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4 Derivations of the Discrete-Time Kalman Filter

We derive here the basic equations of the Kalman filter (KF), for discrete-time
linear systems. We consider several derivations under different assumptions and

viewpoints:

e For the Gaussian case, the KF is the optimal (MMSE) state estimator.

e In the non-Gaussian case, the KF is derived as the best linear (LMMSE) state

estimator.

e We also provide a deterministic (least-squares) interpretation.

We start by describing the basic state-space model.



4.1 The Stochastic State-Space Model

A discrete-time, linear, time-varying state space system is given by:

Tpr1 = Fpop + Grwg (state evolution equation)

2, = Hix, + v (measurement equation)

for kK > 0 (say), and initial conditions xy. Here:
— F}, Gy, Hj are known matrices.

— a1, € IR" is the state vector.

— wy € IR™ is the state noise.

— 2z, € IR™ is the observation vector.

— vy, the observation noise.

— The initial conditions are given by x(, usually a random variable.

The noise sequences (wy, vg) and the initial conditions xy are stochastic processes

with known statistics.

The Markovian model

Recall that a stochastic process { Xy} is a Markov process if
P( Xk | X, Xy, -+ ) = p( X1 [ Xi) -

For the state x; to be Markovian, we need the following assumption.

Assumption A1l: The state-noise process {wy} is white in the strict sense, namely
all wy’s are independent of each other. Furthermore, this process is independent of

Zg-
The following is then a simple exercise:

Proposition: Under Al, the state process {xy, k > 0} is Markov.
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Note:

e Linearity is not essential: The Marko property follows from Al also for the

nonlinear state equation xyy1 = f(xg, wy).
e The measurement process z; is usually not Markov.

e The pdf of the state can (in principle) be computed recursively via the following

(Chapman-Kolmogorov) equation:

P(Thy1) = /p($k+1|$k)17(xk)dl‘k-

where p(xgy1|zk) is determined by p(wy).

The Gaussian model

e Assume that the noise sequences {wy}, {vx} and the initial conditions x are

jointly Gaussian.

e It easily follows that the processes {z;} and {z.} are (jointly) Gaussian as

well.

e If in addition, A1 is satisfied (namely {wy} is white and independent of z),

then x;, is a Markov process.

This model is often called the Gauss-Markov Model.




Second-Order Model

We often assume that only the first and second order statistics of the noise is known.

Consider our linear system:

Tpy1 — Fkl’k + kak, k > 0

2 = Hpxg + vy,

under the following assumptions:

e wy a 0-mean white noise: E(wy) = 0, cov(wg, w;) = Qxdx-
e vy a 0-mean white noise: E(vg) = 0, cov(vg, v;) = Ryl
e cov(wg,v;) = 0: uncorrelated noise.

e 1 is uncorrelated with the other noise sequences.

denote Ty = E(xg), cov(xg) = Pp.
We refer to this model as the standard second-order model.
It is sometimes useful to allow correlation between v, and wy:
cov(wy, v;) = E(wpv]) = Sk -

This gives the second-order model with correlated noise.

A short-hand notation for the above correlations:

Wi wy Q1o Skow 0
coo(| vy || v |)=1| SEm Ridu O
Zo o 0 0 Po

Note that the Gauss-Markov model is a special case of this model.
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Mean and covariance propagation

For the standard second-order model, we easily obtain recursive formulas for the

mean and covariance of the state.

e The mean obviously satisfies:

Tir1 = Fi@p + Grwy = Fioy

e Consider next the covariance:
Pk = E((ZL‘k — fk)(l‘k — E)T) .

Note that z11 — Tgpr1 = Fi(xp — Tx) + Grwy, and wy and z, are uncorrelated
(why?). Therefore
Pii1 = B PLEL + GrQiGh .

This equation is in the form of a Lyapunov difference equation.

e Since z;, = Hpx, + v, it is now easy to compute its covariance, and also the

joint covariances of (zy, ).

e In the Gaussian case, the pdf of x; is completely specified by the mean and

covariance: y ~ N(Ty, Py).



4.2 The KF for the Gaussian Case

Consider the linear Gaussian (or Gauss-Markov) model

Thy1 — Fkxk + kak, k > 0

2y = Hprg + v

where:

e {w;} and {v;} are independent, zero-mean Gaussian white processes with

covariances

E(vv]) = Rib,  E(wpw]) = Qrop
e The initial state z( is a Gaussian RV, independent of the noise processes, with

Tog ~ N(To, Po)

Let Zr = (20,...,2k). Our goal is to compute recursively the following optimal
(MMSE) estimator of xy:

Also define the one-step predictor of xy:
T = Tk = E(2x| Zp—1)
and the respective covariance matrices:
By = Pup—1 = B{ae — ) (e — ) 1 2k 1}
Note that P (and similarly P, ) can be viewed in two ways:

(i) It is the covariance matrix of the (posterior) estimation error, ey = z — @

In particular, MMSE = trace(P;").



(ii) It is the covariance matrix of the “conditional RV (xj|Zy)”, namely an RV

with distribution p(xx|Zx) (since Z; is its mean).

Finally, denote B, = F), 1z, = .

Recall the formulas for conditioned Gaussian vectors:

e If x and z are jointly Gaussian, then p,. ~ N(m, ), with

m=m, + EME;ZI(z —m,),

Y=Y — Exzzz_zlzzx .

e The same formulas hold when everything is conditioned, in addition, on an-

other random vector.

According to the terminology above, we say in this case that the conditional RV

(x|z) is Gaussian.

Proposition: For the model above, all random processes (noises, zy, zx) are jointly

Gaussian.

Proof: All can be expressed as linear combinations of the noise seqeunces, which

are jointly Gaussian (why?). O
It follows that (zx|Z,,) is Gaussian (for any k, m). In particular:



Filter Derivation

Suppose, at time k, that (2, , P ) is given.

We shall compute (&, P;") and (&}, P, ), using the following two steps.

Measurement update step: Since 2z, = Hpxp + v, then the conditional vector

(( )\Zk_l) is Gaussian, with mean and covariance:
2k

Ty Py P HE
Hyiy, Hy P, M,

where

M, 2 H,P_HF + Ry,.

To compute (zx|Zx) = (xk|zk, Zr—1), we apply the above formula for conditional
expectation of Gaussian RVs, with everything pre-conditioned on Z;_;. It follows

that (zx|Zy) is Gaussian, with mean and covariance:
B = B(w|Z) = & + Py HE (My) ™" (2 — Hydiy)

Py = cov(zi|Zi) = Py — Py HY (My) ™ Hy Py

Time update step Recall that z;.1 = Fipxr + Grwy. Further, xp and wy are inde-

pendent given 7 (why?). Therefore,
56;2“ = E(ka\Zk) = kafz

Py = cov(wpy1|Zi) = FkP,jF,;‘F + GkaG;f



Remarks:

1. The KF computes both the estimate #; and its MSE/covariance P, (and
similarly for ;).
Note that the covariance computation is needed as part of the estimator com-
putation. However, it is also of independent importance as is assigns a measure

of the uncertainly (or confidence) to the estimate.

2. Tt is remarkable that the conditional covariance matrices P;” and P, do not de-
pend on the measurements {z;}. They can therefore be computed in advance,
given the system matrices and the noise covariances.

3. As usual in the Gaussian case, P’ is also the unconditional error covariance:

T] ]

Pl =cov(xy, — 3f) = El(zp — &) (xp — &)

In the non-Gaussian case, the unconditional covariance will play the central

role as we compute the LMMSE estimator.

4. Suppose we need to estimate some s = Czy.

Then the optimal estimate is §; = F(sx|Zy) = Ci} .
5. The following “output prediction error”
Zr = 2 — Hki"; =2 — E(Zk|Zk_1)

is called the innovation, and {Z;} is the important innovations process.

Note that M}, = HkP,;H,f + Ry is just the covariance of Zj.



4.3 Best Linear Estimator — Innovations Approach

a. Linear Estimators

Recall that the best linear (or LMMSE) estimator of x given y is an estimator of
the form & = Ay + b, which minimizes the mean square error E(|lz — &||*). Tt is

given by:

T =my+ nyZ;yl(y —my)

where ¥,, and X, are the covariance matrices. It easily follows that # is unbiased:

E(z) = m,, and the corresponding (minimal) error covariance is

cov(z — ) = B(x — 2)(x — 2)" = Sow — gy, X1,

We shall find it convenient to denote this estimator # as EL(z|y). Note that this is

not the standard conditional expectation.
Recall further the orthogonality principle:

E((x — E*(2ly))L(y)) = 0
for any linear function L(y) of y.

The following property will be most useful. It follows simply by using y = (y1;y2)

in the formulas above:

e Suppose cov(yi, y2) = 0. Then
B x|y, y0) = B (x|y1) + [B* (z]y2) — E()].
Furthermore,

cov(z — E*(xly1, 12)) = (Baw — Ty, XL 2L ) = 8,500 02T

Y1y1 — Y1 TY2 = yay2 “xyY2 *
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b. The innovations process

Consider a discrete-time stochastic process {z; }x>0. The (wide-sense) innovations
process is defined as

%= 2 — EX (21| Zy)

where Zj_1 = (zo;- - 2x_1). The innovation RV Z; may be regarded as containing

only the new statistical information which is not already in Z;_;.

The following properties follow directly from those of the best linear estimator:
(1) E(z,) =0, and E(z.Z] ) = 0.
(2) Z is a linear function of Zj.

(3) Thus, cov(Zk, z) = E(z.2]) =0 for k # L.

This implies that the innovations process is a zero-mean white noise process.

Denote Zj, = (Zo;+ - ; 2Zk). It is easily verified that Z; and 7, are linear functions of

each other. This implies that E*(z|Z)) = E*(x|Z) for any RV .

It follows that (taking E(z) = 0 for simplicity):

E(2|Z) = B"(alZy)
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c. Derivation of the KF equations

We proceed to derive the Kalman filter as the best linear estimator for our linear,
non-Gaussian model. We slightly generalize the model that was treated so far by
allowing correlation between the state noise and measurement noise. Thus, we

consider the model

Thy1 — FkI'k- + kak, k Z 0

zy = Hyry + ok,
with [wg;vg] a zero-mean white noise sequence with covariance

w Qr S
E( * [szﬂsz]): * ’ Okt -

Vk S]? Rk
o has mean ¥, covariance Fy, and is uncorrelated with the noise sequence.

We use here the following notation:
Zy, = (20" 5 2K)
ik|k—1 = EL(SUk\qu) fk;ug = EL($k|Zk)

Tplh—1 = Tp — Tpjr—1 Tpk = Tk — Trjk

Pyji—1 = cov(Tpjk—1) Py, = cov(Tpx)
and defne the innovations process

N .
2= 2 — B (2| Zk-1) = 2 — HiZagp-

Note that

Zr = HpZpp—1 + vg .
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Measurement update: From our previous discussion of linear estimation and inno-

vations,
. _ L _ L >
= EL(ZUk|Zk_1) -+ EL(ZBk|§k) — E($k)
This relation is the basis for the innovations approach. The rest follows essentially
by direct computations, and some use of the orthogonality principle. First,
EL(.T}k|§k> — E(Llik) = COV(SL’k, Zk)COV(Zk)flék,
The two covariances are next computed:
cov(zr, ) = cov(y, HyZgp—1 + vi) = Pyp—1Hy.,
where F (:Ekffl —1) = Prjr—1 follows by orthogonality, and we also used the fact that
v and xy are not correlated. Similarly,
COV(§k> = COV(ijik|k_1 —+ Uk) = Hkpk\k;—lH]Z + R, = M,
By substituting in the estimator expression we obtain
~ oA T 1~
Tk = Trpp—1 + Prp—1Hy My, 2
Time update: This step is less trivial than before due to the correlation between vy
and wy. We have
i’k+1|k = EL($k+1’Zk) = EL<Fk.1'k + kak\Zk)
= ijk:\k -+ GkEL(wk|2k)
In the last equation we used E* (wk|Zk_1) = 0 since wy, is uncorrelated with Z_;.

Thus
Trir = Fidwp + GeE(wp 2] )cov(Z,) ' %
= Fidup + GeSeM ' %
where E(wzl) = E(wgv}) = Sy follows from Z, = HyZy—1 + .
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Combined update: Combining the measurement and time updates, we obtain the

one-step update for Zy_;:
T = FrpZpp—1 + K2y

where
Ky = (FiPye-1Hi + GpSie) M,
Zk = 2k — Hplpp—1

My = HpPye H + Ry

Covariance update: The relation between Py, and Pyx—; is exactly as before.

The recursion for Py is most conveniently obtained in terms of Py,_; directly.

From the previous relations we obtain
Trprp = (Fr — KpHp) g1 + Grwg — Ky

Since Ty is uncorrelated with w;, and vy,

Peip = (Fy — KpHy) Py (Fy — K Hy)" + GoQrGY
+ KR K — (GpSk K + K STGY)

This completes the filter equations for this case.
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Addendum: A Hilbert space interpretation

The definitions and results concerning linear estimators can be nicely interpreted in

terms of a Hilbert space formulation.
Consider for simplicity all RVs in this section to have 0 mean.

Recall that a Hilbert space is a (complete) inner-product space. That is, it is a linear
vector space V', with a real-valued inner product operation (v, v9) which is bi-linear,
symmetric, and non-degenerate ((v,v) = 0 iff v = 0). (Completeness means that
every Cauchy sequence has a limit.) The derived norm is defined as ||v|* = (v,v).

The following facts are standard:

1. A subspace S is a linearly-closed subset of V. Alternatively, it is the linear

span of some set of vectors {v,}.

2. The orthogonal projection llgv of a vector v unto the subspace S is the closest
element to v in S, i.e., the vector v' € S which minimizes ||[v — v'[|. Such a
vector exists and is unique, and satisfies (v — IIgv) L S, i.e., (v —Ilgv,s) =0

for s € S.

3. If S =span{si,..., sk}, then IIgv = Zle «;S;, where

[y, ..., op) = [(v,81), ..., (v, sk)][(Siy S)ij=1..k]

4. If S = 5] @ Sy (S is the direct sum of two orthogonal subspaces S; and Sy),
then
Hsl} = HSIU + HS2U .

If {s1,...,sk} is an orthogonal basis of S, then

k

Hgv = Z<U, si)(si,8) s

i=1
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5. Given a set of (independent) vectors {vy, vy ...}, the following Gram-Schmidt

procedure provides an orthogonal basis:

Vp = 'Uk_Hspan{vl..,vk,l}vk
k—1

= Up— Z(Uk,@i>(@z‘,f%>_lvi
i=1
We can fit the previous results on linear estimation to this framework by noting the

following correspondence:

e Our Hilbert space is the space of all zero-mean random variables x (on a given
probability space) which are square-integrable: F(x?) = 0. The inner product
in defined as (x,y) = E(xy).

e The optimal linear estimator EL (x| Zy), with Z), = (20, ..., 2), is the orthog-
onal projection of the vector x; on the subspace spanned by Z;. (If zj is

vector-valued, we simply consider the projection of each element separately.)

e The innovations process {z;} is an orthogonalized version of {z}.

The Hilbert space formulation provides a nice insight, and can also provide useful
technical results, especially in the continuous-time case. However, we shall not go

deeper into this topic.
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4.4 The Kalman Filter as a Least-Squares Problem

Consider the following deterministic optimization problem.

Cost function (to be minimized):

1 _ _ _
Jk = 5 ([IZ’Q — on)TPO 1(.’13'0 — l’o)
1 k
+§ ;(21 — Hla;l)TRfl(zl — Hl.’L’l)
1 k—1
‘|‘§ wlTQl_lwl
=0
Constraints:
1 = Fo+Guw, 1=0,1,...k—1
Variables:

oy - Ty Woy .o Wg—1 -

Here Ty, {2} are given vectors, and Py, R;, (; symmetric positive-definite matrices.

Let (asgk), e ,x,(ck)) denote the optimal solution of this problem. We claim that x,(ck)

can be computed exactly as Zy, in the corresponding KF problem.

This claim can be established by writing explicitly the least-squares solution for
k — 1 and k, and manipulating the matrix expressions.
We will take here a quicker route, using the Gaussian insight.

Theorem The minimizing solution (x(()k), o ,:U,(f)) of the above LS problem is the

maximizer of the conditional probability (that is, the M AP estimator):

p(zo, ... xK|Zk), writ(x,, ..., Tx)
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related to the Gaussian model:

Tpr1 = Frrp+ Grwy, x9~ N(To, B)

2 = Hpxp+v,, w,~ N(0,Q), vy ~ N(0, P)

with wy, v, white and independent of xg.

Proof: Write down the distribution p(xg ... zg, Z).

Immediate Consequence: Since for Gaussian RV’s MAP=MMSE, then (xy, ..., z;)®

are equivalent to the expected means: In particular, x,(ck) =z

Remark: The above theorem (but not the last consequence) holds true even for the

non-linear model: 1 = Fy(xg) + Grwg.
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4.5 KF Equations — Basic Versions

a. The basic equations

Initial Conditions:

(i’a :TOiE(J]()), PO_ :POiCOV((L’O).

Measurement update:

Pl =P, — K H,P;
where K}, is the Kalman Gain matrix:

Ky = P, H (Hy P, H + Ry) ™'

Time update:

i = Fidy [+ Bruw]

P, = FxPFEN + GiQyGL

b. One-step iterations

The two-step equations may obviously be combined into a one-step update which
computes &, from & (or Z;, from ).

For example,

P, = F(P; — KiHyP,)E! + GrQiG .

L, = Fy K}, is also known as the Kalman gain.
The iterative equation for P, is called the (discrete-time, time-varying) Matriz

Riccati Equation.
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c. Other important quantities

The measurement prediction, the innovations process, and the innovations covari-

ance are given by

Mk = COV(Zk) = HkPk_Hg + Rk

d. Alternative Forms for the covariance update

The measurement update for the (optimal) covariance P, may be expressed in the

following equivalent formulas:

P = P; — KyHy P,
= (I — KyHy) P,
= P, — P, H M, 'H.P;

= P, — K, MyK}
We mention two alternative forms:
1. The Joseph form: Noting that
zp — & = (I — KpHy) (2 — 2) — Koy,
it follows immediately that
Pr = (I — KiH) P, (I — KpHy)" + Ky R K]

This form may be more computationally expensive, but has the following

advantages:
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— It holds for any gain K} (not just the optimal) that is used in the esti-

. /\_l'_ o= ~
mator equation ;] =z, + Kjzj.

— Numerically, it is guaranteed to preserve positive-definiteness (P, > 0).

2. Information form:

(P~ = (Py)™! + Hy Ry Hy
The equivalence may obtained via the useful Matriz Inversion Lemmua:
(A+BCD)'=A"'-A'B(DA'B+C ) 'DA™

where A, C' are square nonsingular matrices (possibly of different size).

P~ is called the Information Matriz. It forms the basis for the “information

filter”, which only computes the inverse covariances.

e. Relation to Deterministic Observers

The one-step recursion for z, is similar in form to the algebraic state observer from
control theory.

Given a (deterministic) system:

Tpr1 = Iy, + Brug

2 = Hyxy
a state observer is defined by
T = Fpdp + Brug + L (2 — HyZy)

where L are gain matrices to be chosen, with the goal of obtaining & = (xp—)) —

0as k — oo.

21



Since

Tpp1 = (F — LpHy)Zy,

we need to choose Ly so that the linear system defined by Ay = (Fy — LgHy) is
asymptotically stable.

This is possible when the original system is detectable.

The Kalman gain automatically satisfies this stability requirement (whenever the

detectability condition is satisfied).
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