
Multi Pool

PAC Algorithms for the Infinitely-Many Armed Problem
with Multiple Pools

Yahel David yaheld@tx.technion.ac.il

Nahum Shimkin shimkin@ee.technion.ac.il

Faculty of Electrical Engineering

Technion, Haifa 32000, Israel

Editor:

Abstract

We consider a multi-pool version of the infinitely-many armed bandit problem, where a
learning agent is faced with several large pools of items, and interested in finding the best
item overall. At each time step the agent chooses a pool, and obtains a random item whose
value is precisely revealed. The obtained values within each pool are assumed to be i.i.d.,
with an unknown probability distribution that generally differs among the pools. Under the
PAC framework, we provide lower bounds on the sample complexity of any (ε, δ)-correct
algorithm, and propose an algorithm that attains this bound up to logarithmic factors. We
compare the performance of this multi-pool algorithm to the variant in which the pools are
not distinguishable by the agent and are chosen randomly at each stage. Interestingly, when
the supremal values of the pools happen to be similar, the latter approach may provide
better performance.

Keywords: Multi-armed bandits, pure exploration.

1. Introduction

We consider the problem of finding the best item from a large set of items, or arms, which are
arranged in separate pools. The value distributions of the items in each pool is unknown,
but may well be different across pools. A learning agent samples the pools sequentially,
where at each time step it chooses some pool, obtains a random element from that pool,
and observes its numerical value.

The goal of the agent is to quickly return an (ε, δ)-correct arm, namely an arm whose
value is ε-close to the overall best arm with a probability larger than 1 − δ. Specifically,
we wish to minimize the sample complexity, namely the expected number of samples ob-
served by the learning algorithm before it terminates. Our model assumes that the value
of each newly sampled arm is an independent sample from a pool-dependent probability
distribution. We further assume that the probability distribution function of each pool is
continuous, and has a density which is bounded from below, with a known lower bound.

The scenario considered here is relevant when a single item needs to be selected from
among several clustered sets. These may be parts that come from different manufacturers
or produced by different processes, employees that are refereed by different employment
agencies, finding the best match to certain genetic characteristics in different populations,
or choosing the best channel among different frequency bands in a cognitive radio wireless

1

David and Shimkin

system. We note that our model considers the pools as being initially indistinguishable, in
the sense that no prior knowledge is presumed regarding their relative merit.

The model considered here is related to the so-call infinitely-many armed bandit prob-
lem, studied by Berry et al. (1997); Bonald and Proutiere (2013); Chakrabarti et al. (2009);
David and Shimkin (2014); Teytaud et al. (2007); Wang et al. (2008). These works consider
the case of single pool, focusing on online learning with the regret criterion. In most of
these works the observed values are stochastic, so that repeated sampling of each observed
arm is generally required to learn its value. Here, we assume that the values of the arms
are fixed and precisely revealed once sampled, which enables us to focus on the choice of
pool as the main decision issue.

For the classical Multi-Armed Bandit (MAB) problem, algorithms that find the best
arm (in terms of its expected value) in the PAC sense sense were presented by Even-Dar
et al. (2002). For the same problem, a lower bound on the sample complexity was presented
by Mannor and Tsitsiklis (2004). Our model can be viewed as analogous to this MAB
model by considering, respectively, the pools as the arms, and the item values in our model
as the stochastic rewards in the MAB problem. The essential difference is in the objective,
which in our case is to find and retain the item (i.e., sample) with the highest value.

From another perspective, the proposed model may be compared to the secretary prob-
lem, see for example Babaioff et al. (2008); Freeman (1983) for extensive surveys. In that
problem the goal is to maximize the probability of hiring the best candidate in a finite
group, while in our model we seek an ε-optimal item from an unlimited set of items, which
is further divided among different pools.

The paper proceeds as follows. In the next section we present our model. In Section
3 we provide a lower bound on the sample complexity of every (ε, δ)-correct algorithm. In
Section 4 we present an (ε, δ)-correct algorithm, and we provide an upper bound on its
sample complexity which has the same order of the lower bound up to a logarithmic term
in the number of pools. In Section 5, we consider for comparison the single-pool variant
of the model, where the agent cannot distinguish between pools and samples from them
uniformly at random.
CONCLUDING REMARKS

2. Model

We consider a set of pools, denoted by K. When the learning agent is sampling from pool
k ∈ K, a value or arm is revealed. We assume that the arms’ values which are obtained from
pool k ∈ K are distributed according the probability density function (p.d.f.) fk(µ) and
we denote the cumulative distribution function (c.d.f.) of this pool by Fk(µ). We assume
that fk(µ) ≥ a, ∀k ∈ K, for some known constant a > 0 and that Fk(µ) is continuous.
We denote the support of fk(µ) by supp(fk). We assume that supp(fk) is a single interval,
that supp(fk) ∈ [0, 1] and we denote its supremal value by µ∗k = sup{µ|µ ∈ supp(fk)}. The
largest value among all of the pools is denoted by µ∗∗ = maxk∈K µ

∗
k.

An algorithm for this model, selects a pool, samples from it and receives an arm at each
time step. For making its selection, the algorithm may relay on the history (i.e. the actions
and the obtained arms). An algorithm is (ε, δ)-correct if

P (I > µ∗∗ − ε) > 1− δ

2

Multi Pool

where I stands for the value of the arm that the algorithm provides at the end of the
running. The expected number of samples after which the algorithm terminates is called
the sample complexity of the algorithm, the number of samples is denoted by T .

3. Lower Bound

In this section we present a lower bound on the sample complexity.

Theorem 1 For every ε ∈ (0, 12) and δ ∈ (0, δ0) where δ0 < 3
16 , for the case in which

µ∗∗ ≤ 1
2 , for every (ε, δ)-correct policy, we have

E[T] ≥ min
k′∈K

∑
k∈K\{k′}

1

8a (ε+ µ∗∗ − µ∗i)
ln

(
3

16δ

)
. (1)

Note that the above Theorem can be generalized to the case in which ε ∈ (0, ε0) and
µ∗∗ ≤ 1− ε0, where ε0 < 1.

For proving the above Theorem we show that if an algorithm is (ε, δ)-correct and that
it’s sample complexity is lower than a certain threshold for some probabilities functions of
the pools, then this algorithm will not be (ε, δ)-correct for another probabilities functions
of the pools.
Proof First , we define the following hypotheses:

H0 : fH0
k (µ) = fk(µ) ∀k ∈ K,

and for every k ∈ {1, ..., |K|}

Hk : fHkk (µ) = max (γkfk(µ), a)1supp(fk)(µ)+a1[µ∗k,µ∗∗+ε]
(µ), fHkl (µ) = fl(µ), ∀l ∈ {l ∈ K|l 6= k},

where supp(fk) stand for the support of fk(µ) and γk is chosen such that
∫ 1
0 f

Hk
k (µ)dµ = 1.

For bounding γk we note that for

gk(µ) , γ′k
(
fk(µ)− a1supp(fk)(µ)

)
+ a1supp(fk)(µ) + a1[µ∗k,µ∗∗+ε]

(µ),

where γ′k is chosen such that
∫ 1
0 gk(µ)dµ = 1 it follows that γ′k ≤ γk. Then by the fact that∫ 1

0
gk(µ)dµ = γ′k (1− a|supp(fk)|) + a|supp(fk)|+ a (µ∗∗ + ε− µ∗k) ,

where |supp(fk)| =
∫ 1
0 1supp(fk)(µ)dµ and by the fact that

∫ 1
0 gl(µ)dµ = 1, it is obtained

that

1−
a (µ∗∗ + ε− µ∗k)
1− a|supp(fk)|

≤ γ′k ≤ γk ≤ 1.

If hypothesis Hk is true, the algorithm should provide a value from pool k. We use
Ek and Pk to denote the expectation and probability respectively, under the policy being
considered and under hypothesis Hk. Now, for every k ∈ K let

tk =
1

8a
(
ε+ µ∗∗ − µ∗k

) ln

(
3

16δ

)
,

3

David and Shimkin

and let Tk stands for the number of samples from pool k.
Now, we assume we run a policy which is (ε, δ)-correct under H0. We will show that if

under this policy E[Tk] ≤ tk, then, this policy can’t be (ε, δ)-correct under hypothesis Hk.
Therefore, an (ε, δ)-correct policy must have E[Tk] > tk, ∀k ∈ K.

First, we define the event Ak = {Tk ≤ 4tk}. It easily follows by

4tk (1− P0(Ak)) ≤ E0[Tk],

that if E0[Tk] ≤ tk, then P0(Ak) ≥ 3
4 .

Let Bk stand for the event under which the chosen sample is from pool k, and BC
k for

its complementary. Since at most for one pool k′ ∈ K it can be obtained that P0 (Bk′) >
1
2 ,

it follows that P0

(
BC
k

)
> 1

2 for every k ∈ K \ {k}.
We define the event Ck to be the event under which all the samples obtained from pool

k are on the interval [0, µ∗k]. Clearly, P0(Ck) = 1.
We define the event Sk = {Ak ∩ BC

k ∩ Ck}, since we have already shown that for every
k ∈ K \ {k′}, P0(Ak) ≥ 3

4 , P0(B
C
k) > 1

2 and P0(Ck) = 1 it is obtained that P0 (Sk) >
3
8 , ∀k ∈ K \ {k

′}. Then, since for every history of N samples, for which the event Ck holds,

it is obtained that dPk
dP0
≥ γNk , we have the following,

Pk
(
BC
k

)
≥ Pk (Sk) = E0

[
dPk
dP0

I (Sk)

]
≥ γ−4tkk P0 (I (Sk)) >

3

8
γ−4tkl ≥ 3

16
e
− 1

2(1−a) ln
3

16δ ≥ δ,

where in the last inequality we used the facts that (1− ε)
1
ε ≥ e−1 and that |supp(fk)| ≤ 1.

We found that if a policy is (ε, δ)-correct under hypothesis H0 and E0[Tk] ≤ tk for
some k 6= k′, then, under hypothesis Hk this policy is not (ε, δ)-correct. So, for having an
(ε, δ)-correct policy, we must have E0[Tk] > tk for all of the arms except the one for which
P0

(
BC
k

)
≤ 1

2 . Hence the lower bound is obtained.

4. Algorithm

Here we provide an (ε, δ)-correct algorithm. This algorithm samples from each pool once.
Then, it repeatedly calculates an upper bound on the supremal value of each pool and
samples one arm from the pool for which the bound is the largest. The algorithm terminates
when the number of samples from the chosen pool is above a certain threshold. This idea
is similar to that in the UCB1 Algorithm provided by Auer et al. (2002).

Theorem 2 For L ≥ 10, Algorithm 1 is (ε, δ)-correct with sample complexity of

E[T] ≤
∑
k∈K

L− ln(δ)

amax (ε, µ∗∗ − µ∗i)
+ |K|+ 1,

where L = 6 ln
(
|K|

(
1 + − ln(δ)

aε

))
is defined in the algorithm.

Note that L is logarithmic in |K|. Hence, the upper bound on the sample complexity is of
the same order as the lower bound in Theorem 1, up to a logarithmic factor in |K|.

4

Multi Pool

Algorithm 1 Multi Pool Algorithm

1: Input: Constants δ > 0, ε > 0 and L = 6 ln
(
|K|

(
1 + − ln(δ)

aε

))
.

2: Initialization: Counters C(i) = 1∀i ∈ K.
3: Sample one arm from every pool.
4: Compute Y i

C(i) = V i
C(i)(1) + εUB(C(i)) where εUB(C(i)) = L−ln(δ)

aC(i) and set i∗ =

arg maxi∈K Y
i
C(i).

5: If εUB(C (i∗)) < ε, return the best sampled arm.
Else, sample one arm from pool i∗, set C(i∗) = C(i∗) + 1 and return to step 4.

For proving Theorem 2, we first bound the probability of the event under which the
upper bound of the best pool is below the supremal value. Then, we bound the largest
number of samples after which the algorithm terminates under the assumption that the
upper bound of the best pool is above the supremal value.

Proof First we denote the time step of the algorithm by t, and the value of the counter
C(i) at time step t by Ct(i). Recall that T stands for the random final time step. By the
condition in step 5 of the algorithm, for every pool k ∈ K, it follows that,

CT (k) ≤ bL− ln(δ)

aε
c+ 1. (2)

Note that by the fact that for x ≥ 6 it follows that d6 ln(x)
dx ≤ 1, and by the fact that for

x0 = exp
(
12
3

)
it follows that x0 > 6 ln(x0) = 10 it is obtained that

L′ , |K|
(
− ln(δ)

aε
+ 1

)
> ln

(
|K|

(
− ln(δ)

aε
+ 1

))
= L,

for L ≥ 10. So, by the fact that T =
∑

i∈K C
T (i), for L ≥ 10 it follows that

T ≤ |K|
(
L− ln(δ)

aε
+ 1

)
< |K|

(
L′ − ln(δ)

aε
+ 1

)
≤ L′2 = e

L
3 . (3)

Now, we begin with proving the (ε, δ)-correctness property of the algorithm. Recall that
for every pool k ∈ K the values are distributed according to the c.d.f. Fk(µ). Let assume

w.l.o.g. that µ∗1 = µ∗∗. Then, for N > 0 and by the fact that (1 − ε)
1
ε ≤ e−1 for every

ε ∈ (0, 1], for εUB(N) = L−ln(δ)
Na it follows that

P
(
V 1
N < µ∗∗ − εUB(N)

)
=
(
F
(
µ∗∗ − εUB(N)

))N ≤ (1− aεUB(N)
)N ≤ δe−L. (4)

Hence, at every time step t, by the definition of Y 1
Ct(1) and Equations (3) and (4), by

applying the union bound, it follows that

P
(
Y 1
Ct(1) < µ∗∗

)
≤ P

(
V 1
Ct(1) < µ∗∗ − εUB(Ct(1))

)
≤

exp(L3)∑
t=1

P
(
V 1
N < µ∗∗ − εUB(N)

)
≤ δe−

2L
3 .

(5)

5

David and Shimkin

Since by the condition in step 5, it is obtained that when the algorithm stops

V i∗

Ct(i∗) > Y i∗

Ct(i∗) − ε,

and by the fact that for every time step

Y i∗

Ct(i∗) ≥ Y
1
Ct(1),

it follows by Equation (5) that

P
(
V i∗

Ct(i∗) ≤ µ
∗
∗ − ε

)
≤ P

(
Y 1
Ct(1) < µ∗∗

)
≤ δe−

2L
3 .

Therefore, it follows that the algorithm returns an arm greater than µ∗∗−ε with a probability
larger than 1− δ. So, it is (ε, δ)-correct.

For proving the bound on the expected sample complexity of the algorithm we define
the following sets:

M(ε) = {l ∈ K|µ∗∗ − µ∗l < ε}, N(ε) = {l ∈ K|µ∗∗ − µ∗l ≥ ε}.

As before, we assume w.l.o.g. that µ∗1 = µ∗∗. For the case in which

E1 ,
⋂

1≤t<T

{
Y 1
Ct(1) ≥ µ

∗
∗

}
,

occurs, since V k
Ct(k) ≤ µ

∗
k for every k ∈ K, and every time step, it follows that the necessary

condition for sampling from pool k,

Y k
Ck(1) ≥ Y

1
Ct(1),

occurs only when the event

E2(t) ,
{
µ∗k + εUB

(
Ct(k)

)
≥ µ∗∗

}
,

occurs. But

E2(t) ⊆

{
Ct(i) ≤ L− ln(δ)

a
(
µ∗∗ − µ∗k

)} .
Therefore, it is obtained that

CT (i) ≤ b L− ln(δ)

a
(
µ∗∗ − µ∗k

)c+ 1. (6)

By using the bound in Equation (2) for the pools in the set M(ε), the bound in Equation
(6) for the pools in the set N(ε) and the bound in Equation (3), it is obtained that

E[T] ≤ (1− P (E1)) e
L
3 + P (E1) Φ (ε) , (7)

6

Multi Pool

where

Φ (ε) ,

 ∑
k∈N(ε)

(
b L− ln(δ)

a
(
µ∗∗ − µ∗k

)c+ 1

)
+

∑
k∈M(ε)

(
bL− ln(δ)

aε
c+ 1

) .

In addition, by Equation (5), the bound in Equation (3) and by applying the union bound,
it follows that

P (E1) ≥ 1−
T∑
t=1

P
(
Y 1
Ct(1) < µ∗∗

)
≥ 1− δe−

2L
3 e

L
3 = 1− δe−

L
3 .

So,

1− P (E1) ≤ δe−
L
3 . (8)

Furthermore, by the definitions of the sets N(ε) and M(ε), it can be obtained that

Φ (ε) ≤
∑
k∈K
b L− ln(δ)

amax
(
ε, µ∗∗ − µ∗k

)c+ 1. (9)

Therefore, by Equation (7), (8) and (9) the bound on the sample complexity is obtained.

5. Comparison with The Single Pool Model

In this section, we analyze the improvement in the sample complexity obtained by using
the multi pool property (the fact we can choose from which pool to sample at each time
step) compared to a model in which all the pools are considered as a single pool. In the
single pool model, when the agent samples from this single pool, a certain pool (among the
multi pool) is chosen uniformly and an arm is sampled from this pool. We denote the p.d.f.
and the c.d.f. of the single pool as f(µ) and F (µ) respectively. By the definition of this
pool and our assumption in Section 2, its obtained that f(µ) ≥ a

|K| and that it’s supremal

value is µ∗∗.
For the problem of regret minimizing (or maximizing the cumulative reward) the single

pool model, with fixed arms’ values was studied by David and Shimkin (2014).
In the remainder of this section, we provide a lower bound on the sample complexity

and an (ε, δ)-correct algorithm that attains the same order of this bound for the single pool
model. Then, we discuss which approach (multi pool vs. single pool) is better for which
case and provide examples that illustrate these cases.

5.1 Lower Bound

In the following Theorem we provide a lower bound on the sample complexity for the single
pool model.

Theorem 3 For every ε ∈ (0, 12) and δ ∈ (0, δ0) where δ0 <
3
5 , for the case in which µ∗∗ ≤ 1

2 ,
for every (ε, δ)-correct policy, we have

E[T] ≥ |K|
4aε

ln

(
3

5δ

)
. (10)

7

David and Shimkin

Algorithm 2 Single Pool Algorithm

1: Input: Constants δ > 0, ε > 0.
2: Sample d− ln(δ)|K|

aε e+ 1 arms from the pool.
3: Return the best sampled arm.

The proof is provided in Appendix A and is based on the same idea as the proof of Theorem
1.

5.2 Algorithm

In Algorithm 2 a certain number of arms is sampled and then the algorithm choose the best
one among them. In the following Theorem we provide a bound on the sample complexity
achieved by Algorithm 2.

Theorem 4 Algorithm 2 is (ε, δ)-correct with sample complexity of

E[T] ≤ −|K| ln(δ)

aε
+ 2.

Note that the upper bound on the sample complexity is of the same order as the lower
bound in Theorem 3.

The proof is provided in Appendix B.

5.3 Comparison Between The Models and Examples

By the bound provided in Theorem 2 for Algorithm 1 and the lower bound for the single
pool model provided in Theorem 3, it follows that using the multi pool property helps to
eliminate sampling from pools which have much smaller supremal value compared to the
best pool (in comparing to ε). Hence, in these cases it always better to use the multi pool
property and applying Algorithm 1.

But, in cases in which all the pools have approximately the same supremal value (com-
pared to ε), the performance of Algorithm 2 are better than those of Algorithm 1 since we
have an additional logarithmic in |K| multiplicity factor in the bound of Algorithm 2.

We now provide two examples which illustrate the above discussion. In the following
example we take small ε, hence using the multi pool property will be very effective.

Example 1 Let |K| = 1000, µ∗1 = 0.4, µ∗k = 0.1, ∀k ∈ K \ {1} and a = 0.01. Then, for
ε = 0.001 and δ = 0.001 the sample complexity attained by Algorithm 1 is 5.58× 107. This
sample complexity is smaller than the lower bound on the sample complexity for the single
pool model provided in Theorem 3, which is 1.59× 108. The sample complexity attained by
the Algorithm 2 (which does not use the multi pool property) is 6.9× 108.

In the next example we will take a larger ε, hence the logarithmic in |K| multiplicity factor,
which is the drawback of Algorithm 1, will be more effective than the advantage of using
the multi pool property.

Example 2 Let |K|, µ∗1, µ∗k ∀k ∈ K \ {1}, a = 0.01 and δ remain the same as in Example
1, and let ε = 0.1. The sample complexity of Algorithm 1 is 3.8× 107, which is larger than
the sample complexity of Algorithm 2 which is 6.9× 106.

8

Multi Pool

As explained before and illustrated in the above examples, Algorithm 1 has an additional
multiplicity factor which is logarithmic in |K|. Hence for some values of ε the using of
Algorithm 2 attains smaller sample complexity compared to Algorithm 1. But for any set of
pools, for small enough ε Algorithm 1 always attains smaller sample complexity compared
to Algorithm 2 and to the lower bound for the single pool model which is provided in
Theorem 3.

Remark 5 In some cases, the lowest sample complexity is achieved by merging every group
of a certain number of pools into one pool, and then applying Algorithm 1. In the case of
Example 1, by merging every two pools into one the bound on the sample complexity attained
by Algorithm 1 is 4.57× 107.

References

Peter Auer, Nicol Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 47:235–256, 2002.

Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert Kleinberg. Online auctions
and generalized secretary problems. ACM SIGecom Exchanges, 7(2):1–11, 2008.

Donald A Berry, Robert W Chen, Alan Zame, David C Heath, and Larry A Shepp. Bandit
problems with infinitely many arms. The Annals of Statistics, pages 2103–2116, 1997.

Thomas Bonald and Alexandre Proutiere. Two-target algorithms for infinite-armed bandits
with Bernoulli rewards. In Advances in Neural Information Processing Systems 26, pages
2184–2192. Curran Associates, Inc., 2013.

Deepayan Chakrabarti, Ravi Kumar, Filip Radlinski, and Eli Upfal. Mortal multi-armed
bandits. In Advances in Neural Information Processing Systems 21, pages 273–280. Cur-
ran Associates, Inc., 2009.

Yahel David and Nahum Shimkin. Infinitely many-armed bandits with unknown value
distribution. In Machine Learning and Knowledge Discovery in Databases, pages 307–
322. Springer, 2014.

Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Pac bounds for multi-armed bandit and
markov decision processes. In Jyrki Kivinen and RobertH. Sloan, editors, Computational
Learning Theory, volume 2375 of Lecture Notes in Computer Science, pages 255–270.
Springer Berlin Heidelberg, 2002.

PR Freeman. The secretary problem and its extensions: A review. International Statistical
Review, pages 189–206, 1983.

Shie Mannor and John N. Tsitsiklis. The sample complexity of exploration in the multi-
armed bandit problem. Journal of Machine Learning Research, 5:623–648, 2004.

Olivier Teytaud, Sylvain Gelly, and Michèle Sebag. Anytime many-armed bandits. In CAP,
Grenoble, France, 2007.

9

David and Shimkin

Yizao Wang, Jean-Yves Audibert, Rémi Munos, et al. Infinitely many-armed bandits.
Advances in Neural Information Processing Systems, 8:1–8, 2008.

6. Appendix A

Proof [Theorem 3] First , we define the following hypotheses:

H0 : fH0(µ) = f(µ),

and

H1 : fH1(µ) = max (γf(µ), a)1supp(f)(µ) +
a

|K|
1[µ∗∗,µ∗∗+ε](µ),

where, as in the proof of Theorem 1, supp(f) stand for the support of f(µ) and γ is chosen
such that

∫ 1
0 f

H1(µ)dµ = 1. Similarly to the proof of Theorem 1, for bounding γ we note
that for

g(µ) , γ′
(
f(µ)− a1supp(f)(µ)

)
+ a1supp(f)(µ) +

a

|K|
1[µ∗∗,µ∗∗+ε](µ),

where γ′ is chosen such that
∫ 1
0 g(µ)dµ = 1 it follows that γ′ ≤ γ. Then by the fact that∫ 1

0
g(µ)dµ = γ′ (1− a|supp(f)|) + a|supp(f)|+ aε

|K|
,

where |supp(f)| =
∫ 1
0 1supp(f)(µ)dµ and by∫ 1

0
g(µ)dµ = 1,

it is obtained that 1− aε
|K|(1−a|supp(f)|) ≤ γ

′ ≤ γ ≤ 1.

If hypothesis H1 is true, the algorithm should provide a value greater than µ∗∗. We use
El and Pl (where l ∈ {0, 1}) to denote the expectation and probability respectively, under
the policy being considered and under hypothesis Hl. Now, let

t =
|K|
4aε

ln

(
3

5δ

)
,

and recall that T stands for the total number of samples from the pool.

Now, we assume we run a policy which is (ε, δ)-correct under H0. We will show that
if under this policy E[T] ≤ t, then, this policy can’t be (ε, δ)-correct under hypothesis H1.
Therefore, an (ε, δ)-correct policy must have E[T] > t.

First, we define the event A = {T ≤ 4t}. By the same consideration as in the proof of
Theorem 1 (for the events {Ak}k∈K), it follows that if E0[T] ≤ t, then P0(A) ≥ 3

4 .

Let B stand for the event under which the chosen sample is smaller or equal to µ∗∗, and
BC for its complementary. Clearly, P0 (B) = 1.

We define the event C to be the event under which all the samples obtained from the
pool are on the interval [0, µ∗∗]. Clearly, P0(C) = 1.

10

Multi Pool

We define the event S = {A ∩ BC ∩ C}, since we have already shown that P0(A) ≥ 3
4 ,

P0(B) = 1 and P0(C) = 1 it is obtained that P0 (S) ≥ 3
4 . Then, since for every history of N

samples, for which the event C holds, it is obtained that dP1
dP0
≥ γN , we have the following,

P1 (B) ≥ P1 (S) = E0

[
dP1

dP0
I (S)

]
≥ γ−4tP0 (I (S)) ≥ 3

4
γ−4t ≥ 3

4
e
− 1

2(1−a) ln
3
5δ ≥ δ,

where in the last inequality we used the facts that (1− ε)
1
ε ≥ e−1 and that |supp(fl)| ≤ 1.

We found that if a policy is (ε, δ)-correct under hypothesis H0 and E0[T] ≤ t, then,
under hypothesis H1 this policy is not (ε, δ)-correct. So, for having an (ε, δ)-correct policy,
we must have E0[T] > t. Hence the lower bound is obtained.

7. Appendix B

Proof [Theorem 2] Since sampling from the single pool consists of choosing one pool out
of the |K| pools (with equal probability), and then, sampling from this pool, it follows

that f(µ) ≥ a
|K| . So, F (µ∗∗ − ε) ≤

(
1− aε

|K|

)
. Also, we note that (1 − ε)

1
ε ≤ e−1 for every

ε ∈ (0, 1]. Therefore, for N = d− ln(δ)|K|
aε e+ 1

P
(
V 1
N < µ∗∗ − ε

)
= (F (µ∗∗ − ε))

N ≤
(

1− aε

|K|

)N
< δ. (11)

Hence, the algorithm is (ε, δ)-correct. The bound on the sample complexity is immediate
from the definition of the algorithm.

11

