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Abstract

Blackwell’s theory of approachability provides fundamental results for repeated games with
vector-valued payoffs, which have been usefully applied in the theory of learning in games,
and in devising online learning algorithms in the adversarial setup. A target set S is
approachable by a player (the agent) in such a game if he can ensure that the average
payoff vector converges to S, no matter what the opponent does. Blackwell provided
two equivalent conditions for a convex set to be approachable. Standard approachability
algorithms rely on the primal condition, which is a geometric separation condition, and
essentially require to compute at each stage a projection direction from a certain point to
S. Here we introduce an approachability algorithm that relies on Blackwell’s dual condition,
which requires the agent to have a feasible response to each mixed action of the opponent,
namely a mixed action such that the expected payoff vector belongs to S. Thus, rather
than projections, the proposed algorithm relies on computing the response to a certain
action of the opponent at each stage. We demonstrate the utility of the proposed approach
by applying it to certain generalizations of the classical regret minimization problem, which
incorporate side constraints, reward-to-cost criteria, and so-called global cost functions. In
these extensions, computation of the projection is generally complex while the response is
readily obtainable.

Keywords: approachability, no-regret algorithms

1. Introduction

Consider a repeated matrix game with vector-valued rewards that is played by two players,
the agent and the opponent, where the latter may stand for an arbitrarily-varying learning
environment. For each pair of simultaneous actions a and b of the agent and the opponent in
the one-stage game, a reward vector r(a, b) ∈ R`, ` ≥ 1, is obtained. In the approachability
problem formulated in (Blackwell, 1956), the agent’s goal is to ensure that the long-term
average reward vector approaches a given target set S, namely converges to S almost surely
in the point-to-set distance. If that convergence can be guaranteed irrespectively of the
opponent’s strategy, the set S is said to be approachable, and the strategy of the agent
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that satisfies this property is an approachability strategy (or algorithm) for S. Refinements
and extensions of Blackwell’s results have been considered, among others, in Vieille (1992);
Shimkin and Shwartz (1993); Hart and Mas-Colell (2001); Spinat (2002); Lehrer (2002);
Lehrer and Solan (2009); Abernethy et al. (2011).

Blackwell’s approachability results have been broadly used in the theoretical work on
learning in games, encompassing equilibrium analysis in repeated games with incomplete
information (Aumann and Maschler, 1995), calibrated forecasting (Foster, 1999), and con-
vergence to correlated equilibria (Hart and Mas-Colell, 2000). An application of approacha-
bility to multi-criteria reinforcement learning was considered in Mannor and Shimkin (2004).
The earliest application, however, concerned the notion of no-regret strategies, that was in-
troduced in Hannan (1957). Even before Hannan’s paper appeared in print, it was shown
in Blackwell (1954) that regret minimization can be formulated as a particular approacha-
bility problem, leading to an elegant no-regret strategy. More recently, approachability was
used in Rustichini (1999) to establish a no-regret result for games with imperfect monitor-
ing, and Hart and Mas-Colell (2001) proposed an alternative approachability formulation
of the no-regret problem (see Section 5 for more details). An overview of approachability
and no-regret in the context of learning in games can be found in Fudenberg and Levine
(1998) and Young (2004), while Cesa-Bianchi and Lugosi (2006) highlights the connection
with the modern theory of on-line learning and prediction algorithms. The recent article
Perchet (2014) reviews the inter-relations between approachability, regret minimization and
calibration.

Standard approachability algorithms require, at each stage of the game, the computation
of the direction from the current average reward vector to a closest point in the target set S.
This is implied by Blackwell’s primal geometric separation condition, which is a sufficient
condition for approachability of a target set. For convex sets, this step is equivalent to
computing the projection direction of the average reward onto S. In this paper, we introduce
an approachability algorithm that avoids this projection computation step. Instead, the
algorithm relies on the availability of a response map, that assigns to each mixed action q
of the opponent a mixed action p of the agent so that r(p, q), the expected reward vector
under these two mixed actions, is in S. Existence of such a map is based on the Blackwell’s
dual condition, which is also a necessary and sufficient condition for approachability of a
convex target set.

The idea of defining an approachable set in terms of a general response map appears
in Lehrer and Solan (2007), in the context of internal no-regret strategies. An explicit
approachability algorithm which is based on computing the response to calibrated forecasts
of the opponent’s actions has been proposed in Perchet (2009), and further analyzed in
Bernstein et al. (2014). However, the algorithms in these papers are essentially based on
computing calibrated forecasts of the opponent’s actions, a task which is computation-
ally hard (Hazan and Kakade, 2012). In contrast, the algorithms proposed in the present
paper retain the dimensionality of the single-stage game, similarly to Blackwell’s original
algorithm. An approachability algorithm that combines the response map with no-regret
learning was proposed in Bernstein (2013). The algorithm accommodates some additional
adaptive properties, but its temporal convergence rate is O(n−1/4) rather than O(n−1/2).
A similar algorithm was employed in Mannor et al. (2014) to elegantly establish approach-
ability results for unknown games.

2



Response-Based Approachability

Our motivation for the proposed algorithms is mainly derived from certain general-
izations of the basic no-regret problem, where the set to be approached is geometrically
complicated so that computing the projection direction may be hard, while the response
map is explicit by construction. These generalizations include the constrained regret min-
imization problem (Mannor et al., 2009), regret minimization with global cost functions
(Even-Dar et al., 2009), regret minimization in variable duration repeated games (Man-
nor and Shimkin, 2008), and regret minimization in stochastic game models (Mannor and
Shimkin, 2003). In these cases, the computation of a response reduces to computing a
best-response in the underlying regret minimization problem, and hence can be carried out
efficiently. The application of our algorithm to some of these problems is discussed in
Section 5 of this paper.

The paper proceeds as follows. In Section 2 we review the approachability framework
along with available approachability algorithms. Section 3 presents our basic algorithm
and establishes its approachability properties. In Section 4, we provide an interpretation of
the proposed algorithm, and examine some variants and extensions. Section 5 presents the
application to generalized no-regret problems. We conclude the paper in Section 6.

2. Review of Approachability Theory

Let us start with a brief review of the approachability problem. Consider a repeated two-
person matrix game, played between an agent and an arbitrary opponent. The agent chooses
its actions from a finite set A, while the opponent chooses its actions from a finite set B. At
each step n = 1, 2, ..., the agent selects its action an ∈ A, observes the action bn ∈ B chosen
by the opponent, and obtains a vector-valued reward Rn = r(an, bn) ∈ R`, where ` ≥ 1,
and r : A×B → R` is a given reward function. The average reward vector obtained by the
agent up to time n is then R̄n = n−1

∑n
k=1Rk. A mixed action of the agent is a probability

vector p ∈ ∆(A), where p(a) specifies the probability of choosing action a ∈ A, and ∆(A)
denotes the set of probability vectors over A . Similarly, q ∈ ∆(B) denotes a mixed action
of the opponent. Let q̄n ∈ ∆(B) denote the empirical distribution of the opponent’s actions
at time n, namely

q̄n(b) ,
1

n

n∑
k=1

I {bn = b} , b ∈ B,

where I denotes the indicator function. Further define the Euclidean span of the reward
vector as

ρ , max
a,b,a′,b′

∥∥r(a, b)− r(a′, b′)∥∥ , (1)

where ‖·‖ is the Euclidean norm. The inner product between two vectors v ∈ R` and w ∈ R`
is denoted by v · w.

In what follows, we use the shorthand notation

r(p, q) ,
∑

a∈A,b∈B
p(a)q(b)r(a, b)

for the expected reward under mixed actions p ∈ ∆(A) and q ∈ ∆(B); the distinction
between r(a, b) and r(p, q) should be clear from their arguments. We similarly denote
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r(p, b) =
∑

a∈A p(a)r(a, b) for the expected reward under mixed action p ∈ ∆(A) and pure
action b ∈ B.

Let hn , {a1, b1, ..., an, bn} ∈ (A× B)n denote the history of the game up to stage n.
A strategy π = (πn) of the agent is a collection of decision rules πn : (A× B)n−1 → ∆(A),
n ≥ 1, where each mapping πn specifies a mixed action pn = πn(hn−1) for the agent at
time n. The agent’s pure action an is sampled from pn. Similarly, the opponent’s strategy
is denoted by σ = (σn), with σn : (A× B)n−1 → ∆(B). Let Pπ,σ denote the probability
measure on (A× B)∞ induced by the strategy pair (π, σ).

Let S be a given target set in the reward space. We may assume that S is closed as
approachability of a set and its closure are equivalent.

Definition 1 (Approachable Set) A closed set S ⊆ R` is approachable by the agent if
there exists a strategy π of the agent such that R̄n = n−1

∑n
k=1Rk converges to S in the

Euclidean point-to-set distance d(·, S), almost surely for every strategy σ of the opponent,
at a uniform rate over the opponent’s strategies. That is, for every ε > 0 there exists an
integer N such that

Pπ,σ{ sup
n≥N

d(R̄n, S) ≥ ε} ≤ ε

for any strategy σ of the opponent.

In the sequel, we will find it convenient to state most of our results in terms of the time
averaged expected rewards, where expectation is applied only to the agent’s mixed actions:

r̄n =
1

n

n∑
k=1

rk, where rk = r(pk, bk).

With these smoothed rewards, the stated convergence results and bounds can be shown to
hold pathwise, for any possible sequence of the opponent’s actions. See, e.g., Theorem 4,
which states that d(r̄n, S) ≤ ρ√

n
for all n. The corresponding almost sure convergence for

the actual average reward R̄n readily follows using martingale convergence theory. Indeed,
observe that

d
(
R̄n, S

)
≤
∥∥R̄n − r̄n∥∥+ d (r̄n, S) ,

where the first normed term is the time average of the vector-valued and uniformly bounded
martingale difference sequence Dk = r(ak, bk) − r(pk, bk). By standard martingale results,
this average converges to zero at a uniform rate of O(n−1/2).

We proceed to present a formulation of Blackwell’s results, which provide a sufficient
condition for approachability of general sets, and two sets of necessary and sufficient con-
ditions for approachability of convex sets. For any x /∈ S, let c(x) ∈ S denote a closest
point in S to x. Also, for any p ∈ ∆(A), let T (p) = {r(p, q) : q ∈ ∆(B)} denote the set
of mean reward vectors that are achievable by the opponent. This evidently coincides with
the convex hull of the vectors {r(p, b)}b∈B.

Definition 2 (Approachability Conditions)

(i) B-sets: A closed set S ⊆ R` will be called a B-set if for every x /∈ S there exists a
mixed action p∗ = p∗(x) ∈ ∆(A) and a closest point c(x) ∈ S such that the hyperplane
through c(x) perpendicular to the line segment x-c(x), separates x from T (p∗).
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(ii) D-sets: A closed set S ⊆ R` will be called a D-set if for every q ∈ ∆(B) there exists
a mixed action p ∈ ∆(A) so that r(p, q) ∈ S. We shall refer to such p as a response
(or S-response) of the agent to q.

Theorem 3 (Blackwell, 1956)

(i) Primal Condition and Algorithm. A B-set is approachable, by using at stage n
the mixed action p∗(r̄n−1) whenever r̄n−1 /∈ S. If r̄n−1 ∈ S, an arbitrary action can
be used.

(ii) Dual Condition. A closed set S is approachable only if it is a D-set.

(iii) Convex Sets. Let S be a closed convex set. Then, the following statements are
equivalent: (a) S is approachable, (b) S is a B-set, (c) S is a D-set.

We note that the approachability algorithm in Theorem 3(i) remains valid if r̄n−1 in
the primal condition is replaced by R̄n−1. Blackwell’s algorithm was generalized in Hart
and Mas-Colell (2001) to a class of approachability algorithms, where the required steering
directions are generated as gradients of a suitable potential function (rather than Euclidean
projections). An alternative construction was recently proposed in Abernethy et al. (2011),
where the steering directions are generated through a no-regret algorithm. Finally, as
already mentioned, calibration-based approachability algorithms were considered in Perchet
(2009) and Bernstein et al. (2014).

3. Response-Based Approachability

In this section we present our basic response-based algorithm, and establish its convergence
properties. In the remainder of the paper, we shall assume that the target set S satisfies
the following assumption.

Assumption 1 The set S is a closed, convex and approachable set.

It follows by Theorem 3 that S is a D-set, so that for all q ∈ ∆(B) there exists an S-response
p ∈ ∆(A) such that r(p, q) ∈ S. It is further assumed that the agent can compute a response
to any q.

We note that in some cases of interest, including those discussed in Section 5, the
target S may itself be defined through an appropriate response map. Suppose that for each
q ∈ ∆(B), we are given a mixed action p∗(q) ∈ ∆(A), devised so that r(p∗(q), q) satisfies
some desired properties. Then the convex hull S = conv{r(p∗(q), q), q ∈ ∆(B)} is a convex
D-set by construction, hence approachable.

The proposed approachability strategy is presented in Algorithm 1. The general idea
is as follows. At each stage n of the algorithm, a steering vector λn−1 = r̄∗n−1 − r̄n−1 is
computed as the difference between the current average reward and the average of a certain
sequence of target points r∗k in S. The target point r∗n is computed as r(p∗n, q

∗
n), where p∗n is

chosen as an S-response to a certain fictitious action q∗n of the opponent. Both pn (the actual
mixed action of the agent) and q∗n are computed in step 3 of the algorithm, as the optimal
strategies in the scalar game obtained by projecting the payoff vectors in the direction of
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Algorithm 1 Response-Based Approachability

Initialization: At time step n = 1, use arbitrary mixed action p1 and set an arbitrary
target point r∗1 ∈ S.

At time step n = 2, 3, ...:

1. Set an approachability direction

λn−1 = r̄∗n−1 − r̄n−1,

where

r̄n−1 =
1

n− 1

n−1∑
k=1

r(pk, bk), r̄∗n−1 =
1

n− 1

n−1∑
k=1

r∗k

are, respectively, the average (smoothed) reward vector and the average target point.

2. Solve the zero-sum matrix game with payoff matrix defined by r(a, b) projected in the
direction λn−1. Namely, find the equilibrium strategies pn and q∗n that satisfy

pn ∈ argmax
p∈∆(A)

min
q∈∆(B)

λn−1 · r(p, q), (2)

q∗n ∈ argmin
q∈∆(B)

max
p∈∆(A)

λn−1 · r(p, q), (3)

3. Choose action an according to pn.

4. Pick p∗n so that r(p∗n, q
∗
n) ∈ S, and set the target point r∗n = r(p∗n, q

∗
n).

λn−1. As shown in the proof, and further elaborated in Subsection 4.1, this choice implies
the convergence of the difference λn = r̄∗n − r̄n to 0. Since r̄∗n ∈ S by construction, this in
turn implies convergence of r̄n to S.

We may now present our main convergence result and its proof, followed by some addi-
tional comments on the algorithm. Recall that ρ is reward span as defined in (1).

Theorem 4 Let Assumption 1 hold, and suppose that the agent follows the strategy specified
in Algorithm 1. Then

d (r̄n, S) ≤ ‖λn‖ ≤
ρ√
n
, n ≥ 1, (4)

for any strategy of the opponent.

The proof follows from the next result, which also provides more general conditions on
the required properties of (pn, q

∗
n, p
∗
n).

Proposition 5 (i) Suppose that at each time step n ≥ 1, the agent chooses the triple
(pn, q

∗
n, p
∗
n) so that

λn−1 · (r(pn, b)− r(p∗n, q∗n)) ≥ 0, ∀b ∈ B, (5)

and sets r∗n = r(p∗n, q
∗
n). Then ‖λn‖ ≤ ρ√

n
for n ≥ 1.
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(ii) If, in addition, p∗n is chosen as an S-response to q∗n, so that r∗n = r(p∗n, q
∗
n) ∈ S, then

d (r̄n, S) ≤ ‖λn‖ ≤
ρ√
n
, n ≥ 1, (6)

Proof We first observe that

n2 ‖λn‖2 ≤ (n− 1)2 ‖λn−1‖2 + 2(n− 1)λn−1 · (r∗n − rn) + ρ2, (7)

for any n ≥ 1. Indeed,

‖r̄∗n − r̄n‖
2 =

∥∥∥∥n− 1

n

(
r̄∗n−1 − r̄n−1

)
+

1

n
(r∗n − rn)

∥∥∥∥2

=

(
n− 1

n

)2

‖λn−1‖2 +
1

n2
‖r∗n − rn‖

2 + 2
n− 1

n2
λn−1 · (r∗n − rn)

≤
(
n− 1

n

)2

‖λn−1‖2 +
ρ2

n2
+ 2

n− 1

n2
λn−1 · (r∗n − rn) .

Now, under condition (5),

λn−1 · (r∗n − rn) = λn−1 · (r(p∗n, q∗n)− r(pn, bn)) ≤ 0.

Hence, by (7),
n2 ‖λn‖2 ≤ (n− 1)2 ‖λn−1‖2 + ρ2, n ≥ 1.

Applying this inequality recursively, we obtain that n2 ‖λn‖2 ≤ nρ2, or ‖λn‖2 ≤ ρ2/n, as
claimed in part (i). Part (ii) now follows since r∗n ∈ S implies that r̄∗n ∈ S (by convexity of
S), hence

d (r̄n, S) ≤ ‖r̄n − r̄∗n‖ = ‖λn‖ .

Proof [Theorem 4] It only remains to show that the choice of (pn, q
∗
n) in equations (2)-(3)

implies the required inequality in (5). Indeed, under (2) and (3) we have that

λn−1 · r(pn, bn) ≥ max
p∈∆(A)

min
q∈∆(B)

λn−1 · r(p, q)

= min
q∈∆(B)

max
p∈∆(A)

λn−1 · r(p, q)

, max
p∈∆(A)

λn−1 · r(p, q∗n),

where the equality follows by the minimax theorem for matrix games. Therefore, condition
(5) is satisfied for any p∗n, and in particular for the one satisfying r(p∗n, q

∗
n) ∈ S. This

concludes the proof of Theorem 4.

Additional Comments:

1. Observe that the projection directions in Blackwell’s algorithm are replaced, in a
sense, by the steering vectors λn. These vectors are computed based on the agent’s
S-responses to a fictitious sequence (q∗n) of the opponent’s mixed actions, which is
computed as part of the algorithm.
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2. Theorem 4 clearly implies that the set S is approachable with the specified strategy,
and provides an explicit rate of convergence. In fact, the result is somewhat stronger
as it implies convergence of the average reward vector to r̄∗n ∈ S. This property will be
found useful in Proposition 13 below, where certain properties that do not follow from
approachability alone are established for the reward-to-cost maximization problem.

3. A stated in Proposition 5, the condition in (5) on the triplets (pn, q
∗
n, p
∗
n) is sufficient to

ensure the convergence λn → 0. Equations (2)-(3) specify a specific choice of (pn, q
∗
n)

which satisfies these conditions. This choice is useful as it implies (5) for any choice
of p∗n.

4. The computational requirements of Algorithm 1 are as follows. At each time step n,
two major computations are needed:

a. Computing (pn, q
∗
n)—the equilibrium strategies in the zero-sum matrix game with

the reward function λn−1 · r(p, q). This boils down to the solution of the related
primal and dual linear programs, and hence can be done efficiently. Note that,
given the vector λn−1, this computation does not involve the target set S.

b. Computing the S-response p∗n to q∗n and the target point r∗n = r(p∗n, q
∗
n), which is

problem dependent. Specific examples are discussed in Section 5.

4. Interpretation and Extensions

We open this section with an illuminating interpretation of the proposed algorithm in terms
of a certain approachability problem in an auxiliary game. We then proceed to present three
variants and extensions to the basic algorithm; we note that these are not essential for the
remainder of the paper and can be skipped at first reading. While each of these variants is
presented separately, they may also be combined when appropriate.

4.1 An Auxiliary Game Interpretation

A central part of Algorithm 1 is the choice of the pair (pn, q
∗
n) so that r̄n tracks r̄∗n, namely

λn = r̄∗n − r̄n → 0 (see Equations (2)-(3) and Proposition 5). If fact, the choice of (pn, q
∗
n)

in (2)-(3) can be interpreted as Blackwell’s strategy for a specific approachability problem
in an auxiliary game, which we define next.

Suppose that at stage n, the agent chooses a pair of actions (a, b∗) ∈ A × B and the
opponent chooses a pair of actions (a∗, b) ∈ A×B. The vector payoff function, now denoted
by v, is given by

v((a, b∗), (a∗, b)) = r(a∗, b∗)− r(a, b),

so that
Vn = r(a∗n, b

∗
n)−Rn.

Consider the single-point target set S0 = {0} ⊂ R`. This set is clearly convex, and we next
show that it is a D-set in the auxiliary game. We need to show that for any η ∈ ∆(A× B)
there exists µ ∈ ∆(A×B) so that v(µ, η) ∈ S0, namely v(µ, η) = 0. That that end, observe
that

v(µ, η) = r(p∗, q∗)− r(p, q)
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where p and q∗ are the marginal distributions of µ on A and B, respectively, while p∗ and q
are the respective marginal distributions of η. Therefore we obtain v(µ, η) = 0 by choosing
µ with the same marginals as η, for example {µ(a, b) = p(a)q∗(b)} with p = p∗ and q∗ = q.
Thus, by Theorem 3, S0 is approachable.

We may now apply Blackwell’s approachability strategy to this auxiliary game. Since
S0 is the origin, the direction from S0 to the average reward v̄n−1 is just the average reward
vector itself. Therefore, the primal (geometric separation) condition here is equivalent to

v̄n−1 · v(µ, η) ≤ 0, ∀ η ∈ ∆(A× B)

or

v̄n−1 · (r(p∗, q∗)− r(p, q)) ≤ 0, ∀ p∗ ∈ ∆(A), q ∈ ∆(B).

Now, a pair (p, q∗) that satisfies this inequality is any pair of equilibrium strategies in the
zero-sum game with reward v projected in the direction of v̄n−1. That is, for

p ∈ argmax
p∈∆(A)

min
q∈∆(B)

v̄n−1 · r(p, q), (8)

q∗ ∈ argmin
q∈∆(B)

max
p∈∆(A)

v̄n−1 · r(p, q), (9)

it is easily verified that

v̄n−1 · r(p∗, q∗) ≥ v̄n−1 · r(p, q), ∀ p∗ ∈ ∆(A), q ∈ ∆(B)

as required.

The choice of (pn, q
∗
n) in Equations (2)-(3) follows (8)-(9), with λn−1 replacing v̄n−1. We

note that the two are not identical, as v̄n is the temporal average of Vn = r(a∗n, b
∗
n)−r(an, bn)

while λn is the average of the expected difference r(p∗n, q
∗
n) − r(pn, bn); however this does

not change the approachability result above, and in fact either can be used. More generally,
any approachability algorithm in the auxiliary game can be used to choose the pair (pn, q

∗
n)

in Algorithm 1.

We note that in our original problem, the mixed action p∗n is not chosen by an “opponent”
but rather specified as part of Algorithm 1. But since the approachability result above holds
for an arbitrary choice of p∗n, it also holds for this particular one.

We proceed to present some additional variants of our algorithm.

4.2 Idling when S is Reached

Recall that in the original approachability algorithm of Blackwell, an arbitrary action an
can be chosen by the agent whenever r̄n−1 ∈ S. This may alleviate the computational
burden of the algorithm, and adds another degree of freedom that may be used to optimize
other criteria.

Such an arbitrary choice of an (or pn) when the average reward is in S is also possible
in our algorithm. However, some care is required in setting the average target point r̄∗n at
these time instances, as otherwise the two terms of the difference λn = r̄∗n − r̄n may drift
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apart. As it turns out, r̄∗n should be reset at these times to r̄n, which leads to the following
recursion. Set r̄∗0 = 0, and let

r̄∗n =

{
n−1
n r̄∗n−1 + 1

nr
∗
n if r̄n /∈ S

r̄n if r̄n ∈ S
(10)

for n ≥ 1. The definition of λn as r̄∗n − r̄n is retained, so that it satisfies the modified
recursion:

λn =

{
n−1
n λn−1 + 1

n(r∗n − rn), if r̄n /∈ S
0, if r̄n ∈ S,

(11)

with λ0 = 0. Thus, the steering vector λn is reset to 0 whenever the average reward r̄n is in
S. With this modified definition, the convergence properties of the algorithm are retained
(with the same rates). The proof can be found in Bernstein and Shimkin (2013).

4.3 Directionally Unbounded Target Sets

In some applications of interest, the target set S may be unbounded in certain directions.
It is often natural to define the agent’s goal in this way even if the reward function is
bounded, as it reflects clearly the agent’s desire of obtaining a reward which is as large as
possible in these directions.1 Indeed, this is the case in the approachability formulations of
the no-regret problem, where the goal is essentially to make the (scalar) average reward as
large as possible in hindsight.

In such cases, the requirement that λn = r̄∗n − r̄n → 0, which is a property of our basic
algorithm, may be too strong, and may even be counter-productive. For example, suppose
that our goal is to increase the first coordinate of the average reward vector r̄n as much as
possible. In that case, allowing negative values of λn in that component makes sense (rather
than steering it to 0 by reducing r̄n). We propose here a modification of our algorithm that
addresses this issue

Given the (closed and convex) target set S ⊂ R`, let DS be the set of vectors d ∈ R`
such that d + S ⊂ S. It may be seen that DS is a closed and convex cone, which trivially
equals {0} if (and only if) S is bounded. We refer to the unit vectors in DS as directions
in which S is unbounded.

Referring to the auxiliary game interpretation of our algorithm in Section 4.1, we may
now relax the requirement that λn approaches {0} to the requirement that λn approaches
−DS . Indeed, if we maintain r̄∗n ∈ S as before, then λn ∈ −DS suffices to verify that
r̄n = r̄∗n − λn ∈ S.

We may now apply Blackwell’s approachability strategy to the cone DS in place of the
origin. The required modification to the algorithm is simple: replace the steering direction
λn in (2)-(3) or (5) with the direction from the closest point in −DS to λn:

λ̃n = λn − Proj−DS
(λn)

That projection is particularly simple in case S is unbounded along primary coordinates,
so that the cone DS is a quadrant, generated by a collection ej , j ∈ J of orthogonal unit

1. Clearly, it is always possible to intersect S with the bounded set of feasible reward vectors without
changing its approachability properties. We find it useful here to retain S in its unbounded form.

10
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vectors. In that case, clearly,

Proj−DS
(λ) = −

∑
j∈J

(ej · λ)− .

Thus, the negative components of λn in directions (ej) are nullified.

The modified algorithm admits analogous bounds to those of the basic algorithm, with
(4) or (6) replaced by

d (r̄n, S) ≤ d(λn,−DS) ≤ ρ√
n
, n ≥ 1.

The proof is identical, and is obtained by replacing λn with λ̃n = λn − Proj−DS
(λn) in all

the relations. See Bernstein and Shimkin (2013) for details.

4.4 Using the Actual Rewards

In the basic algorithm of Section 3, the definition of the steering direction λn employs the
expected rewards r(pk, bk) rather than the actual rewards Rk = r(ak, bk). We consider here
the variant of the algorithm which employs the latter. This is essential in case that the
opponent’s action bk is not observed, so that r(pk, bk) cannot be computed, while the reward
vector Rk is observed directly. It also makes some sense in general since the quantity we
are actually interested in is the average reward R̄n, and not its expected version r̄n.

Thus, we replace λn−1 with

λ̃n−1 = r̄∗n−1 − R̄n−1.

The rest of the algorithm remains the same as Algorithm 1. We have the following result
for this variant.

Theorem 6 Let Assumption 1 holds. If the agent uses Algorithm 1, with λn−1 replaced by

λ̃n−1 = r̄∗n−1 − R̄n−1,

it holds that

lim
n→∞

‖λ̃n‖ = 0,

almost surely, for any strategy of the opponent, at a uniform rate of O(1/
√
n) over all

strategies of the opponent. More precisely, for every ε > 0,

P

{
sup
k≥n
‖λ̃k‖ ≥ ε

}
≤ 2ρ2

nε2
. (12)

Proof First observe that Lemma 7 still holds if rn = r(pn, bn) is replaced with Rn =
r(an, bn) throughout. Namely,

n2‖λ̃n‖2 ≤ (n− 1)2‖λ̃n−1‖2 + 2(n− 1)λ̃n−1 · (r∗n − r(an, bn)) + ρ2, n ≥ 1.

11
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Let {Fn} denote the filtration induced by the history. We have that

E
[
n2‖λ̃n‖2

∣∣∣ Fn−1

]
≤ (n− 1)2‖λ̃n−1‖2 + 2(n− 1)λ̃n−1 · E [(r∗n − r(an, bn)) | Fn−1] + ρ2

= (n− 1)2‖λ̃n−1‖2 + 2(n− 1)λ̃n−1 · (r∗n − E [r(an, bn) | Fn−1]) + ρ2

≤ (n− 1)2‖λ̃n−1‖2 + ρ2, (13)

where the equality follows since q∗n and p∗n are determined by the history up to time n− 1
and hence so does r∗n = r(p∗n, q

∗
n), and the last inequality holds since

λ̃n−1 · (r∗n − E [r(an, bn) | Fn−1]) = λ̃n−1 · (r∗n − r(pn, bn)) ≤ 0,

similarly to the proof of Theorem 4.

From (13) we may deduce the almost sure convergence ‖λ̃n‖ to zero, at a rate the depends
on ρ only. The argument may follow the original proof of Blackwell’s theorem (Blackwell
(1956), Theorem 1), or its adaptation in Shimkin and Shwartz (1993, Proposition 4.1) or
Mertens et al. (1994, p. 125) which rely on Doob’s maximal inequality for supermartingales.
In particular, following the latter reference, we obtain the bound stated in (12).

5. Applications to Generalized No-Regret Problems

Our response-based approachability algorithm can be usefully applied to several generalized
regret minimization problems, for which computation of a projection onto the target set is
involved, but a response is readily obtainable. In the next Subsection, we briefly review the
basic no-regret problem and its two standard formulations as an approachability problem.
In Subsection 5.2 we first outline a generic generalized no-regret problem, using a general set-
valued goal function, and then specialize the discussion to some specific problems that have
been considered in the recent literature, namely constrained regret minimization, reward-
to-cost maximization, and the so-called global cost function problem. In each case, we
specify the performance obtainable by a suitable approachability algorithm, along with
the corresponding response map that is needed in our algorithm. For the reward-to-cost
problem, we also derive some performance guarantees that rely on specific properties of the
proposed approachability algorithm.

We do not specify convergence rates in this section, but rather focus on asymptotic
convergence results. Convergence rates can be derived by referring to our bounds in the
previous sections, namely (4) or (12).

5.1 Approachability-Based No-Regret Algorithms

Let us start by reviewing the basic no-regret problem for repeated matrix games, along
with its two alternative formulations as an approachability problem by Blackwell (1954)
and Hart and Mas-Colell (2001). Consider, as before, an agent that faces an arbitrarily
varying environment (the opponent). The repeated game model is the same as above,
except that the vector reward function r is replaced by a scalar reward (or utility) function

12
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u : A× B → R. Let Ūn , n−1
∑n

k=1 Uk denote the average reward by time n, and let

u∗(q̄n) , max
a∈A

u(a, q̄n) =
1

n
max
a∈A

n∑
k=1

u(a, bk) (14)

denote the best reward-in-hindsight of the agent after observing b1, ..., bn, which is a convex
function u∗ of the empirical distribution q̄n. Hannan (1957) introduced the following notion
of a no-regret strategy:

Definition 7 (No-Regret Algorithm) A strategy of the agent is termed a no-regret al-
gorithm (or Hannan Consistent) if

lim sup
n→∞

(
u∗(q̄n)− Ūn

)
≤ 0

with probability 1, for any strategy of the opponent.

a. Blackwell’s No-Regret Algorithm. Following Hannan’s seminal paper, Blackwell
(1954) used his approachability theorem to elegantly show the existence of regret minimizing
strategies. Define the vector-valued rewards Rn , (Un,1(bn)) ∈ R × ∆(B), where 1(b)
is the probability vector in ∆(B) supported on b. The corresponding average reward is
R̄n , n−1

∑n
k=1Rk =

(
Ūn, q̄n

)
. Finally, define the target set

S = {(u, q) ∈ R×∆(B) : u ≥ u∗(q)} .

This set is a D-set by construction: An S-response to q is given by any p∗ ∈ ∆(A) that
maximizes u(p, q), as u(p∗, q) = u∗(q) implies that r(p∗, q) = (u(p∗, q), q) ∈ S. Also, S
is a convex set by the convexity of u∗(q) in q. Hence, by Theorem 3, S is approachable,
and by the continuity of u∗(q), an algorithm that approaches S also minimizes the regret
in the sense of Definition 7. Application of Blackwell’s approachability strategy to the set
S therefore results in a no-regret algorithm. We note that the required projection of the
average reward vector onto S cannot be defined explicitly in this formulation. However, the
computation of the S-response is explicit and straightforward: We just need to solve the
original optimization problem maxp∈∆(A) u(p, q), which clearly admits a solution in pure
actions.

b. Regret Matching. An alternative formulation due to Hart and Mas-Colell (2001)
leads to a simple and explicit no-regret algorithm. Let

Ln(a′) ,
1

n

n∑
k=1

(
u(a′, bk)− u(ak, bk)

)
(15)

denote the regret accrued due to not using action a′ exclusively up to time n. The no-regret
requirement in Definition 7 is now equivalent to lim supn→∞ Ln(a) ≤ 0, a ∈ A, a.s. for any
strategy of the opponent. This property, in turn, is equivalent to the approachability of
the negative orthant S = (R−)A in the game with vector payoff r = (ra′) ∈ RA, defined as
ra′(a, b) = u(a′, b)− u(a, b).

To verify the dual condition, observe that ra′(p, q) = u(a′, q) − u(p, q). Choosing p ∈
argmaxp u(p, q) clearly ensures r(p, q) ∈ S, hence is an S-response to q (in the sense of
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Definition 2(ii)), and S is a D-set. Note that the response here can always be taken as a
pure action.

It was shown in Hart and Mas-Colell (2001) that the application of Blackwell’s ap-
proachability strategy (or some generalizations thereof) to this formulation is simple and
leads to explicit no-regret algorithms, namely the so-called regret matching algorithm and
its variants.

5.2 Generalized No-Regret

Consider a repeated matrix game as before, except that the vector-valued reward r(a, b) is
now denoted by v(a, b) ∈ RK . Suppose that for each mixed action q of the opponent, the
agent defines a target set V ∗(q) ⊂ RK which is non-empty and closed. Let V ∗ : ∆(B)⇒ RK
denote the corresponding set-valued map, which assigns to each q the subset V ∗(q). We
refer to V ∗ as the agent’s goal function. Denote2 vn = v(an, bn), v̄n = 1

n

∑n
k=1 vk.

Definition 8 (Attainability) A strategy of the agent is said to be no-regret strategy with
respect to the set-valued goal function V ∗ if

lim
n→∞

d(v̄n, V
∗(q̄n)) = 0 (a.s),

for any strategy of the opponent. If such a strategy exists we say that V ∗ is attainable by
the agent.

The classical no-regret problem is obtained as a special case, with scalar rewards v(a, b) and
target set V ∗(q) = {u ∈ R : u ≥ v∗(q)}, where v∗(q) , maxp u(p, q).

Attainability is closely related to approachability of the graph of V ∗. Recall that the
graph of a set-valued map V : ∆(B)⇒ RK is defined as

Graph(V ) ,
{

(v, q) ∈ RK ×∆(B) : v ∈ V (q)
}
.

(For this and other properties of set-valued maps see, e.g., Aubin and Frankowska, 1990 or
Rockafellar and Wets, 1997, Chapter 5.) It is easily seen that attainability of V ∗ implies ap-
proachability of Graph(V ), in the game with augmented vector rewards r(p, q) = (v(p, q), q).
The converse is also true under a continuity requirement.

Lemma 9 Let V : q 7→ V ∗(q) ∩ V0 denote the restriction of V ∗ to the compact set V0 =
conv{v(a, b)} of feasible reward vectors. Suppose that V is continuous in the Hausdorff
metric. If Graph(V ∗) is approachable in the repeated game with reward vector r(p, q) =
(v(p, q), q), then V ∗ is attainable. Specifically, any approachability strategy for Graph(V ∗)
is a no-regret strategy for V ∗.

Proof Clearly, since v̄n ∈ V0, if Graph(V ∗) is approachable then so is Graph(V ), and we
may restrict attention to the latter. Recall that the Hausdorff distance dH between sets X
and Y , defined by

dH(X,Y ) = max{sup
x∈X

d(x, Y ), sup
y∈Y

d(y,X)} ,

2. For notational convenience, we will not use here the capitalized notation Vn = v(an, bn) to distinguish
the latter from v(pn, bn), as was done above for r. In fact, vn can stand for either in the following,
depending on whether Algorithm 1 or its variant in Subsection 4.4 is used.
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is a metric on the space of non-empty compact subsets of RK . Now, V may be viewed as a
map from the compact set ∆(B) to the metric space of non-empty compact subsets of RK
with the Hausdorff metric, and is continuous in that metric by assumption. Hence, by the
Heine-Cantor Theorem, V is uniformly continuous.

Now, since S = Graph(V ) is approachable, we have (w.p. 1) that d ((v̄n, q̄n), S) → 0,
implying that

‖v̄n − v∗n‖ → 0, ‖q̄n − q∗n‖ → 0,

for some sequences v∗n ∈ V (q∗n), q∗n ∈ ∆(B). The uniform continuity of V in the Hausdorff
distance dH then implies that dH (V (q̄n), V (q∗n))→ 0, hence

d(v̄n, V (q̄n)) ≤ ‖v̄n − v∗n‖+ dH (V (q̄n), V (q∗n))→ 0,

so that V is attainable by Definition 8. Attainability of V ∗ now follows since V (q̄n) ⊆
V ∗(q̄n).

We may now formulate a sufficient condition for attainability of a goal function by
employing the dual condition for approachability of convex sets. Recall that a set-valued
map V : ∆(B) ⇒ RK is called convex if its graph Graph(V ) is a convex set. The convex
hull conv(V ) of V is the unique set-valued map whose graph is conv(Graph(V ), the convex
hull of Graph(V ). Similarly, the closed convex hull co(V ) of V is the unique set-valued map
whose graph is the closure of conv(Graph(V )).

Proposition 10 Suppose that the set-valued goal function V ∗ is feasible, in the following
sense:

• For each mixed action q ∈ ∆(B) of the opponent, there exists some mixed action
p = p∗(q) of the agent so that v(p, q) ∈ V ∗(q). We refer to p∗(q) as the agent’s
response to q.

Denote V c = co(V ∗). Then

(i) The set Graph(V c) is approachable by the agent.

(ii) The set-valued goal function V c is attainable by the agent (in the sense of Definition
8), and any approachability strategy for Graph(V c) is a no-regret strategy for V c.

Proof Let us first redefine V ∗ as its restriction to the compact set V0, as in Lemma 9. It
is clear that this restricted V ∗ still satisfies the feasibility requirement of the Proposition,
and that establishing the claimed attainability property for the restricted version implies
the same for the original one.

Let V c = co(V ∗). We first claim that Graph(V c) is approachable. By the assumed
feasibility of V ∗, for any q there exists p such that (v(p, q), q) ∈ S , Graph(V ∗). Therefore
co(S) is a convex D-set, which is approachable by Theorem 3. Now, observe that co(S) =
co(Graph(V ∗)) = Graph(V c) by definition of V c.

To conclude that V c is attainable, it remains to verify that it satisfies the continuity
requirement in Lemma 9. Observe that V c : ∆(B) ⇒ V0 is a convex, compact-valued mul-
tifunction whose domain is a polytope. By Mac̀kowiak (2006, Corrolary 2), V c is lower
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semi-continuous.3 Furthermore, since the graph of V c = co(V ∗) is closed by its definition,
V c is upper-semi-continuous (Rockafellar and Wets, 1997, Theorem 5.7). It follows that
V c is a continuous map. Finally, since standard (Kuratowski) continuity and Hausdorff-
continuity are equivalent for compact-valued map (Ibid., 4.40(a)), the required continuity
property of Vc follows. This concludes the proof.

Proposition 10 implies that a feasible and continuous goal function V ∗ that is convex is
attainable. When V ∗ is not convex, as is often the case in the following examples, we need
to resort to its convex relaxation V c = co(V ∗). The suitability of V c as a goal function
needs to be examined for each specific problem.

Proposition 10 asserts also that V c can be attained by any approachability algorithm
applied to the convex set S = Graph(V c). However, a projection onto that set as required
in the standard approachability algorithms may be hard to compute. This is especially
true when V ∗ itself is non-convex, so that V c is not explicitly specified. In such cases,
the response-based approachability algorithm proposed in this paper offers a convenient
alternative, as it only requires to compute at each stage a response p∗(q) of the agent to a
mixed action q of the opponent, which is inherent in the definition of V ∗.

The resulting generalized no-regret algorithm is presented in Algorithm 2. It is merely an
application of Algorithm 1 to the problem of approaching S = Graph(V c), with augmented
reward vectors r(p, q) = (u(p, q), q).

We next specialize the discussion to certain concrete problems of interest.

5.2.1 Constrained Regret Minimization

The following constrained regret minimization problem was introduced in Mannor et al.
(2009). Consider the repeated game model as before, where we are given a scalar reward
(or utility) function u : A× B → R and a vector-valued cost function c : A× B → Rs. We
are also given a closed and convex set Γ ⊆ Rs, the constraint set, which specifies the allowed
values for the long-term average cost. A specific case is that of upper bounds on each cost
component, that is Γ = {c ∈ Rs : ci ≤ γi, i = 1, ..., s} for some given vector γ ∈ Rs. The
constraint set is assumed to be feasible (or non-excludable), in the sense that for every
q ∈ ∆(B), there exists p ∈ ∆(A) such that c(p, q) ∈ Γ.

Let Ūn , n−1
∑n

k=1 uk and C̄n , n−1
∑n

k=1 ck denote, respectively, the average reward
and cost by stage n. The agent is required to satisfy the cost constraints, in the sense that
limn→∞ d(C̄n,Γ) = 0 must hold, irrespectively of the opponent’s play. Subject to these
constraints, the agent wishes to maximize its average reward Ūn.

We note that a concrete learning application for the constrained regret minimization
problem was proposed in Bernstein et al. (2010). There, we considered the on-line problem
of merging the output of multiple binary classifiers, with the goal of maximizing the true-
positive rate, while keeping the false-positive rate under a given threshold 0 < γ < 1. As
shown in that paper, this may be formulated as a constrained regret minimization problem.

3. This is a generalization of the Gale-Klee-Rockfellar Theorem from convex analysis to set-valued maps.
The point is of course continuity at the boundary points.
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Algorithm 2 Generalized No-Regret Algorithm

Input: The reward function v : A×B → RK ; a set-valued goal function V ∗ : ∆(B)⇒ RK ;
and for each q ∈ ∆(B), a mixed action (or actions) p ∈ ∆(A) such that v(p, q) ∈ V ∗(q).
Initialization: At step n = 1, apply an arbitrary mixed action p1, and choose arbitrary
values v∗1 ∈ RK , q∗1 ∈ ∆(B).

At step n = 2, 3, ...:

1. Set
λvn−1 = v̄∗n−1 − v̄n−1, λqn−1 = q̄∗n−1 − q̄n−1,

where

(v̄∗m, v̄m) =
1

m

m∑
k=1

(v∗k, vk), q̄∗m =
1

m

m∑
k=1

q∗k, q̄m =
1

m

m∑
k=1

I{bk=·},

and vk = v(pk, bk) or v(ak, bk).

2. Solve the following zero-sum matrix game:

pn ∈ argmax
p∈∆(A)

min
q∈∆(B)

(
λvn−1 · v(p, q) + λqn−1 · q

)
,

q∗n ∈ argmin
q∈∆(B)

max
p∈∆(A)

(
λvn−1 · v(p, q) + λqn−1 · q

)
.

3. Draw an action an randomly from pn.

4. Pick p∗n ∈ ∆(A) such that v (p∗n, q
∗
n) ∈ V ∗(q∗n), and set v∗n = v(p∗n, q

∗
n).

A natural extension of the best-reward-in-hindsight u∗(q) in (14) to the constrained
setting is given by

u∗Γ(q) , max
p∈∆(A)

{u(p, q) : c(p, q) ∈ Γ} . (16)

We can now define the target set of the pairs v = (u, c) ∈ R1+s in terms of u∗Γ(q) and Γ:

V ∗(q) ,
{
v = (u, c) ∈ R1+s : u ≥ u∗Γ(q), c ∈ Γ

}
.

Note that u∗Γ(q) is not convex in general, and consequently V ∗(q) is not convex as well.
Indeed, it was shown in Mannor et al. (2009) that V ∗(q) is not attainable in general. The
closed convex hull of V ∗(q) may be written as

V c(q) =
{

(u, c) ∈ Rs+1 : u ≥ conv (u∗Γ) (q), c ∈ Γ
}
, (17)

where the real-valued function conv (u∗Γ) is the closure of the lower convex hull of u∗Γ over
∆(A).

Two algorithms were proposed in Mannor et al. (2009) for attaining V c(q). The first
is a standard (Blackwell) approachability algorithm for S = {(v, q) : v ∈ V c(q)}, which
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requires the demanding computation of S and the projection directions to S. The second
algorithm employs a best-response to calibrated forecasts of the opponent’s mixed actions.
As mentioned in the introduction, obtaining these forecasts is computationally hard. In
contrast, our algorithm mainly requires the computation of the response p∗(q) by solving
the maximization problem in (16), which is a convex program. This further reduces to a
linear program when the constraints are linear.

Specializing Proposition 10 to this case, we obtain the following result.

Corollary 11 Consider Algorithm 2 applied to the present model. Thus, the response p∗n
to q∗n is chosen as any maximizing action in (16) with q = q∗n, and the target point is set to
v∗n = (u(p∗n, q

∗
n), c(p∗n, q

∗
n)). Then the goal function V c is attainable in the sense of Definition

8, which implies that

lim inf
n→∞

(
Ūn − conv (u∗Γ) (q̄n)

)
≥ 0, and lim

n→∞
d
(
C̄n,Γ

)
= 0 (a.s.)

for any strategy of the opponent.

We further note that V c(q) is unbounded in the direction of its first coordinate u, so
that the variant of the algorithm presented in Subsection 4.3 can be applied. In this case,
the first coordinate of the steering direction λn can be set to zero in λ̃n whenever it is
negative. This corresponds to ūn−1 ≥ ū∗n−1, thereby avoiding an unnecessary reduction in
ūn−1. Similarly, for a component-wise constraint set of the form {ci ≤ γi}, the ci-coordinate
of λn may be nullified whenever [c̄n−1]i ≤ [c̄∗n−1]i. The results of Corollary 11 are maintained
of course.

5.2.2 Reward-to-Cost Maximization

Consider the repeated game model as before, where the goal of the agent is to maximize the
ratio Ūn/C̄n. Here, Ūn is, as before, the average of a scalar reward function u(a, b) and C̄n
is the average of a scalar and positive cost function c(a, b). This problem is mathematically
equivalent to regret minimization in repeated games with variable stage duration considered
in Mannor and Shimkin (2008) (MS08 for short; in that paper, the cost was specifically
taken as the stage duration). Moreover, it can be seen that this problem is a particular
case of the global cost function model presented below. However, a direct application of
Proposition 10 does not yield a meaningful result in this specific case. We therefore resort to
specific analysis which relies on additional properties of our response-based approachability
algorithm. This yields a similar bound to that of Proposition 14(ii) below, but without the
requirement that G be convex.

Similar bounds to the ones established below were obtained in MS08. The algorithm
there was based on playing a best-response to calibrated forecasts of the opponent’s mixed
actions. The present formulation therefore offers an alternative algorithm which is consid-
erably less demanding computationally.

Denote

ρ(a, q) ,
u(a, q)

c(a, q)
, ρ(p, q) ,

u(p, q)

c(p, q)
.

and let
val(ρ) , max

p∈∆(A)
min
q∈∆(B)

ρ(p, q) = min
q∈∆(B)

max
p∈∆(A)

ρ(p, q)
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(the last equality is proved in MS08; note that ρ(p, q) is not generally concave-convex).
As further shown in MS08, val(ρ) is the value of the zero-sum repeated game with payoffs
Ūn/C̄n, hence serves as a security level for the agent. A natural goal for the agent would be
to improve on val(ρ) whenever the opponent’s actions deviate (in terms of their empirical
mean) from the minimax optimal strategy.

We next propose an attainable goal function that satisfies this requirement. To that
end, let

ρ∗(q) , max
p∈∆(A)

ρ(p, q)

denote the best ratio-in-hindsight. Let us apply Algorithm 2, with v = (u, c), and the
vector-valued goal function

V ∗(q) =
{
v = (u, c) :

u

c
≥ ρ∗(q)

}
(18)

(observe that ρ∗(q) and V ∗(q) are non-convex functions in general). The agent’s response
is given by any mixed action

p∗(q) ∈ P ∗(q) , argmax
p∈∆(A)

ρ(p, q).

It is readily verified that the maximum can always be obtained here in pure actions (MS08;
see also the proof of Prop. 13 below). Hence, computing the response is trivial in this case.

Denote

A∗(q) , argmax
a∈A

ρ(a, q),

and define the following relaxation of ρ∗(q):

ρ1(q) , inf


∑J

j=1 u(aj , qj)∑J
j=1 c(aj , qj)

: J ≥ 1, qj ∈ ∆(B),
1

J

J∑
j=1

qj = q, aj ∈ A∗(qj)

 (19)

≤ ρ∗(q).

We will show below that ρ1 is attainable by applying Algorithm 2 to this problem. First,
however, we show that ρ1 never falls below the security level val(ρ), and is strictly better
in typical cases.

Lemma 12

(i) ρ1(q) ≥ val(ρ) for all q ∈ ∆(B).

(ii) ρ1(q) > val(ρ) whenever ρ∗(q) > val(ρ).

(iii) ρ1(q) = ρ∗(q) for the q’s that represent pure actions.

(iv) ρ1(q) is a continuous function of q.
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Proof To prove this Lemma, we first derive a more convenient expression for ρ1(q). For
a ∈ A, let

Qa , {q ∈ ∆(B) : a ∈ A∗(q)}
denote the (closed) set of mixed actions to which a is a best-response action. Observe that
for given J , q1, ..., qJ and aj ∈ A∗(qj), we have∑J

j=1 u(aj , qj)∑J
j=1 c(aj , qj)

=

∑
a∈ANau(a, q̄a)∑
a∈ANac(a, q̄a)

,

where

Na =
J∑
j=1

I {aj = a} , q̄a =
1

Na

J∑
j=1

I {aj = a} qj .

Note that q̄a ∈ conv(Qa) as it is a convex combination of qj ∈ Qa. Therefore, the definition
in (19) is equivalent to

ρ1(q) = min

{∑
a∈A αau(a, qa)∑
a∈A αac(a, qa)

: α ∈ ∆(A), qa ∈ conv(Qa),
∑
a∈A

αaqa = q

}
. (20)

Now, this is exactly the definition of the so-called calibration envelope in Mannor and
Shimkin (2008), and the claims of the lemma follow by Lemma 6.1 and Proposition 6.4
there.

It may be seen that ρ1(q) does not fall below the security level val(q), and is strictly
above it when q is not a minimax action with respect to ρ(p, q). Furthermore, at the vertices
vertices of ∆(B), it actually coincides with the best ratio-in-hindsight ρ∗(q).

We proceed to the following result that proves the attainability of ρ1(q).

Proposition 13 Consider Algorithm 2 applied to the present model, with the goal function
V ∗ defined in (18). Thus, the agent’s response q∗n is chosen as any action p∗n ∈ P ∗(q∗n), and
the target point is set to v∗n = (u(p∗n, q

∗
n), c(p∗n, q

∗
n)). Then,

lim inf
n→∞

(
Ūn
C̄n
− ρ1(q̄n)

)
≥ 0 (a.s.)

for any strategy of the opponent.

Proof Algorithm 2 guarantees that, with probability 1,

‖q̄n − q̄∗n‖ → 0, (21)∣∣∣∣∣Ūn − 1

n

n∑
k=1

u(p∗k, q
∗
k)

∣∣∣∣∣→ 0,

∣∣∣∣∣C̄n − 1

n

n∑
k=1

c(p∗k, q
∗
k)

∣∣∣∣∣→ 0; (22)

see Theorem 4 and recall the asymptotic equivalence of expected and actual averages.
Noting that the cost c is positive and bounded away from zero, (22) implies that

lim
n→∞

∣∣∣∣ ŪnC̄n −
∑n

k=1 r(p
∗
k, q
∗
k)∑n

k=1 c(p
∗
k, q
∗
k)

∣∣∣∣ = 0. (23)
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Let

ρ2(q) , inf


∑J

j=1 u(pj , qj)∑J
j=1 c(pj , qj)

: J ≥ 1, qj ∈ ∆(B),
1

J

J∑
j=1

qj = q, pj ∈ P ∗(qj)

 . (24)

Clearly, ∑n
k=1 r(p

∗
k, q
∗
k)∑n

k=1 c(p
∗
k, q
∗
k)
≥ ρ2(q̄∗n). (25)

Furthermore, we verify below that the infimum in (24) is obtained in pure actions aj ∈
A∗(qj), implying that

ρ2(q) = ρ1(q). (26)

Indeed, note that the inequality ∑J
j=1 u(pj , qj)∑J
j=1 c(pj , qj)

≤ K

is equivalent to
J∑
j=1

u(pj , qj)−K
J∑
j=1

c(pj , qj) ≤ 0.

Now, consider minimizing the left-hand-side over pj ∈ P ∗(qj). Due to the linearity in pj
and the fact that P ∗(qj) is just the mixture of actions in A∗(qj), the optimal actions are
pure (that is, in A∗(qj)).

Combining (23), (25), and (26), we obtain that

lim inf
n→∞

(
Ūn
C̄n
− ρ1(q̄∗n)

)
≥ 0.

The proof is concluded by applying (21) and the continuity (hence, uniform continuity) of
ρ1 (see Lemma 12).

We finally note that the algorithm variant from Subsection 4.3 can be applied here as
well. Specifically, observe that the goal function V ∗ in (18) is unbounded in the u coordinate,
and negatively unbounded in the c coordinate. Therefore, the u-coordinate of λn can be
set to zero whenever ūn−1 ≥ ū∗n−1, while the c-coordinate of λn may be nullified whenever
c̄n−1 ≤ c̄∗n−1.

5.2.3 Global Cost Functions

The following problem of regret minimization with global cost functions was introduced in
Even-Dar et al. (2009). (A similar problem was recently addressed in Azar et al. (2014),
using a relaxed regret criterion over sub-intervals.) Suppose that the goal of the agent is to
minimize a general (i.e., non-linear) function of the average reward vector v̄n. In particular,
we are given a continuous function G : RK → R, and the goal is to minimize G(v̄n). For
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example, G may be some norm of v̄n. We define the best-cost-in-hindsight, given a mixed
action q of the opponent, as

G∗(q) , min
p∈∆(A)

G(v(p, q)), (27)

so that the target set may be defined as

V ∗(q) = {v ∈ V0 : G(v) ≤ G∗(q)} , (28)

where V0 = conv{v(a, b) : a ∈ A, b ∈ B} ⊂ RK is the set of feasible reward vectors. Clearly,
the agent’s response to q is any mixed action that minimizes G(v(p, q)), namely

p∗(q) ∈ argmin
p∈∆(A)

G(v(p, q)). (29)

By Proposition 10, the closed convex hull V c = co(V ∗) is attainable by the agent, and
Algorithm 2 can be used to attain it. Observe that, in addition to solving a zero-sum matrix
game, the algorithm requires solving the optimization problem (29). The computational
complexity of the latter depends on the cost function G. For example, if G is convex, then
(29) is a convex optimization problem. For specific instances, see Even-Dar et al. (2009)
and Example 1 below.

The relation between V c and V ∗ depends on the convexity properties of G and G∗. In
particular, we have the following result (a slight extension of Even-Dar et al. (2009)).

Proposition 14 For q ∈ ∆(B),

V c(q) ⊂ Ṽ (q) , {v ∈ V0 : conv(G)(v) ≤ conc(G∗)(q)} , (30)

where conv(G) is the lower convex hull of G, and conc(G∗) is the upper concave hull of G∗.
Consequently, any no-regret strategy with respect to V c = co(V ∗) guaranties that, for any
strategy of the opponent,

lim sup
n→∞

(conv(G)(v̄n)− conc(G∗)(q̄n)) ≤ 0 (a. s.). (31)

In particular, if G is a convex function G∗ a concave function, then V c = V ∗ and V ∗ itself
is attained, namely

lim sup
n→∞

(G(v̄n)−G∗(q̄n)) ≤ 0 (a. s.).

Proof To show (30), recall that the graph of V c = co(V ∗), by its definition, is given by

Graph(V c) = co(Graph(V ∗)),

and, by (28),

Graph(V ∗) = {(v, q) ∈ V0 ×∆(B) : G(v) ≤ G∗(q)}.

Also, for Ṽ as defined in (30),

Graph(Ṽ ) = {(v, q) ∈ V0 ×∆(B) : conv(G)(v) ≤ conc(G∗)(q)}.
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It is clear from these expressions that Graph(Ṽ ) is a convex set that contains Graph(V ∗),
hence conv(Graph(V ∗)) ⊂ Graph(Ṽ ). Furthermore, since G is a continuous function by
assumption, the G and G∗ are continuous functions on compact sets, so that conv(G) and
conc(G∗) are continuous functions, which implies that Graph(Ṽ ) is a closed set. Therefore
co(Graph(V ∗)) ⊂ Graph(Ṽ ), and (30) follows. The other claims in the Proposition now
follow directly from Proposition 10.

Clearly, if G∗ is not concave, the attainable goal function is weaker than the original
one. Still, this relaxed goal is meaningful, at least when G is convex. Noting the definition
of G∗ in (27), if follows that G∗(q) ≤ maxq′ minpG(v(p, q′)) for all q, so that

conc(G∗)(q) ≤ max
q′∈∆(B)

min
p∈∆(A)

G(v(p, q′)) ≤ min
p∈∆(A)

max
q′∈∆(B)

G(v(p, q′)) . (32)

The latter min-max bound is just the security level of the agent in the repeated game,
namely the minimal value of G(v̄n) that can be secured (as n → ∞) by playing a fixed
(non-adaptive) mixed action q′. Note that the second inequality in Equation (32) will be
strict except for special cases where the min-max theorem holds for G(v(p, q)) (which is
hardly expected if G∗(q) is non-concave).

Convexity of G(v) depends on its definition, and will hold for cases of interest such
as norm functions. Concavity of G∗(q), on the other hand, is more demanding and will
hold only in special cases. In Section 5.2.2 we already considered a specific instance of this
model whereG(v) = −u/c is not convex andG∗(q) = −maxp{u(p, q)/c(p, q)} is not concave,
hence specific analysis was required to obtain meaningful bounds. Another concrete model
was considered in Even-Dar et al. (2009), motivated by load balancing and job scheduling
problems. Under appropriate conditions, it was shown there that G is convex, while G∗ can
be seen to be concave, and the agent’s response was computed in closed form. The details
can be found in that reference and will not be elaborated here. These properties allow an
easy application of Algorithm 2 above to attain V ∗ itself.

We close this section with a simple example, in which G is convex while G∗ is not
necessarily concave.

Example 1 (Absolute Value) Let v : A × B → R be a scalar reward function, and
suppose that we wish to minimize the deviation of the average reward v̄n from a certain
preset value, say 0. Define then G(v) = |v|, and note that G is a convex function. Now,

G∗(q) , min
p∈∆(A)

|v(p, q)| =


mina∈A v(a, q), if ∀a ∈ A, v(a, q) > 0
mina∈A(−v(a, q)), if ∀a ∈ A, v(a, q) < 0
0, otherwise.

The response p∗(q) of the agent is obvious from these relations. We can observe two special
cases in this example:

(i) The problem reduces to the classical no-regret problem if the rewards v(a, b) all have
the same sign (positive or negative), as the absolute value can be removed. Indeed,
in this case G∗(q) is concave, as a minimum of linear functions.
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(ii) If the set {v(a, q), a ∈ A} includes elements of opposite signs (0 included) for each q,
then G∗ = 0, and the point v = 0 becomes attainable.

In general, however, |v(p, q)| may be a strictly convex function of q for a fixed p, and the
minimization above need not lead to a concave function. In that case, Proposition 14 implies
only the attainability of conc(G∗)(q).

We note that the computation of conc(G∗) may be fairly complicated in general, which
implies the same for computing the projection onto the associated goal set S = {(v, q) :
|v| ≤ conc(G∗)(q)}. However, these computations are not needed in the response-based
approachability algorithm, where the required computation of the agent’s response p∗(q) is
straightforward.

6. Conclusion

We have introduced in this paper an approachability algorithm that is based on Blackwell’s
dual, rather than primal, approachability condition. The proposed algorithm and its vari-
ants rely directly on the availability of a response function, rather than projection onto the
goal set (or related geometric quantities), and are therefore convenient in problems where
the latter may be hard to compute. At the same time, the additional computational re-
quirements are generally comparable to those of the standard Blackwell algorithm and its
variants.

The proposed algorithms were applied to a class of generalized no-regret problems, that
includes as specific cases the constrained no-regret problem and reward-to-cost maximiza-
tion. The resulting algorithms are apparently the first computationally efficient algorithms
in this generalized setting.

In this paper we have focused on a repeated matrix game model, where the action sets
of the agent and the opponent in the stage game are both finite. It is worth pointing out
that the essential results of this paper should apply directly to models with convex action
sets, say X and Y , provided that the reward vector r(x, y) is bilinear in its arguments. In
that case the (observed) actions x and y simply take the place of the mixed actions p and
q, leading to similar algorithms and convergence results. Such a continuous-action model is
relevant to linear classification and regression problems.

Other extensions of possible interest for the approach of this paper may include stochas-
tic game models, problems of partial monitoring, and nonlinear (concave-convex) reward
functions. These are left for future work.
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