
5 Sequential Importance Sampling and

Particle Filters

We next describe a sequential implementation of Importance Sampling, which applies to

a sequence X = (x1, . . . , xn) of random elements. We then consider an application and

extension of this idea in the context of state estimation in dynamic systems, leading to

the important Particle Filtering algorithm.

5.1 Sequential Importance Sampling

Recall the basic IS scheme for estimating ℓ = Ef (H(X):

ℓ̂ =
1

N

N∑
i=1

H(Xi)W (Xi), Xi ∼ g, W (Xi) =
f(Xi)

g(Xi)
.

Suppose that X includes several components, X = (x1, . . . , xn). These can simply

represent the elements of a random vector, or, more interestingly, the components of a

random process. Recall that f(x1, . . . , xn) can always be decomposed as

f(x1, . . . , xn) = f1(x1)f2(x2|x1) · · · fn(xn|x1:n−1) .

Here we use the shorthand notation x1:k = (x1, . . . , xk). Note that while this decompo-

sition is always valid, it often reflects the actual definition of X.

Let the IS (importance/proposal/trial) distribution g be defined through a similar de-

composition:

g(x1, . . . , xn) = g1(x1)g2(x2|x1) · · · gn(xn|x1:n−1) .

We can now sample the elements of X ∼ g sequentially, namely:

1. Sample x1 ∼ g1(·)

2. For k = 2 to n, sample xk ∼ gk(·|x1:k−1)

3. Output X = (x1:n), W (X) =
f(x1:n)

g(x1:n)

Monte Carlo Methods – Lecture Notes, Nahum Shimkin, Spring 2015

5-1

The next step is to compute the weights recursively as well. Note that

W (X) =
f1(x1)f2(x2|x1) · · · fn(xn|x1:n−1)

g1(x1)g2(x2|x1) · · · gn(xn|x1:n−1)
.

This leads to the following basic SIS scheme for obtaining a single sample X ∼ g and

W (X):

1. Sample x1 ∼ g1(·), set w1 =
f1(x1)

g1(x1)

2. For k = 2 to n:

sample xk ∼ gk(·|x1:k−1), set wk =
fk(xk|x1:k−1)

gk(xk|x1:k−1)
wk−1

3. Output X = (x1:n), W (X) = wn

Example 1: Random walk on the integers. [RK, Example 5.15]

Consider a random walk x0, x1, . . . on the integers, with probabilities p and q = 1 − p

for jumping up or down by one unit:

p(xk+1 = i+ 1|xk = i) = p, p(xk+1 = i− 1|xk = i) = q, i ∈ Z .

Suppose p < q (negative drift), and let x0 = 0. Our goal is to estimate the following

rare-event probabilities:

a. The probability that xn ≥ K, where K and n are given integers so that

1 ≪ K < n.

b. The probability that (xk) reaches K before it reaches −k, where k ≪ K.

a. Observe first that

f(xk|x1:k−1) = f(xk|xk−1) = p1{xk=xk−1+1} + q1{xk=xk−1−1}

As an IS distribution g we will a random walk with different parameters p1 and q1 =

1 − p1, for which the events in interest become less rare (a reasonable first choice is

p1 = q). Therefore,

fk(xk|x1:k−1)

gk(xk|x1:k−1)
=

p

p1
1{xk=xk−1+1} +

q

q1
1{xk=xk−1−1}

△
= u(xk|xk−1) .

The above SIS may now be applied.

5-2

b. In this case, the length of the sampled sequence is not fixed. Rather, we need to

draw x1, x2, . . . up to the first time τ where either −k or K are reaches. Observe that

the time τ thus defined is a stopping time with respect to the process (xk).

We can still use the SIS scheme, where now each sample X is the sequence (x1, . . . , xτ),

and the corresponding weight is given by

W (X) =
τ∏

k=1

u(xk|xk−1) ,

with an obvious recursive version.

Example 2: Self-avoiding random walk in the plane. [Liu, Section 3.1]

Simulations of molecular chains provided the original motivation for SIS-related algo-

rithms, dating back to the 1950s, and are still of current interest in biology and chem-

istry. The self-avoiding random walk (SAW) in two or three dimensions is often used

as a simple model for chain polymer growth. We describe the most basic model in

two dimensions. A chain polymer of length n is described by x = (x1, . . . , xn), where

xk = (a, b) ∈ Z2 is the position of the k-th molecule, restricted to the two-dimensional

integer grid. The distance between xk and xk+1 has to be exactly one (a unit change in

one coordinate), and no two molecules can occupy the same position.

Assuming equal energy for all legal configurations, the corresponding Boltzmann distri-

bution is the uniform one. One would like to estimate relevant physical quantities of

the chain, such as the mean square extension E||xn − x1||2. A naive way to sample uni-

formly would be to start with x1 = (0, 0), and grow the chain sequentially by choosing

xk − xk−1 ∈ {(0,±1), (±1, 0)} with equal probabilities. If self-intersection occurs the

sequence is rejected. The problem with this method is that most samples are rejected:

already for n = 50, less than 1% of the trials are retained.

An apparent remedy is to avoid occupied positions, and continue to sample randomly

over the free adjacent ones. However, such a sampling strategy results in non-uniform

distribution, which favors compact configurations (why?).

Using the SIS framework, we can identify the IS distribution g and associated weights.

For a given subsequence (x1, . . . , xk−1), k ≥ 3, let mk ≤ 3 denote the number of free

spots for xk. Then xk is chosen as one of these positions with equal probabilities (of

1/mk). It further follows that for any chosen xk,

fk(xk|x1:k−1)

gk(xk|x1:k−1)
= (?)

5-3

This implies

W (X) = (?)

We note that the problem of “attrition” (sample rejection) is not completely solved, as

in some configurations there will not be any free neighbors (mk = 0): the process runs

into a dead end. This becomes severe again for very long chains (n > 200). A number of

methods have been devised to further address the problem. We only mention one – that

of looking several steps ahead, and avoiding moves that inevitably lead to an impasse

(with a suitable compensation in the weights). In this context, the method described

above can be considered as a one-step lookahead, and its extensions as multiple-step

lookahead.

5.2 Degeneracy and Resampling

A major problem in sequential SIS is that of sample degeneracy. If n is large, the weights

of most samples (Xi,W (Xi)) become small, while only a few remain significant. This

does not allow accurate estimates. Many schemes have been proposed to address this

issue. We briefly describe here the basic approach of resampling at intermediate steps.

This will also lead us to the topic of particle filters for nonlinear state estimation, where

this method has apparently originated.

Recall that in SIS we generate each sample (Xi,W (Xi)) recursively, by generating the

intermediate sequence

(xi
1, w

i
1), (x

i
1:2, w

i
2), . . . , (x

i
1:n, w

i
n) .

We conveniently refer to (xi
1:k, w

i
k) as the i-th particle at stage k. Here wi

k is the weight

of the particle, and xi
1:k its value. The degeneracy problem can be seen as the gradual

decay (as k increases) of the weights wi
k for most particles.

To apply resampling, we evolve all particle in parallel rather than sequentially. Consider

the particle population (xi
1:k, w

i
k)

N
i=1 after stage k. Some particles will have relatively

large weights, other have smaller ones. The idea is to split particles with large weights

into several particles with a unit weight, and eliminate other particles with small weights,

before continuing to stage k+1. To avoid introducing bias, this can be done using random

sampling as follows.

Random resampling: Sample N ′ particles (with replacement) from the particle popu-

lation (xi
1:k, w

i
k)

N
i=1, with probabilities pi proportional to wi

k, that is pi = wi
k/

∑
iw

i
k.

5-4

Let (x̃i
1:k)

N ′
i=1 denote the values of the sampled particles. We next re-assign the weights

evenly, namely set

w̃i
k ≡ w̃k

△
=

1

N ′

N∑
i=1

wi
k ,

and proceed to stage k + 1 with the new particle set (x̃i
1:k, w̃

i
k).

Remarks:

1. The choice of w̃k above preserves the total weight of all particles. In the basic case

where all particles are evolved an equal number of steps (n), the total weight need

not be preserved as we may simply set w̃i
k = 1 or 1

N ′ . In the more general case

where each particle may be evolved up to some stopping time, the total weight

should be preserved.

2. Resampling does not introduce bias into the estimates. In particular, for a given

particle set (xi
1:k, w

i
k)

N
i=1, the sampled set satisfies∑N

i=1w
i
kh(x

i
1:k)∑N

i=1w
i
k

= E(h(x̃i
1:k)) =

1

N
E(

N∑
i=1

h(x̃i
1:k))

for any function h.

3. Resampling need not be carried out at each stage, but rather once every number

of stages.

3. The number or resampled particles N ′ at each stage does not have to be the same

as the original one N , although it commonly is.

4. There exist some deterministic resampling methods, which allegedly avoid the

added variance introduced by random resampling. Care must be taken of course

to avoid introducing bias.

5-5

5.3 Particle Filters

(separate slides)

5-6

