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7.1 Stochastic System Simulation

Up till now we have considered the simulation of random variables, without specific

reference to their origin. An important application of MC method is to the performance

evaluation and optimization of stochastic systems. Such systems arise naturally in all

areas of science and engineering, and due to their complexity simulation and Monte

Carlo methods are widely used in their analysis.

7.1.1 Discrete-Event Dynamic Systems

Familiar models for stochastic systems include continuous time and discrete time sys-

tems, often modeled as state-space systems driven by noise. Another important class is

discrete-event dynamic systems (DEDSs), where the observed system state changes only

at certain time instances, which need need be uniformly spaced.

Some discrete event systems can be modeled as Markov chains (in discrete or continuous

time), but most cannot. Consider the following examples:

– An M/M/1 queue.

– A GI/G/1 queue.

– A tandem queueing network.

The area of DEDS simulation is wide and covered by many textbooks as well as various

simulation environments and languages. The common approach to simulation of DEDSs

employs an event list, on which pending events (such as the next arrival, the next

machine failure) are listed along with their occurrence time. This events are ordered

chronologically according to their future occurrence time, and the next event is chosen

from the top of the list. Processing of an event includes adding new pending events to

the list.
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7.1.2 Statistical Analysis of Dynamic Systems

Dynamic simulation deals with systems that evolve stochastically over time. Our goal

is to estimate the expected system performance with respect to pre-defined performance

criteria. Let the state of the system be described by a stochastic process Xt. We can

identify two types of system simulation types, according to the performance criteria of

interest:

1. Finite time (or single-shot) simulation

2. Steady-state simulation.

The first involves simulating the system up to a given time or event. Typical quantities

that can be estimated in this framework include:

• E(g(XT )|X0 = x0).

• P (Xt ≥ γ for some t ∈ [0, T ]|X0 = x0)

• E(τA|X0 = x0), where τA = inf{t > 0 : Xt ∈ A}

All these examples can be cast in the familiar form of estimating ℓ = E(Z), and the

methods described before for this problem are applicable. Basically, N independent

simulation runs of the system from the specified initial conditions x0 are carried out, the

value of Z is obtained in each, and the estimate is obtained as the average 1
N

∑N
i=1 Zi.

Various variance reduction methods such as importance sampling can be employed here

as well.

Steady state simulation, as the name implies, is used to estimate steady-state perfor-

mance measures. To be specific, suppose (Xt) is a continuous-time Markov process with

a unique stationary distribution π(x). We wish to estimate

ℓ = E(H(X)), X ∼ π

Assuming π is also the limiting distribution, this is equivalent to estimating, for some

initial condition X0,

ℓ = lim
t→∞

E(H(Xt))

or, under ergodicity conditions,

ℓ = lim
T→∞

1

T

∫ T

0

H(Xt)dt .
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More generally, assume that Zt = H(Xt) is a random process for which the last limit

exists. We wish to estimate ℓ.

A steady state quantity (ℓ) is typically estimated using one long simulation run of the

system. A natural estimator is

ℓ̂T =
1

T

∫ T

0

H(Xt)dt .

Under some mild condition, the LLN convergence ℓ̂T → ℓ is accompanies by a CLT of

the form √
T (ℓ̂T − ℓ) → N(0, σ2)

(convergence in distribution to a normal RV), implying

ℓT ≈ ℓ+
σ√
T
V, V ∼ N(0, 1) ,

from which confidence intervals can be deduced as usual.

The problem is estimating σ2, which is mostly done empirically. There are two popular

approaches:

a. The batch means method: Given the simulation run (Xt, 0 ≤ t ≤ T ), we may

form the straightforward estimate

ℓ̂ =
1

T −B

∫ T

B

H(Xt)dt .

The problem is how to estimate the variance. For that purpose, the interval [B, T ] is

divided into N sub-intervals (or batches) of length T1 = (T −B)/N each, and the partial

estimators

ℓ̂k =
1

T1

∫ B+kT1

B+(k−1)T1

H(Xt), k = 1, . . . , N

are computed. Note that ℓ̂ = 1
N

∑N
k=1 ℓ̂k.

The batch size T1 is ideally chosen to be long enough so that the estimates ℓ̂k are approx-

imately independent. An estimate of the variance of ℓk with corresponding confidence

interval can now be obtained empirically as in CMC. The number of batches N should

typically be chosen in the range 20-30 to obtain a reasonable estimate of the variance.

There also exist formulas that correct for dependence among batches in the empirical

calculation of the variance and confidence intervals.
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b. The regenerative method: A stochastic process (Xt) is regenerative if there exist

random times points T0 < T1 < . . . such that, essentially, the subprocesses (Xt, Ti−1 ≤
t < Ti) are independent and identically distributed. Typically the times Ti are arrival

times to a particular state. For example, in a GI/G/1 queue, the regeneration times

may be taken as the arrival times to an empty system.

We further assume that E(Ti − Ti−1)is finite.

Under some additional mild conditions, the process (Xt) has a limiting distribution

π, which we represent by a random variable X ∼ π. Let (R, τ) be random variables

distributed as (Ri, τi). It is known, by the reward-renewal theorem, that

ℓ = E(H(X)) = lim
t→∞

E(H(Xt)) =
E(R)

E(τ)
.

Let

Ri =

∫ Ti

Ti−1

H(Xt)dt, τi = Ti − Ti−1

An estimate for ℓ can now be formed be simulating the process over N regenerative

cycles, and computing

ℓ̂N =
R̂

τ̂

△
=

1
N

∑N
i=1Ri

1
N

∑N
i=1 τi

We note that this estimate is biases, but converges to ℓ as N is increased. An empirical

estimate of the variance can also be formed from the pairs (Ri, τi), by observing the

CLT: √
N(ℓ̂N − ℓ) → N(0, η2)

where

η2 =
E(R− ℓτ)2

(Eτ)2
.

This variance can be estimated empirically using

(η̂N)
2 =

1
N−1

∑N
i=1(Ri − ℓ̂Nτi)

2(
1
N

∑N
i=1 τi

)2 ,

with corresponding δ-confidence intervals

ℓ̂N ± z1−δ/2η̂N/
√
N .
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7.2 Sensitivity Analysis and Parametric Optimization

Consider a stochastic system, whose performance measure depends a system parameter

u. We wish to optimize this performance by selecting an optimal parameter.

In general we may write a expected performance measure as

ℓ(u) = IEu1 [H(X;u2)] =

∫
H(x;u2)f(x;u1)dx ,

where u = (u1, u2) is the parameter vector. We refer to the parameters in u1 as distribu-

tional parameters, es they affect the distribution of the basic random variables that drive

the system: For example, the arrival rate or service distribution in a queueing system.

The parameters in u2 are structural parameters, for example the buffer size or routing

algorithm.

Our goal is to find parameters u that optimize the system performance:

min
u∈U

ℓ(u) .

A more general problem may consider multiple performance criteria, e.g., in the con-

strained form:

min ℓ0(u), s.t. ℓ1(u) ≤ 0 .

For complex systems, where analytical solutions are not available, Monte Carlo simula-

tion provides a major tool for system optimization.

A key step in optimizing over continuous parameter is of course evaluation of the gradi-

ent, ∆uℓ(u.

7.2.1 The Score Function Method

We focus here on the case of distributional parameters: ℓ(u) = IEu(H(X), and, for

simplicity of presentation, on the case of a scalar parameter u.

The Score Function method allows to estimate the gradient ∆ℓ(u) (as well as higher

derivatives) for a given value of the parameter u, using a single simulation run of the

system.

The following derivation holds under appropriate regularity conditions, that allow in

particular changing the order of differentiation and expectation. We assume that these
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hold without further mention. We then have

∇ℓ(u) =
d

du

∫
H(x)f(x;u)dx =

∫
H(x)

d

du
f(x;u)dx

= ... = Eu[H(x)S(u;x)] ,

where

S(u; x) =
d

du
ln f(x;u)

is the score function. The score function is easy to compute explicitly for common

distributions, such as Exponential, Normal, Binomial, Poisson, etc.

The last expectation may now be evaluated using standard MC:

∇̂ℓ(u) =
1

N

N∑
i=1

H(Xi)S(u;Xi) Xi ∼ f(x;u) .

We observe that the function ℓ(u) as well as the derivative with respect to different

components of u can all be estimated from a single run of the system, with Xi ∼ f(x;u).

We can further employ importance sampling to evaluate gradients of different parameter

values u from a single run of the system with a fixed parameter v. That is

∇̂ℓ(u) =
1

N

N∑
i=1

H(Xi)S(u;Xi)
f(Xi;u)

f(Xi; v)
, Xi ∼ f(x; v)

We mention that the later method caries the advantages and disadvantages of Impor-

tance Sampling – in particular, the samples may degenerate when f(x;u) and f(x; v)

are different, especially in problems with a large number of parameters (n > 10).

The score function method (and similar sensitivity analysis methods) can be extended

to stochastic systems (e.g., Markov chains and regenerative processes).

7.2.2 The Stochastic Counterpart Method

Consider the optimization problem

min
u

ℓ(u) = min
tu

Eu1H(X;u2) .

The underlying idea in the stochastic counterpart approach is to replace the expected

value with sample means, using IS, and then solve the resulting deterministic optimiza-

tion problem.
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Let Xi ∼ f(x; v1). Then

ℓ̂(u) =
1

N

N∑
i=1

H(Xi;u2)
f(Xi;u1)

f(Xi; v1)

The above sum is a deterministic function of u = (u1, u2), which can be optimized using

iterative optimization algorithms.
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7.3 Mixing Times of Markov Chains

We provide a brief glimpse at bounds on the mixing times of (finite, reversible) Markov

chains. A lucid introduction to the subject can be found in the textbook

D. Levine, Y. Peres, and E. Wilmer, Markov Chains and Mixing Times, AMS, 2008.

A number of probabilistic techniques are available, we only quote here some results that

are based on bounding the eigenvalues of the transition matrix.

7.3.1 Basic Definitions

For two probability distributions µ and ν on a finite set Ω, the total variation distance

is defined as

∥µ− ν∥TV
△
= max

A⊂Ω
|µ(A)− ν(A)|

=
1

2

∑
x∈Ω

|µ(x)− ν(x)| .

Let P = (P (x, y)) denote the transition matric of a finite Markov chain. Then P t is the

associated t-stage transition matrix, and P t(x, ·) is the state distribution after t steps,

starting from state X0 = x.

Theorem 7.1 (Exponential Convergence) Suppose that P is irreducible and aperi-

odic, with (unique) stationary distribution π. Then there exist constants α ∈ (0, 1) and

C > 0 such that

max
x

∥P t(x, ·)− π∥TV ≤ Cαt .

Define the following distance from stationarity measure:

d(t)
△
= max

x
∥P t(x, ·)− π∥TV

The ϵ-mixing time can now be defined as

tmix(ϵ) = min{t ≥ 0 : d(t) ≤ ϵ} .

and the mixing-time as

tmix = tmix(
1
4
) .

It can be shown that tmix(ϵ
k) ≤ k · tmix(

ϵ
2
). In particular, tmix(0.5

k) ≤ k · tmix.
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Recall that the eigenvalues {λ} of the transition matrix P satisfy |λ| ≤ 1, and 1 is always

an eigenvalue. If P is irreducible, then 1 is a simple eigenvalue. If P is irreducible and

aperiodic, then 1 is the only eigenvalue with |λ| = 1.

7.3.2 Reversible Chains

Recall that P is reversible if there exists a probability distribution π = (π(x)) so that

π(x)P (x, y) = π(y)P (y, x), in which case π is a stationary distribution of P . It is easy to

verify the following property (e.g., by noting that P is similar to a symmetric matrix):

Proposition 7.1 If P is reversible, then all its eigenvalues are real.

We can therefore arrange these eigenvalues in decreasing order:

1 = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ −1 .

If P is irreducible then λ2 < 1, and if P is aperiodic then λn > −1.

Let λ∗ = maxi≥2 |λi|. The difference γ∗ = 1− λ∗ is called the absolute spectral gap, and

γ = 1− λ2 is the spectral gap. We refer to trel = 1/γ∗ as the relaxation time.

Remark: If |λn| is close to one, we can modify P to P̃ = (1 − ϵ)P + ϵI for ϵ > 0.

The latter remains irreducible and reversible, and is also aperiodic with λn > −1 + ϵ.

Therefore, we may focus on λ2 as the critical eigenvalue.

If P is aperiodic, it can be shown that limt→∞ d(t)1/t = λ∗, i.e., d(t) ≈ O(λt
∗). More

specifically, the following bounds relate the mixing time to the absolute spectral gap.

Theorem 7.2 Let P be the transition matrix of a reversible, irreducible Markov chain,

and let πmin = minx π(x). Then

log(
1

2ϵ
)(trel − 1) ≤ tmix(ϵ) ≤ log

(
1

ϵπmin

)
trel .

7.3.3 The Bottleneck Ratio

Let P be an irreducible and aperiodic transition matrix with stationary distribution π.

Denote

Q(x, y) = π(x)P (x, y), Q(A,B) =
∑

x∈A,y∈B

Q(A,B) .
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Here Q(A,B) is the probability of moving from A to B in one step when starting from

the stationary distribution.

The bottleneck ratio of a set S is defined as

Φ(S) =
Q(S, Sc)

π(S)
,

and the bottleneck ratio of the whole chain is

Φ∗ = min
S:π(S)≤0.5

Φ(S) .

If Φ(S) is small, it is “hard” to exit from the set S.

Theorem 7.3 (General lower bound) Let P be irreducible and aperiodic. Then

tmix ≥
1

4Φ∗
.

Theorem 7.4 (Reversible chain) Suppose that P be also reversible. Then the spec-

tral gap γ = 1− λ2 satisfies
Φ2

∗
2

≤ γ ≤ 2Φ∗ .

7.3.4 The Path Method

Let P be reversible, and define the connectivity graph of P as the graph with the state

as the vertices and edges E = {(x, y) : P (x, y) > 0}. An E-path from x to y is defined

in the usual way. Let Q(x, y) = π(x)P (x, y).

For each x, y, let Γxy denote a choice of some path from x to y, of length |Γxy|. Define

B = max
e∈E

1

Q(e)

∑
(x,y):e∈Γxy

π(x)π(y)|Γxy| .

Roughly, the edge that determines B is central, in the sense that many paths go through

it.

Theorem 7.5 Let P be a reversible and irreducible transition matrix with stationary

distribution π. Then the spectral gap γ = 1− λ2 satisfies γ ≥ B−1.

This result is actually a special case of the following comparison result, which allows to

obtain bounds for perturbations of ”nice” chains.
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Theorem 7.6 (Comparison Theorem) Let P and P̃ be reversible transition ma-

trices, with respective stationary distributions π and π̃. Suppose that for each each

(x, y) ∈ Ẽ there is an E-path from x to y, choose one and denote it by Γxy. Define the

corresponding congestion ratio B by

B = max
e∈E

1

Q(e)

∑
x,y:e∈Γxy

Q̃(x, y)|Γxy| .

Then

γ̃ ≤ (max
x

π(x)

π̃(x)
)Bγ .
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7.4 Splitting Methods

The splitting method is essentially used for estimating rare events. It can also be adapted

to counting problems and others.

Suppose we want to estimate the probability P (E) of a rare event E (i.e., P (E) << 1)

for some Markov process (Xt). The standard MC approach is to simulate N independent

copies of (Xt), count the number N1 that satisfied E, and estimate P (E) ≈ N1

N
. The

problem of course is the relative variance.

Define a sequence of events E1, . . . , En so that

E1 ⊃ E2 . . . En = E .

Then

P (En) = P (E1) · P (E2|E1) · ... · P (En|En−1) .

Presumably each of this terms is much larger (less rare) than P (En), and can be esti-

mated more easily.

Example: Suppose (Xt, t ≥ 0) is a Markov chain, starting from x0. Let E be the event

that f(Xt) hits a level γ >> 1 before it hits 0.

Define Ei as the event that Xt hits γi before it hits 0, where γ1 < γ2 < · · · < γn = γ.

Outline:

• Stage 1: Simulate N0 independent copies of the process (Xt), until event E1 or its

complement occur. Let N1 be the number of ’positives’. Record the finishing state

xk, k = 1, . . . , N1 of each of these N1 processes.

• Stage 2: For each of the N1 ’positives’, and run s1 independent copies of the chain

Xt starting from xk, until E2 or its complement occur. Let N2 be the number of

”positives” of these s1N1 trials.

• Repeat the above until En is reached, with Nn ’positives’.

• Set

p̂(En) =
N1

N0

n−1∏
i=1

Ni+1

siNi

=
Nn

N0

1∏n−1
i=1 si

.

Under certain conditions, this turns out to be an unbiased estimate of p(En).
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Application to counting:

Consider a problem whose solution is defined by a set Cn = (c1, . . . , cn) of conditions,

such as equations, inequalities, logical expressions, etc. The is, an assignment s ∈ S is

a solution if it satisfies all the conditions. The set S may be discrete or continuous. Let

X\ denote the set of solutions.

Suppose S is discrete (finite), and we wish to find the number of solutions, |Xn|. Many

(hard) combinatorial problems fall into this framework. (For a concrete example, con-

sider the number of satisfying solutions of a predicate in DNF form. This problem is in

the so called sharp-P complexity class.)

As before, we could draw N random elements s uniformly from S, and count the number

N1 of solutions, and estimate |Xn| ≈ |S|N1

N
. And again this is not practical if the relative

number of solution is small.

Define then Xi as the set of assignments s ∈ S that satisfy Ci = (c1 . . . , ci), with X0 = S.

Note that

|Xn| = |X0|
n∏

i=1

|Xi|
|Xi−1|

.

We can now apply a similar splitting approach as before:

– Start by sampling uniformly from S = X0.

– Keep only the solutions in X1, and duplicate each s1 times.

– Continue sampling uniformly from X1 (typically, by using an MCMC/Gibbs sampler

which starts from the duplicated samples).

– Etc.

This approach may also be applied to estimation the volume of a continuous set, defined

by (a large number of) inequalities.
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