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1 Introduction: Basic Problems of Interest

Our main interest in this course will be in the following problem:

• State estimation in dynamic systems, for which the state cannot be fully ob-

served.

Some related problems that we shall also consider:

• Parameter estimation in dynamic systems (system identification).

• Joint state and parameter estimation.

Our emphasis will be on algorithms which are optimal in a statistical (stochastic)

sense.

The basic system models that we will deal with are:

• Continuous-state systems: We will develop the celebrated Kalman Filter for

state estimation in linear state-space models, and its extensions.

• Discrete-state models: the so-called Hidden Markov Models.

We will also consider various extensions of these basic models and problems.

We next give a brief outline of the basic problems and illustrative applications.
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1.1 State Estimation in Linear Systems

Consider a discrete-time linear state-space model of the form:

xk+1 = Fxk + Guk + vk ,

zk = Hxk + wk .

Here: x ∈ IRn is the state vector, which is unknown to us

z ∈ IRm is the measurement vector

u is a known input signal

v and w are unobserved noise sequences

F, G, H are the system matrices

The basic state-estimation problem: The systems matrices are given, and so are some

properties of the noise sequences. Our goal is to find an estimate x̂k+1 for the state

vector xk+1, given the measurements {zk, zk−1 . . . }.

The proposed solution is of the following (state-observer) form:

x̂k+1 = Fx̂k + Guk + Kk(zk −Hx̂k) .

This is a recursive filter, which can be operated in an on-line mode (i.e., the estimate

is updated each time a new measurement is obtained).

Kk is a gain matrix, to be “properly” chosen.

The Kalman Filter is obtained by an optimal choice of these gains, under appropriate

statistical model assumptions and error criteria.
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Examples: We next sketch a few simplified examples for problems that can be cast

in this form.

Example 1: Position Estimation

Consider an object moving in 1-dimensional space, with position p(t).

We are given noisy (inaccurate) measurements of this position at some discrete

times:

z(t) = p(t) + nz(t), t = t0, t1, . . . .

Required: to estimate the position p̂(t).

To formulate this problem in state space form, several options are available:

1. Random acceleration model (2nd order model):

d

dt
p(t) = v(t)

d

dt
v(t) = a(t) ≡ nv(t)

where nv(t) is “white”, 0-mean noise signal with known statistics. This noise

reflects the expected object “maneuverability”.

We have arrived at the following state model:

d

dt


 p(t)

v(t)


 =


 0 1

0 0





 p(t)

v(t)


 +


 0

nv(t)




where x(t) = (p(t), v(t))′ is the state vector.

This state equation may be discretized to obtain a discrete-time state model

over the measurement times, of the form:

x(tk+1) = A(k)x(tk) + n(k) .
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The measurement equation is

z(t) = [1, 0]


 p(t)

v(t)


 ≡ [1, 0] x(t) t = tk

2. Random acceleration-change model (3nd order model):

When velocity cannot change abruptly, the following model is more suitable:

ṗ(t) = v(t)

v̇(t) = a(t)

ȧ = na(t)

Furthermore, when acceleration cannot change abruptly we can add a simple

low path filter:

ȧ = −βa + na(t)

with β a properly chosen costant. With state x(t) = [p(t), v(t), a(t)]′, we

obtain the following state model:

ẋ(t) =




0 1 0

0 0 1

0 0 −β


 x(t) +




0

0

na(t)




and measurement equation:

z = [1, 0, 0]x + nz .

3. Additional measurements:

We may, for example, have also direct velocity measurements of the moving

object. Then the measurement equations are:

z1(tk) = p(tk) + n1(tk)z2(tk) = v(tk) + n2(tk)
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In matrix form (for x = [p, v, a]′):

z(tk) =


 1 0 0

0 1 0


 x(t) + nz(t)

with nz = (n1, n2)
′.

Position estimation (with Kalman filtering) has many variants and applications,

including:

• Navigation: Using odometry, inertial sensors, GPS, vision,. . .

• Tracking: Using radar, vision, cellular phones....
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Example 2: Signal Detection

Consider a discrete-time signal s(k) which is transmitted through a noisy channel

with ISI; the received signal is

z(k) =
N−1∑
i=0

his(k − i) + nz(k)

with nz a white noise sequence, say nz(k) ∼ N(0, σz).

It is required to recover the transmitted signal s(k) from the measurements z(k′), k′ ≤
k. This is a classical signal filtering problem.

To use statistical methods, we use a statistical model for the transmitted signal: e.g.,

s is a white noise sequence with s(k) ∼ N(0, σs). For N = 2, the state variables

and equations are:

x1(k) = s(k) ⇒ x1(k + 1) = ns(k + 1)

x2(k) = s(k − 1) ⇒ x2(k + 1) = x1(k)

x3(k) = s(k − 2) ⇒ x3(k + 1) = x2(k)

and in matrix form:

x(k + 1) =




0 0 0

1 0 0

0 1 0


 x(k) +




ns(k + 1)

0

0




z(k) = [h0, h1, h2]x(k) + nz(k) .
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Example 3: Higher harmonics detection

We are given a sinusoidal signal, with basic frequency f1 = 50. We need to detect

the higher-order (say, 3nd order) harmonic content of the signal. (A 2nd order

harmonic is usually absent in power systems.)

With ω1 = 2πf1, we write this signal as

s(t) = A sin(ω1t + φ1) + B sin(3ω1t + φ3) (+other terms) .

It is assumed that the amplitude and phases may (slowly) vary with time. The

signal is measured every T = 0.1 sec. We wish to track B(t) and φ1(t) over time.

The problem may obviously be approached in the frequency domain, using standard

filtering methods. We give here the alternative Kalman-filter formulation.

We start by writing the harmonic signal model as:

s(t) = A1(t) cos(ω1t) + A2(t) sin(ω1t) + B1(t) cos(3ω1t) + B2(t) sin(3ω1t)

The state is taken as the four amplitudes: x = [A1, A2, B1, B2]
′. Focusing on the

measurements instances tk = kT , we have the following model:

A1(tk+1) = A1(tk) + nA1(k)

...

B2(tk+1) = B2(tk) + nB2(k)

The noise variances are taken as small quantities related to the allowed rate of

change of the amplitudes. The state equation is then

x(tk+1) = Ix(tk) + n(k)

where I is the unit matrix.
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The measurement model is:

z(tk) = s(tk) + nz(k)

with nz the measurement error. It may be taken as a white Gaussian sequence, with

nz(k) ∼ N(0, σz). This gives

z(tk) = [cos(ω1tk), sin(ω1tk), cos(3ω1tk), sin(3ω1tk)]x(tk) + nz(k)

.
= H(k)x(tk) + nz(k) .
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1.2 Hidden Markov Models (HMMs)

HMMs are state models with discrete state, which cannot be directly observed, and

with discrete or continuous measurements.

Let xk ∈ {1, 2, . . . , N} be a Markov chain specified by the transition law

p(xk+1 = j |xk = i} = pij

and initial distribution p(x0). Let the zk be the measurement, say discrete, related

to xk through,

p(zk = z |xk = i) = q(z|i) .

The basic problems here are:

1. Given the model parameters, and measurements (zn, zn−1, . . . , z1}, estimate

the state sequence {xn, xn−1, . . . , x1}.

We shall develop the Maximum Likelihood (ML) estimator for that problem, which

is efficiently implemented using the so-called Viterbi algorithm.

2. Given the measurements (zn, zn−1, . . . , z1}, estimate the model parameters,

namely: find the model that best describes the data.

The standard solution for this problem is joint state and parameter estimation, using

the EM (Expectation Maximization) algorithm.

Applications: An important application for HMMs is speech processing, in par-

ticular speech recognition. The HMM may be used at different levels of speech

modeling, such as:

(1) Word level: The state x is a complete word; the measurement is the recorded
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sound of the word; and the dynamics p(j|i) represents the likelihood of word j ap-

pearing after word i.

(2) Phonetic level: Using a phonetic alphabet to model the inner structure of each

word.

In that context, “estimating the state sequence” means identifying the spoken word

sequence; and “estimating the model parameters” relates to the training phase when

the model is tuned to a specific speaker.
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