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Abstract. We consider a variant of the Multi-Armed Bandit problem
which involves a large pool of a priori identical arms (or items). Each
arm is associated with a deterministic value, which is sampled from a
probability distribution with unknown maximal value, and is revealed
once that arm is chosen. At each time instant the agent may choose a
new arm (with unknown value), or a previously-chosen arm whose value
is already revealed. The goal is to minimize the cumulative regret relative
to the best arm in the pool. Previous work has established a lower bound
on the regret for this model, depending on the functional form of the tail
of the sample distribution, as well as algorithms that attain this bound
up to logarithmic terms. Here, we present a more refined algorithm that
attains the same order as the lower bound. We further consider several
variants of the basic model, involving an anytime algorithm and the case
of non-retainable arms. Numerical experiments demonstrate the superior
performance of the suggested algorithms.
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1 Introduction

We consider a statistical learning problem in which the learning agent faces a
large pool of possible items, or arms, each associated with a numerical value
which is unknown a priori. At each time step the agent chooses an arm, whose
exact value is then revealed and considered as the agent’s reward at this time
step. The goal of the learning agent is to maximize the cumulative reward,
or, more specifically, to minimize the cumulative n-step regret (relative to the
largest value available in the pool). At every time step, the agent should decide
between sampling a new arm (with unknown value) from the pool, or sampling
a previously sampled arm with a known value. Clearly, this decision represents
the exploration vs. exploitation trade-off in the classic multi-armed bandit model.
Our model assumes that the number of available arms in the pool is unlimited,
and that the value of each newly observed arm is an independent sample from
a common probability distribution. We study two variants of the basic model:
the retainable arms case, in which the learning agent can return to any of the

c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part I, LNAI 9284, pp. 464–479, 2015.
DOI: 10.1007/978-3-319-23528-8 29



Algorithms for Many-Armed Bandits 465

previously sampled arms (with known value), and the case of non-retainable
arms, where previously sampled arms are lost if not immediately reused.

This model falls within the so-call infinitely-many armed framework, stud-
ied in [3,4,6,7,10,11]. In most of these works, which are further elaborated on
below, the observed rewards are stochastic and the arms are retainable. Here,
we continue the work in [7] that assumes that the potential reward of each arm
is fixed and precisely observed once that arm is chosen. This simpler framework
allows to obtain sharper bounds which focus on the basic issue of the sample
size required to estimate the maximal value in the pool. At the same time, the
assumption that the reward is deterministic may be relevant in various appli-
cations, such as parts inspection, worker selection, and communication channel
selection. For this model, a lower bound on the regret and fixed time horizon
algorithms that attain this lower bound up to logarithmic terms were presented
in [7]. In the present paper, we propose algorithms that attain the same order
as the lower bound (with no additional logarithmic terms) under a fairly general
assumption on the tail of the probability distribution of the value. We further
demonstrate that these bounds may not be achieved without this assumption.
Furthermore, for the case where the time horizon is not specified, we provide an
anytime algorithm that also attains the lower bound under similar conditions.

As mentioned above, several papers have studied a similar model with
stochastic rewards. A lower bound on the regret was first provided in [3], for
the case of Bernoulli arms, with the arm values (namely the expected rewards)
distributed uniformly on the interval [0, 1]. For a known value distribution, algo-
rithms that attain the same regret order as that lower bound are provided in
[3,6,10], and an algorithm which attains that bound exactly under certain condi-
tions is provided in [4]. In [11], the model was analyzed under weaker conditions
that involve the form of the tail of the value distribution which is assumed known;
however, significantly, the maximal value need not be known a priori. A lower
bound and algorithms that achieve it up to logarithmic terms were developed
for this case. The assumptions in the present paper are milder, in the sense that
the tail distribution is not restricted in its form and only an upper bound on
this tail is assumed rather than exact match. Our work also addresses the case
of non-retainable arms, which has not been considered in the above-mentioned
papers.

In a broader perspective, the present model may be compared to the
continuum-armed bandit problem studied in [1,5,9]. In this model the arms
are chosen from a continuous set, and the arm values satisfy some continuity
properties over this set. In the model discussed here, we do not assume any
regularity conditions across arms. The non-retainable arms version of our model
is reminiscent of the classical secretary problem, see for example [8] and [2] for
extensive surveys. In the secretary problem, the learning agent interviews job
candidates sequentially, and wishes to maximize the probability of hiring the
best candidate in the group. Our model considers the cumulative reward (or
regret) as the performance measure.
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The paper proceeds as follows. In the next section we present our model and
the associated lower bound developed in [7]. Section 3 presents our algorithms
and regret bounds for the basic model (with known time horizon and retainable
arms). The extensions to anytime algorithms and the case of non-retainable
arms are presented in Section 4. Some numerical experiments which compare
the performance of the proposed algorithms to previous ones are described in
Section 5, followed by concluding remarks.

2 Model Formulation and Lower Bound

We consider an infinite pool of arms, with values that are drawn independently
from a common (but unknown) probability distribution with a cumulative dis-
tribution function F (μ), μ ∈ R. Let μ∗ denote the supremal value, namely, the
maximal value in the support of the measure defined by F (μ). As mentioned,
once an arm is sampled its value is revealed, and at each time step t = 1, ..., n,
a new or a previously sampled arm may be chosen. Our performance measure is
the following cumulative regret.

Definition 1. The regret at time step n is defined as:

regret(n) = E

[
n∑

t=1

(μ∗ − r(t))

]
, (1)

where r(t) is the reward obtained at time t, namely, the value of the arm chosen
at time t.

The following notations will be used in this paper:

– µ is a generic random variable with distribution function F .
– For 0 ≤ ε ≤ 1, let

D0(ε) = inf
D≥0

{P (µ ≥ μ∗ − D) ≥ ε} ,

Note that P (µ ≥ μ∗ − D0(ε)) ≥ ε, with equality if μ∗ −D0(ε) is a continuity
point of F . We refer to D0(ε) as the tail function of F .

– Let ε∗
0(n) be defined as1

ε∗
0(n) = sup

{
ε ∈ [0, 1] : nD0(ε) ≤ 1

ε

}
. (2)

Note that nD0(ε1) ≤ 1
ε∗
0(n)

for ε1 ≤ ε∗
0(n), and nD0(ε2) ≥ 1

ε∗
0(n)

for ε2 >

ε∗
0(n).

For example, when µ is uniform on [a, b], then D0(ε) = ε
b−a , and ε∗

0(n) =
√

b−a
n .

1 If the support of µ is a single interval, then D0(ε) is continuous. In that case,
definition (2) reduced to the equation nD0(ε) = 1

ε
which, by monotonicity, has a

unique solution for n large enough.
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– Furthermore, let D(ε) denote a given upper bound on the tail function D0(ε),
and let ε∗(n) be defined similarly to ε∗

0(n) with D0(ε) replaced by D(ε),
namely,

ε∗(n) = sup
{

ε ∈ [0, 1] : nD(ε) ≤ 1
ε

}
. (3)

Note that ε∗(n) ≤ ε∗
0(n). Since D0(ε) is a non-decreasing function, we assume,

without loss of generality, that D(ε) is also a non-decreasing function.

In the following sections, we shall assume that the upper bound D(ε) on the tail
function D0(ε) is known to the learning agent, and that it satisfies the following
growth property.

Assumption 1
D(ε) ≤ MD(ε0)αε/ε0

for every 0 < ε0 ≤ ε ≤ 1 and constants M > 1 and 1 ≤ α < e.

A general class of distributions that satisfies Assumption 1 is given in the
following example, which will further serves us throughout the paper.

Example 1. Suppose that P (µ ≥ μ∗ − ε) = Θ
(
εβ

)
for ε > 0 small enough, where

β > 0. This is the case considered in [11]. Then D0(ε) = Θ
(
ε1/β

)
, and for D(ε) =

Aε1/β , where β > 0 and A > 0, it can be obtained that D(ε) ≤ MD(ε0)αε/ε0 ,
where 1 < α < e, M = λ1/β

αλ and λ = 1
β ln(α) . Hence, in this case Assumption 1

holds. Note that β = 1 corresponds to a uniform probability distribution which
is the case considered in [3] and [4] for μ∗ = 1.

Remark 1. Assumption 1 can be extended to any upper bound α on the value
of α (instead of e). In that case, a proper modification to the algorithms below
leads to upper bounds that are larger by a constant multiplicative factor of ln(α).
However, as the assumption above covers most cases of interest, for simplicity
of presentation, we will not go further into this extension. We note that the
algorithms presented here do not use the values of α and M .

For the case in which the tail function D0(ε) itself is known to the learning
agent, the following lower bound on the expected regret was established in [7].

Theorem 1. The n-step regret is lower bounded by

regret(n) ≥ (1 − δn)
μ∗ − E[μ]

16
1

ε∗
0(n)

, (4)

where ε∗
0(n) satisfies (2), and δn = 1 − 2 exp

(
− (μ∗−E[μ])2

8ε∗
0(n)

)
.

Note that when ε∗
0(n) → 0 as n → ∞, δn → 0 as n → ∞, so that its effect

becomes negligible. Furthermore, this lower bound coincides with the lower
bounds presented in [3] and in [11] in the more specific models studied in those
papers.

In the following corollary we present a lower bound on the regret for the case
in which only a bound on the tail function D0(ε) is known.
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Corollary 1. Let D(ε) be an upper bound on the tail function D0(ε) such that

D(ε)
D0(ε)

≤ L < ∞, ∀ 0 ≤ ε ≤ 1.

Then, the n-step regret is lower bounded by

regret(n) ≥ (1 − δn)
μ∗ − E[μ]

16L

1
ε∗(n)

, (5)

where ε∗(n) satisfies (3) and δn is as defined in Theorem 1.

Proof: Let

ε∗
L(n) = sup

{
ε ∈ [0, 1] : n

D(ε)
L

≤ 1
ε

}
. (6)

Then, for every 0 ≤ ε1 ≤ 1 such that ε∗
L(n) < ε1, by (6) and the assumed

condition of the Corollary, it follows that 1
ε1

< nD(ε1)
L ≤ nD0(ε1). Therefore, by

Equation (2), ε∗
0(n) < ε1. Thus,

ε∗
0(n) ≤ ε∗

L(n). (7)

Now, we need to compare ε∗
L(n) to ε∗(n). Let Lε∗(n) < ε2. Since the tail function

is non-decreasing, it follows that L
ε2

< nD( ε2
L ) ≤ nD(ε2), so that 1

ε2
< nD(ε2)

L .
Hence, ε∗

L(n) < ε2, and
ε∗
L(n) ≤ Lε∗(n). (8)

Equations (7) and (8) imply that ε∗
0(n) ≤ Lε∗(n), or 1

Lε∗(n) ≤ 1
ε∗
0(n)

. By substi-
tuting in Equation (4), the Corollary is obtained.

3 Optimal Sample Size

Here we discuss our most basic model, namely, the retainable arms model for a
known time horizon. We present an algorithm that under Assumption 1 achieves
a regret of the same order as the lower bound presented in Equation (5). We
also present an example for which Assumption 1 does not hold, and show that
for this example the lower bound on the regret is larger by a logarithmic factor
than the lower bound presented in Equation (4).

The presented algorithm is simple and is based on initially sampling a certain
number of new arms, followed by constantly choosing the single best arm found
in the initial phase.

The following theorem provides an upper bound on the regret incurred by
Algorithm 1.

Theorem 2. Under Assumption 1, for every n > 1, the regret of Algorithm 1
is upper bounded by

regret(n) ≤
(

1 + Me
α

e − α

)
1

ε∗(n)
+ 1, (9)

where ε∗(n) is defined in Equation (3), and M and α are as defined in Assump-
tion 1.
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Algorithm 1. The Optimal Sampling Algorithm for Retainable Arms – OSR
Algorithm
1: Input: D(ε), an upper bound on the tail function and time horizon n > 1.
2: Compute ε∗(n) as defined in (3).
3: Sample N = � 1

ε∗(n)
� + 1 arms and keep the best one.

4: Continue by pulling the saved best arm up to the last stage n.

The upper bound obtained in the above Theorem is of the same order as the
lower bound in Equation (5). Note that the values of M and α in Assumption 1
are not used in the algorithm, but only appear in the regret bound.

Example 1 (continued). For β = 1 (µ is uniform on [a, b]), Assumption 1 holds
for any α ∈ [1, e], with M = λ1/β

αλ , where λ = 1
β ln(α) and 1

ε∗(n) =
√

n√
b−a

. Therefore,

for β = 1, with the optimize choice of α = 1.47, we obtain regret(n) < 4.1
√

n√
b−a

+1.

Proof of Theorem 2: For N ≥ 1, we denote by VN (1) the value of the best
arm found by sampling N different arms. Clearly,

regret(n) ≤ N + (n − N)Δ(N) , (10)

where Δ(N) = E[μ∗ − VN (1)]. Then, for N = � 1
ε∗(n)	 + 1, since D(0) = 0 we

obtain
Δ(N) ≤ ΔN,ε, (11)

where

ΔN,ε =
N∑

i=1

D(iε)P (D(iε) ≥ μ∗ − VN (1) > D((i − 1)ε)) .

Note that if Nε > 1 we take D(Nε) = D(1). So, Assumption 1 still holds. Also,
for any 0 ≤ ε ≤ 1,

P (μ∗ − VN (1) > D(ε)) ≤ (1 − ε)N .

Therefore,

ΔN,ε ≤
N∑

i=1

D(iε)P (μ∗ − VN (1) > D((i − 1)ε))

≤
N∑

i=1

D(iε)(1 − (i − 1)ε)N � Δ
N,ε

.

(12)

Observe that (1 − ε)
1
ε ≤ e−1 for ε ∈ (0, 1]. Then, for ε = ε∗(n), since N ≥ 1

ε∗(n)

it follows that (1 − (i − 1)ε∗(n))N ≤ e1−i. Hence,

Δ
N,ε∗(n)

=
N∑

i=1

D(iε∗(n))(1 − (i − 1)ε∗(n))N

≤
N∑

i=1

D(iε∗(n))e1−i � Δ
N,ε∗(n)
0 .

(13)
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Now, by Assumption 1,

Δ
N,ε∗(n)
0 ≤

N∑
i=1

MD(ε∗(n))αie1−i < Me
α

e − α
D(ε∗(n)). (14)

Therefore, by (10),

regret(n) ≤ � 1
ε∗(n)

	 + 1 + nMe
α

e − α
D(ε∗(n)) ≤ (1 + Me

α

e − α
)

1
ε∗(n)

+ 1 .

Hence, the upper bound on (9) is obtained.

�

For the case that Assumption 1 does not hold, we provide an example for
which the regret is larger than the lower bound presented in Equation (4) by a
logarithmic term.

Example 2. Suppose that P (µ ≥ μ∗ − ε) = − 1
ln(ε) . Then D0(ε) = e− 1

ε , and it
follows that 1

ln(n) ≤ ε∗
0(n) ≤ 2

ln(n) .
Take ε0 = 1

2ε. Then, for any α > 1 and M > 0, for ε small enough we obtain
D(ε)
D(ε0)

= e1/ε0−1/ε = e1/ε > Mα2 = Mαε/ε0 . Hence, Assumption 1 does not hold.

Lemma 1. For the case considered in Example 2, the best regret which can be
achieved is larger by multiplicative a logarithmic factor (ln(n)) than the lower
bound presented in Equation (4).

Proof: Let N stand for the number of sampled arms, then, one can find that

regret(n) = NE[µ] + (n − N)Δ(N), (15)

where Δ(N) = E[μ∗ −VN (1)]. To bound the second term of Equation (15), note
that, for any N ≤ � 1

ε 	,

Δ(N) ≥
N∑

i=1

D0(iε)P (D0((i + 1)ε) ≥ μ∗ − VN (1) > D0((i)ε))

=
N∑

i=1

D0(iε)(ΔN,ε(i) − ΔN,ε(i + 1)) � Δ̃(N),

where
ΔN,ε(i) = P (μ∗ − VN (1) > D0(iε)) .

By the fact that D0(ε) is continuous, it follows that

ΔN,ε(i) = P (μ∗ − VN (1) > D0(iε)) = (1 − iε)N ,

and

ΔN,ε(i + 1) = P (μ∗ − VN (1) > D0((i + 1)ε)) = (1 − (i + 1)ε)N .
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Noting that e−1 ≥ (1 − ε)
1
ε ≥ exp

(
−1 − ε

1−ε

)
for ε ∈ (0, 1], we obtain for the

choice of ε = 1
N that

ΔN, 1
N (i) − ΔN, 1

N (i + 1) ≥ e−iβi
N ,

where βi
N = e

−i
N−1 − e−1.

Now, since D0(iε) = D0(ε)e
i−1
iε , again for the choice of ε = 1

N , it follows that

Δ̃(N) ≥
N∑

i=1

D0(
1
N

)eN− N
i e−iβi

N ≥ �
√

N	D0(
1
N

)eN−2
√

Nβ
√

N
N .

Therefore, since D0( 1
N ) = e− 1

N , for N ≥ 3 we obtain that

regret(n) = NE[µ] + (n − N)�
√

N	e−2
√

Nβ
√

N
N ,

For N < 3, noting that Δ(N) is a non-increasing function of N , we have
Δ(1),Δ(2) ≥ Δ(3), hence

regret(n) = NE[µ] + (n − 2)�
√

3	e−2
√
3β

√
3

3 .

By optimizing over N , it can be found that

regret(n) ≥ A ln2(n)

where A = E[µ]
5 . But, since ε∗

0(n) ≤ 2
ln(n) , the order of the regret is larger by a

logarithmic factor than the lower bound on the regret of Equation (4).

�

4 Extensions

In this section we discuss two extensions of the basic model, the first is the case
in which the time horizon is not specified, leading to an anytime algorithm, and
the second is the non-reatainable arms model.

4.1 Anytime Algorithm

Consider again the retainable arms model, but assuming now that the time
horizon is unspecified. Under Assumption 1 and a mild condition on the tail of
the value probability distribution, the proposed algorithm achieves a regret of
the same order as the lower bound of Equation (5).

The presented algorithm is a natural extension of Algorithm 1. Here, instead
of sampling a certain number of arms at the first phase (as a function of the
time horizon) and then sampling the best one among them at the second phase,
the algorithm insures that at every time step, the number of sampled arms is
larger than a threshold which is a function of time. Since the number of sampled
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Algorithm 2. The Anytime Optimal Sampling Algorithm for Retainable Arms
– AT-OSR Algorithm
1: Input: D(ε), an upper bound on the tail function.
2: Initialization: m = 0 the number of sampled arms.
3: Compute ε∗(t) as defined in (3).
4: if m < � 1

ε∗(t)
� + 1 then

5: Sample a new arm, update t = t + 1 and return to step 3.
6: else
7: Pull the best arm so far, update t = t + 1 and return to step 3.
8: end if

arms is increasing gradually, the upper bound on the regret obtained here is
worse than that obtained in the case of known time horizon. However, we show
in Corollary 2 that it is of the same order, under an additional condition.

We note that applying the standard doubling trick to Algorithm 1 does not
serve our purpose here, as it would add a logarithmic factor to the regret bound.

In the following Theorem we provide an upper bound on the regret achieved
by the proposed Algorithm.

Theorem 3. Under Assumption 1, for every n > 1, the regret of Algorithm 2
is upper bounded by

regret(n) ≤ Me
α

e − α

n∑
t=2

1
tε∗(t)

+
1

ε∗(n)
+ 2 , (16)

where ε∗(n) is defined in (3), and M and α are as defined in Assumption 1.

As 1
ε∗(n) ≥ 1

ε∗(t) for t ≤ n, it is obtained that in the worst case, the bound in
Equation (16) is larger than the lower bound in Equation (5) by a logarithmic
term. However, as shown in the following corollary, under reasonable conditions
on the tail function D(ε), the bound in Equation (16) is of the same order as
the lower bound in Equation (5).

Corollary 2. If B1t
γ ≤ D(ε) ≤ B2t

γ for some constants 0 < B1 ≤ B2 and
0 < γ, then

regret(n) ≤
(

2Me
α

e − α

(
B2

B1

) 1
1+γ

(1 + γ) f(n) + 1

)
1

ε∗(n)
+ 2 (17)

where f(n) =
(

n+1
n

) 1
1+γ ; note that f(n) → 1 asymptotically.

Example 1 (continued). When D(ε) = Θ
(
ε1/β

)
, it follows that 1

ε∗(t) =

Θ
(
n

β
1+β

)
. Therefore, the condition of Corollary 2 holds.
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Proof of Corollary 2: Under the assumed condition B′
1t

γ′ ≤ 1
ε∗(t) ≤ B′

2t
γ′

,

where B′
1 = B

1
1+γ

1 , B′
2 = B

1
1+γ

2 and γ′ = 1
1+γ . Therefore,

n∑
t=2

1
tε∗(t)

≤
∫ n+1

t=2

1
(t − 1)ε∗(t)

≤
∫ n+1

t=2

2
tε∗(t)

≤ 2B′
2

γ′ (n+1)γ′≤2B′
2f(n)

B′
1γ

′
1

ε∗(n)
.

Therefore, by Equation (16), Equation (17) is obtained.

�

Proof of Theorem 3: Recall the notation VN (1) for the value of the best arm
found by sampling N different arms. We bound the regret by

regret(n) ≤ E

[
1 +

n∑
t=2

I (Et) + (μ∗ − Vt(1)) I
(
Et

)]
,

where Et =
{

mt < � 1
ε∗(t)	 + 1

}
, and I(·) is the indicator function.

Since � 1
ε∗(t)	 + 1 is a monotone increasing function it follows that

1 +
n∑

t=2

I (Et) ≤ � 1
ε∗(n)

	 + 2 .

Recall that Δ(t) = E[μ∗ − Vt(1)], then, since Vt(1) is non-decreasing, by Equa-
tions (11)-(14), we obtain that

E

[
n∑

t=2

(μ∗ − Vt(1)) I
(
Et

)] ≤
n∑

t=2

Δ

(
� 1
ε∗(t)

	 + 1
)

≤
n∑

t=2

Me
α

e − α
D(ε∗(t)) .

Also, by Equation (3),
n∑

t=2

D(ε∗(t)) ≤
n∑

t=2

1
tε∗(t)

.

Combining the above yields the bound in Equation (16). 
�

4.2 Non-retainable Arms

Here the learning agent is not allowed to reuse a previously sampled arm, unless
this arm was sampled in the last time step. So, Algorithm 1 cannot be applied to
this model. However, the values of previously chosen arms can provide a useful
information for the agent. In this section we present an algorithm that achieves a
regret that is larger by a sublogarithmic term than the lower bound in Equation
(5). The following additional assumption will be required here.

Assumption 2

D(ε) ≤ C

(
ε

ε0

)τ

D(ε0)

for every 0 < ε0 ≤ ε ≤ 1 and constants C > 0 and τ > 0.
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Algorithm 3. The Optimal Sampling Algorithm for Non-Retainable Arms –
OSN Algorithm
1: Input: An upper bound D(ε) on the tail function, time horizon n > 1, and τ under

which Assumption 2 holds.
2: Compute ε∗(n) as defined in (3).

3: Sample N = �ln− 1
1+τ (n) 1

ε∗(n)
� + 1 arms and keep the value of the best one.

4: Continue by pulling until observing a value equal or greater than the saved best
value. Then, continue by pulling this arm up to the last stage n.

Assumption 2 holds, in particular, in Example 1 for τ = 1
β .

The proposed algorithm is based on sampling a certain number of arms, such
that the value of the best one among them is on one hand large enough, and
on the other hand the probability of finding another arm with a larger value
is also high enough. Thus, after sampling that number of arms, the algorithm
continues by pulling new arms until it finds one with a larger (or equal) value
than all previously sampled arms.

In the following theorem, we provide an upper bound on the regret achieved
by the presented algorithm.

Theorem 4. Under Assumptions 1 and 2, for every n > 1, the regret of Algo-
rithm 3 is upper bounded by

regret(n) ≤
(

1 + ln
τ

1+τ (n)
(

CMe
α

e − α
+

2
ln(2)

))
1

ε∗(n)
+

2 ln
τ

1+τ (n)
ln(2)

+1 (18)

where ε∗(n) is defined in Equation (3), M and α are as defined in Assumption
1 and C and τ are as defined in Assumption 2.

Proof: For N ≥ 1, recall that VN (1) stands for the value of the best arm
found by sampling N different arms and that Δ(N) = E[μ∗ − VN (1)]. Clearly,

regret(n) ≤ N + (n − N)Δ(N) + E[Y (VN (1))] , (19)

where the random variable Y (V ) is the number of arms sampled until an arm
with a value larger or equal to V is sampled. The second term in Equation (19)
can be bounded similarly to the second term in Equation (10). Namely, since
N ≥ ln− 1

1+τ (n) 1
ε∗(n) ,

Δ
N,ln

1
1+τ (n)ε∗(n) ≤ Δ

N,ln
1

1+τ (n)ε∗(n)
0 ,

and then, by Assumption 2,

Δ
N,ln

1
1+τ (n)ε∗(n)

0 ≤
N∑

i=1

MD(ln
1

1+τ (n)ε∗(n))αie1−i < C ln
τ

1+τ (n)Me
α

e − α
D(ε∗(n)).
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Thus, as shown in the proof of Theorem 2,

(n − N)Δ(N) < nC ln
τ

1+τ (n)Me
α

e − α
D(ε∗(n)) ≤ C ln

τ
1+τ (n)Me

α

e − α

1
ε∗(n)

.

(20)
For bounding the third term, let

ε̂γ = sup{ε ∈ [0, 1]|D(ε) ≤ γ} ,

and note that
P (µ ≥ μ∗ − γ) = ε̂γ . (21)

Now, let us define:

ε1 = ε̂γ1 , γ1 = D(
1
n

) ,

as well as the following sequence:

εi+1 = ε̂γi+1 , for γi+1 = D(2εi), ∀i ≥ 1 .

Let M be such that εM is the first element in the sequence which is larger or
equal to one, and set εM = 1. Then, since D(εi+1) = D(2εi) = γi+1 ∀i ≥ 1, and
E[Y (V )] is non-decreasing in V , we obtain that

E [Y (VN (1))] = E [E [Y (VN (1))] |VN (1)]

≤
M∑
i=1

E [Y (μ∗ − γi)] P (μ∗ − γi ≥ VN (1) > μ∗ − γi+1)

≤
M∑
i=1

E [Y (μ∗ − γi)] P (VN (1) > μ∗ − γi+1) � ΦN .

(22)

Then, by the expected value of a Geometric distribution, Equation (21), and the
fact that γi = D(εi), we obtain that

E [Y (μ∗ − γi)] =
1
εi

.

Also, since γi+1 = D(2εi), it follows that

P (VN (1) > μ∗ − γi+1) ≤ 2Nεi .

So, since M ≤ ln(n)
ln(2) , we have

ΦN ≤
M∑
i=1

2N ≤ 2N
ln(n)
ln(2)

≤ 2 ln
τ

1+τ (n)
ln(2)

(
1

ε∗(n)
+ 1

)
. (23)

By combining Equations (19), (20), (22) and (23) the claimed bound in Equa-
tion (18) is obtained.


�
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We note that a combined model which considers the anytime problem for the
non-retainable arms case can be analyzed by similar methods. However, we do
not consider this variant here.

5 Experiments

We next investigate numerically the algorithms presented in this paper, and
compare them to the relevant algorithms from [7,11]. We remind that the present
deterministic model was only studied in [7], while the model considered in [11]
is similar in its assumptions to the presented one in that only the form of the
tail function (rather the exact value distribution) is assumed known. Since the
algorithms in [11] are analyzed only for the case of Example 1 (i.e. D(ε) =
Θ

(
εβ

)
), we adhere to this model with several values of β for our experiments.

The maximal value is taken μ∗ = 0.99, but is not known to the learning agent.
In addition to that, since the algorithms presented in [11] were planned for the
stochastic model, they apply the UCB-V policy on the sampled set of arms.
Here, we eliminate this stage which is evidently redundant for the deterministic
model considered here.

5.1 Retainable Arms

For the case of retainable arms and a known time horizon, we compare Algo-
rithm 1 with the KT&RA Algorithm presented in [7] and the UCB-F Algorithm
presented in [11]. Since in [11], just an order of the number of arms needed to be
sampled is specified (and not exact number), we consider two variations of the
UCB-F Algorithm, one with a multiplicative factor of 10, and the other with a
multiplicative factor of 0.2.

Table 1. Average regret for the retainable arms model for the known time horizon
case.

Time Horizon

β = 0.9 β = 1 β = 1.1

Algorithm 4 × 104 7 × 104 10 × 104 4 × 104 7 × 104 10 × 104 4 × 104 7 × 104 10 × 104

UCB-F-10 574 740 870 1022 1350 1612 1376 1847 2227

UCB-F-0.2 1043 1410 1778 1043 1410 1778 1129 1445 1764

KT&RA 423 578 705 568 787 970 738 1035 1276

Algorithm 1 242 307 360 287 388 460 381 515 626

In Figure 1, we present the average regret of 200 runs vs. the time horizon
for β = 0.9, β = 1 and β = 1.1. The empirical standard deviation is smaller
than 5% in all of our results. As shown in Figure 1 and detailed in Table 1, the
performance of Algorithm 1 is significantly better than the other algorithms.
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Fig. 1. Average regret (y-axis) vs. the time horizon (x-axis) for β = 0.9, β = 1 and
β = 1.1.

5.2 Anytime Algorithm

For the retainable arms model and unspecified time horizon, we compare Algo-
rithm 2 with the UCB-AIR Algorithm presented in [11]. Since, these algorithms
are identical for β ≥ 1, we run this experiment for β = 0.7, β = 0.8 and β = 0.9.
In Figure 2 we present the average regret of 200 runs vs. the time. It is shown
in Figure 2 and detailed in Table 2 that the average regret of Algorithm 2 is
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Fig. 2. Average regret (y-axis) vs. time (x-axis) for β = 0.7, β = 0.8 and β = 0.9.
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Table 2. Average regret for the retainable arms model for the unknown time horizon
case.

Time Horizon

β = 0.7 β = 0.8 β = 0.9

Algorithm 4 × 104 7 × 104 10 × 104 4 × 104 7 × 104 10 × 104 4 × 104 7 × 104 10 × 104

UCB-AIR 414 667 808 440 589 710 486 646 771

Algorithm 2 264 341 402 305 389 414 542 642 1764
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Fig. 3. Average regret (y-axis) vs. the time horizon (x-axis) for β = 0.9, β = 1 and
β = 1.1.

smaller and increasing slower than that of the UCB-AIR Algorithm. Here the
empirical standard deviation is smaller than 7% in all of our results.

Table 3. Average regret for the non-retainable arms model.

Time Horizon

β = 0.7 β = 0.8 β = 0.9

Algorithm 4 × 104 7 × 104 10 × 104 4 × 104 7 × 104 10 × 104 4 × 104 7 × 104 10 × 104

KT&NA 12800 16460 19760 13670 18800 22760 18850 24950 30170

Algorithm 3 418 741 983 509 646 791 674 1048 1277

5.3 Non-Retainable Arms

In the case of non-retainable arms and a fixed time horizon, we compare Algo-
rithm 3 with the KT&NA Algorithm presented in [7]. As in the previous case,
we present in Figure 3 the average regret of 200 runs vs. the time horizon for
β = 0.9, β = 1 and β = 1.1. Here, the empirical standard deviation is smaller
than 10% in all of our results. As shown in Figure 3 and detailed in Table 3,
Algorithm 3 outperforms the KT&NA Algorithm.
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6 Conclusion and Discussion

In this work we provided algorithms with tight bounds on the cumulative regret
for the infinitely-many armed problem with deterministic rewards. Our central
assumption is that the tail function D0(ε) is known, to within multiplicative
constant. The basic algorithm was extended to the any-time case and to the
model with non retainable arms.

A major challenge for future work is further relaxation of the requirement of
a known upper bound on the tail function D0(ε). Initial steps in this direction
were presented in [7].
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