)-correct
algorithm must have E0[T ] > t.

Define the following events:

• A = {T ≤ 4t}. By the same consideration as in
the proof of Theorem 1 (for the events {Ak}k∈K), it
follows that if E0[T ] ≤ t, then P0(A) ≥ 3

4 .

• LetB stand for the event under which the chosen sam-
ple is strictly above µ∗, andBC for its complementary
(the chosen sample is smaller or equal to µ∗). Clearly,
P0

(
BC
)

= 1.

• We define the event C to be the event under which all
the samples obtained from the unified arm are on the
interval [−∞, µ∗]. Clearly, P0(C) = 1.

• We let D denote the event under which for any num-
ber of samples t ≤ 4t′ from the unified arm, the num-
ber of samples which are on the interval (−∞, µ] is
bounded, namely,

D ,

{
max

1≤t≤4t′

t∑
i=1

xi − tF (µ) < 15t′F (µ)

}
where xi is a R.V which equals to 1 if the i-th sample
is on the interval and 0 otherwise. Now, by the same
consideration as in the proof of Theorem 1, it follows
that P0 (D) ≥ 9

10 .

Define now the intersection event S = A∩BC∩C∩D. We
have shown that P0(A) ≥ 3

4 , P0(B) = 1, P0(C) = 1 and
P0(D) = 9

10 , from which it is obtained that P0 (S) ≥ 13
20 .

Now, let h to be the history of the process. Then by the
same considerations as in the proof of Theorem 1, for α =
γ′

F (µ) , it follows that,

dPHk
dPH0

(h)I (Sk) ≥ (1− α)
1
α ln( 3

20δ ) I (Sk) .

Therefore we have the following,

P1

(
BC
)
≥ P1 (S) = E0

[
dP1

dP0
(h)I (S)

]
≥ E0

[
(1− α)

1
α ln( 3

20δ ) I (S)
]

≥ (1− α)
1
α ln( 3

20δ ) P0 (I (S))

>
3

20
e− ln 3

20δ ≥ δ ,

where in the last inequality we used the facts that
(1− ε)

1
ε ≥ e−1.

We found that if an algorithm is (ε, δ)-correct under hy-
pothesis H0 and E0[T ] ≤ t, then, under hypothesis H1

this algorithm returns a sample that is smaller by at least
ε than the maximal possible reward with a probability of δ
or more, hence the algorithm is not (ε, δ)-correct. There-
fore, any (ε, δ)-correct algorithm, must satisfy E0[T ] > t.
Hence the lower bound is obtained.

8.5. Proof of Theorem 4

Proof. Since sampling from the unified arm consists of
choosing one arm out of the |K| arms (with equal prob-
ability), and then, sampling from this arm, it follows that,
F (µ∗ − ε) ≤

(
1− G∗(ε)

|K|

)
. Also, we note that (1− ε) 1

ε ≤

e−1 for every ε ∈ (0, 1]. Therefore, forN = d− ln(δ)|K|
G∗(ε)

e+
1,

P
(
V 1
N < µ∗ − ε

)
= (F (µ∗ − ε))N ≤

(
1− G∗(ε

|K|

)N
< δ,

(28)
where V 1

N is the largest reward observed among the first N
samples. Hence, the algorithm is (ε, δ)-correct. The bound
on the sample complexity is immediate from the definition
of the algorithm.


