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9 Multi-Model State Estimation

9.1 Dealing with Model Uncertainty

Kalman filter design is based on some design model, which represents the actual

system. In reality, there is often considerable uncertainty about the system model.

In some cases the systems is too complex to model exactly, and various parameters

(such as noise levels) are not know a-priori. In other cases the system may change

over time, in an unpredictable manner.

When the state is not observed, the problem of estimating the model parameters

is not trivial. For off-line operation, we can use similar schemes to the HMM case

(ML estimation of the parameters, usually via the EM algorithm).

One can distinguish two basic approaches to handle model uncertainty.

a. Robust estimation: The goal here is to find a fixed filter that provides “good-

enough” performance for a wide range of model parameters. Major approaches here

include:

1. Robust Kalman (or H2) filtering: Design filters that give small MSE for all

systems whose parameters belong to a given intervals or set.

2. H∞ filtering: Here the basic approach departs from the Kalman filtering, and

is more robust relative to the noise assumptions. Rather than random noise,

the model considers the ‘noise” processes as deterministic, and the goal is to

minimize the energy of the estimation error signals relative to the noise energy,
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e.g.:

J =

∑N
k=0(xk − x̂k)

′S−1
k (xk − x̂k)

(x0 − x0)′P−1
0 (x0 − x0) +

∑N
k=0(w

′
kQ

−1
k wk + v′kR

−1
k vk)

The resulting filter still has a form similar to the KF, but with different gains.

b. Adaptive state estimation: In this case the filter essentially needs to estimate

both the unknown state xk and the unknown system parameters, namely the system

matrices and/or noise parameters. Many approaches have been developed, among

them:

1. Joint filtering of state and parameters: Here the parameters are appended

to the state vector to create a nonlinear (actually bilinear) system with this

augmented state. Standard on-linear filters (such as the Extended KF) may

may now be used to jointly estimate both. Such procedures should be used

with care, as they often fail to converge. Recently, advanced nonlinear filters

such as the particle filters have been applied to this problem, but their efficacy

is yet to be established in practice.

2. On-line noise tuning: Relatively simple rules can be used to tune model noise

levels when the filter is “diverging” (not behaving correctly). Divergence is

often detected by innovations z̃k that do not match their calculated covariance

Mk, or are not white.

3. Batch estimation of parameters: System and noise parameters are estimated

off-line, based on a batch of measurements. For example, approximate Maxi-

mum Likelihood estimates may be computed directly or using EM iterations

(see the chapter on HMMs). At the other end, heuristic procedures may be

used to estimate noise covariances (see the Appendix for an example to such

a procedure).
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4. Multi-model estimation: This is a simpler alternative to adaptive estimation,

which has shown good on-line performance in practical applications such as

tracking. We discuss this below.

3



9.2 Multi-Model Estimation: Static Case

In this approach, we essentially implement J Kalman Filters in parallel, with each

corresponding to a possible model of the actual system. The state estimation is

computed as a Bayes-optimal combination of the individual estimates.

In more detail, we start here with a finite set of possible system models:

{mj , j = 1, . . . , J}

We make the following assumptions for filter derivation:

• The true system is fixed and coincides with exactly one of these models.

• Each model is linear and Gaussian.

• The prior probability that the true model is mj is given and denoted by p0(m
j)

We implement J Kalman Filters in parallel, with filter j designed according to model

mj. Filter j calculates the estimates x̂j
k = E(xk|Zk,m

j) and covariances P j
k .

The optimal (MMSE) estimate of xk is then given by

x̂k
4
= E(xk|Zk)

=
∑

j

p(mj|Zk)E(xk|Zk,m
j)

4
=

∑
j

µj
kx̂

j
k .

The posterior probabilities µj
k = p(mj|Zk) can be computed recursively. From Bayes’

rule:

p(mj|Zk) =
p(zk|mj, Zk−1)p(mj|Zk−1)∑

j{ -”- }
But p(zk|mj, Zk−1) = p(z̃j

k|mj) with (z̃j
k|mj) ∼ N(0, Sj

k).

To calculate the covariance, note that

p(xk|Zk) =
∑

j

µj
kp(xk|Zk,m

j)
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(this is a mixture of Gaussians distribution). It follows that

Pk|k =
∑

j

µj
k{P j

k|k + (x̂j
k − x̂k)(x̂

j
k − x̂k)

T}

where the last term accounts for the “spread of the means”.
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9.3 Dynamic Multi-Model Estimation

We next consider the case where the system is not fixed, but rather can “jump”

between the models {mj}.

This framework has proved very useful for target tracking. Here different models

may correspond to different target maneuvers.

The simplest way to approach this case is by a heuristic modification to the sta-

tic multi-model filter. Here each pk(m
j) is always kept above some lower bound

pmin(m
j), which prevents it from going to 0. This keeps all models “alive” to some

extent, so that they can kick-in when appropriate.

A more sophisticated approach relies on explicit dynamic multi-model estimation.

The basic formulation here is as follows:

1. Temporal transitions between models are captured through a Markov chain

dynamics:

p(Mk+1 = mj|Mk = mi) = pij .

These transitions are assumed independent of the system state.

2. The system dynamics is

xk = F [Mk]xk−1 + wk−1[Mk]

zk = H[Mk]xk + vk[Mk]

with the noises (conditionally) Gaussian.
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The Optimal Multi-Model Filter

Let Mk = (M0 . . . Mk) denote the model history up to time k.

Let mk,l denote the l-th possible value of Mk (l = 1, . . . , Jk+1).

We can now repeat the Bayesian calculation above for each possible history, to get

an estimate of the form:

E(xk|Zk) =
∑

l

p(Mk = mk,l|Zk)E(xk|Zk,m
k,l)

4
=

∑

l

µk,lx̂l
k .

The coefficients µk,l may be computed as follows.

µk,l 4= p(Mk = mk,l|Zk)

= p(mk,l|Zk−1, zk)

=
1

c
p(zk|mk,l, Zk−1)p(mk,l|Zk−1)

(model measurement update). For the model time update, denote mk,l = (. . . , mi,mj) ≡
(mk−1,s,mj). Then

p(mk,l|Zk−1) = p(Mk−1 = mk−1,s,Mk = mj|Zk−1)

= p(Mk = mj|mk−1,s, Zk−1)p(mk−1,s|Zk−1)

= pijµ
k−1,s

We thus obtain

µk,l =
1

c
p(zk|mk,l, Zk−1)pijµ

k−1,s

where c is a normalization constant. Note that p(zk|mk,l, Zk−1) may be computed

as before using the (Gaussian) innovations distribution in the Kalman filter with

model history mk,l.
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A major problem with the above (exact) approach is the exponential growth of

possible model histories. Suboptimal solutions include:

1. History pruning: Keep only histories with (relatively) high probability.

2. History merging: Keep only last part (1 or 2 steps) of the model history, and

combine histories that differ in older steps. Two variants of this approach are:

• The GPB (generalized pseudo-Bayesian) algorithm

• The IMM (interacting multiple-model) algorithm.

The GPB1 algorithm (generalized pseudo-Bayesian of order 1) uses J filters, with

filter j computing x̂j
k ≈ E(xk|Mk = j).

It starts with initial conditions (x̂0, P0) and weights µj
0 = p(M0 = j). For conve-

nience assume that the first measurement is at time k = 1. Then at stage k ≥ 1 we

start with (x̂k−1, Pk−1, {µi
k−1}) and proceed as follows:

• x̂j
k and P j

k (j = 1 . . . J) are computed using the model Mk = j and “inputs”

(x̂k−1, Pk−1). Similarly, the µj
k’s are computed as

µj
k =

1

c
(
∑

i

µi
k−1pij)p(z̃k|Mk = j) .

• x̂k (and its covariance Pk) is formed as the weighted sum

x̂k =
∑

j

µj
kx̂

j
k .

The GPB2 algorithm (generalized pseudo-Bayesian of order 2) requires J2 filters,

where filter ij computes x̂ij
k ≈ E(xk|Mk−1Mk = ij).

At stage k, it starts with (x̂i
k−1, P

i
k−1, µ

i
k−1) and proceeds as follows:
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• Compute (x̂ij
k , P ij

k , µij
k ) (for all model pairs ij) using the model Mk = j and

“inputs” (x̂i
k−1, P

i
k−1, µ

i
k−1).

• Prepare data for next stage: The estimates x̂ij
k are unified to form the “best”

estimate based on Mk = j:

x̂j
k =

∑
i

(
µij

k

µj
k

)x̂ij
k ,

where µj
k =

∑
i µ

ij
k . P j

k is computed accordingly.

• Compute current estimate: x̂k and its covariance Pk are formed according to

the weighted sum:

x̂k =
∑
ij

µij
k x̂ij

k (=
∑

j

µj
kx̂

j
k) .

The IMM algorithm (interacting multiple-model) is intermediate between GPB1

and GPB2. It uses J filters as in GPB1, but each has different “inputs” which are

obtained by different mixtures of the previous stage outputs.

At stage k we start with (x̂i
k−1, P

i
k−1, µ

i
k−1) and proceeds as follows:

• The new input ˆ̂xj
k−1 to model mj (and corresponding covariance) is computed

as

ˆ̂xj
k−1 =

∑
i

µ
i|j
k−1x̂

i
k−1

with

µ
i|j
k−1 = p(Mk−1 = i|Mk = j, Zk−1) .

These coefficients may be computed using Bayes’ rule.

• Proceed as in GPB1.

The details of all these variants are in Bar-Shalom’s books.
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9.4 Appendix: Adaptive Noise Estimation

Many procedures exist for both on-line and off-line (batch) estimation of noise pa-

rameters. We present here an example of simplified and heuristic off-line procedure

for estimating the noise covariances.

We assume that the model is stationary, and that an (approximate) KF has been

applied for k = 1 . . . N to compute x̂k, Pk, etc. Recall the following relations:

z̃k = zk −Hx̂−k = Hx̃k + vk ,

cov(z̃k) = Mk = HP−
k HT + R (1)

The measurement covariance R is estimated as follows:

1. Estimate the Innovations bias and covariance:

Z =
1

N

N∑

k=1

z̃k

M̂ =
1

N − 1

N∑

k=1

(z̃k − Z)(z̃k − Z)T

2. Use (1) to estimate R:

R̂ = M̂ −H(
1

N

N∑
1

P−
k )HT

To estimate Q = cov(w), recall that

x̃−k+1

4
= xk+1 − x̂−k+1 = F (xk − x̂+

k ) + wk

and consequently Q = F cov(x̃+
k )F T − cov(x̃−k+1).

To approximate cov(x̃+
k ) we can use P+

k . However, we cannot approximate cov(x̃−k+1)

by P−
k+1 as computed by the filter, since since the filter simply computes it as P−

k+1 =
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FP+
k F T + Qk, with Qk the wrong covariance. We therefore approximate xk+1 by

x̂+
k+1, and use

x̃−k ≈ x̂+
k − x̂−k

.
= dk .

This leads to the approximate scheme:

3. Estimate cov(x̃−k ) as the empirical covariance of dk, namely

X =
1

N

N∑
1

dk

P̂− =
1

N − 1

N∑
1

(dk −X)(dk −X)T

4. Compute

Q̂ = P̂− − F (
1

N

N∑
1

P+
k )F T

There are many variants to this scheme that improve the estimation accuracy, and

also some schemes that modify the Kalman gain directly. More details can be found,

for example, in: Stengel, Optimal Control and Estimation, 1986/94.
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