Technion, Faculty of Electrical Engineering Fall 2008/9

Estimation and Identification in Dynamic Systems (048825)

Prof. Nahum Shimkin

Lecture Notes



1 Introduction: Basic Problems of Interest

Our main interest in this course will be in the following problem:

e State estimation in dynamic systems, for which the state cannot be fully ob-

served.
Some related problems that we shall also consider:

e Parameter estimation in dynamic systems (system identification).

e Joint state and parameter estimation.

Our emphasis will be on algorithms which are optimal in a statistical (stochastic)

sense.

The basic system models that we will deal with are:

e Continuous-state systems: We will develop the celebrated Kalman Filter for

state estimation in linear state-space models, and its extensions.

e Discrete-state models: the so-called Hidden Markov Models.

We will also consider various extensions of these basic models and problems.

We next give a brief outline of the basic problems and illustrative applications.



1.1 State Estimation in Linear Systems

Consider a discrete-time linear state-space model of the form:

Tpr1 = Fop+ Gug + v,

Here: x € IR" is the state vector, which is unknown to us
z € IR™ is the measurement vector
u is a known input signal
v and w are unobserved noise sequences

F, G, H are the system matrices

The basic state-estimation problem: The systems matrices are given, and so are some
properties of the noise sequences. Our goal is to find an estimate Z;,; for the state

vector Zgy1, given the measurements {zy, zx_1 ... }.

The proposed solution is of the following (state-observer) form:
£k+1 = Fik + Guk + Kk(Zk - Hi‘k) .

This is a recursive filter, which can be operated in an on-line mode (i.e., the estimate
is updated each time a new measurement is obtained).

K. is a gain matrix, to be “properly” chosen.

The Kalman Filter is obtained by an optimal choice of these gains, under appropriate

statistical model assumptions and error criteria.



Examples: We next sketch a few simplified examples for problems that can be cast

in this form.
Example 1: Position Estimation

Consider an object moving in 1-dimensional space, with position p(t).
We are given noisy (inaccurate) measurements of this position at some discrete
times:

z(t) =p(t) + na(t), t=to,ti,....
Required: to estimate the position p(t).

To formulate this problem in state space form, several options are available:

1. Random acceleration model (2nd order model):

Sty = o)

d
%v(t) = a(t) = n,(t)

where n,(t) is “white”, 0-mean noise signal with known statistics. This noise

reflects the expected object “maneuverability”.

We have arrived at the following state model:

where z(t) = (p(t),v(t))" is the state vector.
This state equation may be discretized to obtain a discrete-time state model

over the measurement times, of the form:

2(ti) = A(R)z(ty) + n(k).



The measurement equation is

2(t) = [1,0] = [1,0]z(t) t=1t,

. Random acceleration-change model (3nd order model):

When velocity cannot change abruptly, the following model is more suitable:

Furthermore, when acceleration cannot change abruptly we can add a simple
low path filter:

a = —pa+n,t)
with § a properly chosen costant. With state z(t) = [p(t),v(t),a(t)], we

obtain the following state model:

01 0 0
zt)=10 0 1 |z(t)+ 0
00 -8 Na(t)

and measurement equation:

z=1[1,0,0lx 4+ n,.

. Additional measurements:
We may, for example, have also direct velocity measurements of the moving

object. Then the measurement equations are:

21(ty) = p(ty) + ni(tr)z2(ty) = v(ty) + na(tr)
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In matrix form (for z = [p, v, a]’):

100
2(ty) = z(t) + n.(t)
010

with n, = (ny, ns)’.

Position estimation (with Kalman filtering) has many variants and applications,

including:

e Navigation: Using odometry, inertial sensors, GPS, vision,. ..

e Tracking: Using radar, vision, cellular phones....



Example 2: Signal Detection

Consider a discrete-time signal s(k) which is transmitted through a noisy channel
with ISI; the received signal is

N-1

2(k) =Y his(k — i) +n.(k)

=0
with n, a white noise sequence, say n.(k) ~ N(0,0,).

It is required to recover the transmitted signal s(k) from the measurements z(k'), k' <
k. This is a classical signal filtering problem.

To use statistical methods, we use a statistical model for the transmitted signal: e.g.,

s is a white noise sequence with s(k) ~ N(0,0,). For N = 2, the state variables

and equations are:

x1(k) = s(k) = z1(k+1)=nsk+1)
xo(k) =s(k—1) = x9(k+1)=ux(k)
z3(k)=s(k—2) = ax3(k+1)=uxsk)

and in matrix form:

000 ns(k+1)
zk+1)=11 0 0 |x(k)+ 0
010 0

Z(k) = [ho, hl, hg]l’(k) + nz(k) .



Example 3: Higher harmonics detection

We are given a sinusoidal signal, with basic frequency f; = 50. We need to detect
the higher-order (say, 3nd order) harmonic content of the signal. (A 2nd order

harmonic is usually absent in power systems.)
With w; = 27 f;, we write this signal as
s(t) = Asin(wit + ¢1) + Bsin(3wit + ¢3) (4other terms) .

It is assumed that the amplitude and phases may (slowly) vary with time. The

signal is measured every T' = 0.1 sec. We wish to track B(t) and ¢ (t) over time.

The problem may obviously be approached in the frequency domain, using standard

filtering methods. We give here the alternative Kalman-filter formulation.

We start by writing the harmonic signal model as:
s(t) = Ay (t) cos(wit) + As(t) sin(wit) + By (t) cos(3wit) + Ba(t) sin(3w;t)

The state is taken as the four amplitudes: = = [A;, Ag, By, Bs|'. Focusing on the

measurements instances t; = k1", we have the following model:

Ai(tey) = Au(te) +nai(k)

Bs(tii1) = Ba(ty) + npa(k)

The noise variances are taken as small quantities related to the allowed rate of

change of the amplitudes. The state equation is then
T(trs) = Lz (ty) + n(k)

where [ is the unit matrix.



The measurement model is:
2(tg) = s(tg) + n.(k)

with n, the measurement error. It may be taken as a white Gaussian sequence, with

n.(k) ~ N(0,0,). This gives

2(ty) = [cos(wity),sin(wity), cos(3wity), sin(3wity)|z(ty) + n.(k)

= Hk)a(t) + n(k).



1.2 Hidden Markov Models (HMMs)

HMDMs are state models with discrete state, which cannot be directly observed, and

with discrete or continuous measurements.

Let z € {1,2,..., N} be a Markov chain specified by the transition law
(@41 = jlax = i} = pij
and initial distribution p(z¢). Let the z, be the measurement, say discrete, related

to xp through,

p(ze = 2|z = 1) = q(2]7) .

The basic problems here are:

1. Given the model parameters, and measurements (z,, z,—1,..., 21}, estimate

the state sequence {x,, Tn_1,...,T1}.

We shall develop the Maximum Likelihood (ML) estimator for that problem, which

is efficiently implemented using the so-called Viterbi algorithm.

2. Given the measurements (2,2, 1,-..,21}, estimate the model parameters,

namely: find the model that best describes the data.

The standard solution for this problem is joint state and parameter estimation, using

the EM (Expectation Maximization) algorithm.

Applications: An important application for HMMSs is speech processing, in par-
ticular speech recognition. The HMM may be used at different levels of speech
modeling, such as:

(1) Word level: The state z is a complete word; the measurement is the recorded
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sound of the word; and the dynamics p(j|i) represents the likelihood of word j ap-
pearing after word 1.
(2) Phonetic level: Using a phonetic alphabet to model the inner structure of each

word.

In that context, “estimating the state sequence” means identifying the spoken word
sequence; and “estimating the model parameters” relates to the training phase when

the model is tuned to a specific speaker.
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