
1

SAL: Scaling Data Centers Using Smart Address Learning

Alexander Shpiner1, Isaac Keslassy1, Carmi Arad2, Tal Mizrahi1,2, and Yoram Revah2

1Technion, {shalex@tx, isaac@ee}.technion.ac.il
2Marvell Israel, {carmi, talmi, yoramr}@marvell.com

ABSTRACT
Multi-tenant data centers provide a cost-effective many-server
infrastructure for hosting large-scale applications. These data
centers can run multiple virtual machines (VMs) for each
tenant, and potentially place any of these VMs on any of the
servers. Therefore, for inter-VM communication, they also
need to provide a VM resolution method that can quickly
determine the server location of any VM. Unfortunately, ex-
isting methods suffer from a scalability bottleneck in the net-
work load of the address resolution messages and/or in the
size of the resolution tables.

In this paper, we propose Smart Address Learning (SAL),
a novel approach that expands the scalability of both the net-
work load and the resolution table sizes, making it imple-
mentable on faster memory devices. The key property of the
approach is to selectively learn the addresses in the resolu-
tion tables, by using the fact that the VMs of different tenants
do not communicate. We further compare the various resolu-
tion methods and analyze the tradeoff between network load
and table sizes. We also evaluate our results using real-life
trace simulations. Our analysis shows that SAL can reduce
both the network load and the resolution table sizes by sev-
eral orders of magnitude.

1. INTRODUCTION
Multi-tenant data centers provide an increasingly

popular solution for hosting large-scale service appli-
cations [20,27]. Their appeal comes from their scalabil-
ity, since they are increasingly cost-effective as they get
larger [15]. To ensure scalability, data center providers
run multiple virtual machines (VMs) per data center,
and can allocate the VMs of a client application to mul-
tiple servers, thus also achieving load balancing, fault
tolerance and power saving. For efficient implementa-
tion of these features, the network has to support un-
bounded VM placement and migration such that any
VM is able to be assigned to any server. In particular,
it must provide resolution of the VM location for inter-
VM communication: when a new connection is created
between two VMs, the initiating VM needs to retrieve
the location of the other VM. The services for the phys-
ical location resolution of the logical entities have to

be supplied by the data center network infrastructure,
e.g. by network probing, by the forwarding tables, or by
some level of indirection relying on a central database.

Unfortunately, existing location resolution methods
often suffer from scalability issues, especially with the
resolution network load and the forwarding table size.
This is because the network load of the resolution re-
quest broadcast messages increases with the number
of VMs [11], while it should be kept low in order to
leave bandwidth for the application data communica-
tion. Moreover, the forwarding-table entries needed for
the ever-increasing number of VMs would not fit any-
more the on-chip memory that is needed to allow fast
access and update times [14, 21]. These issues get es-
pecially acute as data centers grow, and may become
critical in future multi-tenant data centers, which are
expected to include millions of VMs [15,20].

Several architectures have been proposed to break
this scalability bottleneck by using overlay networks
[6, 10–12, 18, 19, 23, 25, 26, 29]. These architectures rely
on dividing the data center network into segments of
broadcast domains, and use network devices called edge
bridges to connect between the segments and the net-
work core. The edge bridges are responsible for the
address resolution of the VM connections between the
segments. Thus, the problem is mitigated for intra-
segment VM communication. However, these solutions
still do not address the scalability problem of VM com-
munications between different segments. In fact, [9]
states that the overlay network may still suffer from
a bottleneck at the gateway nodes in processing resolv-
ing target stations physical address (MAC or IP) and
the overlay edge address within the data center.

In this paper, we propose a new address resolution
approach called Smart Address Learning (SAL). SAL
enables scaling the data center while keeping both the
resolution table sizes and the network load low. To do
so, we use the fact that VMs of different tenants do not
communicate directly. Thus, the edge-bridge resolution
tables only need to learn addresses of the VMs that
belong to the tenants they serve. For instance, if an
edge bridge serves a local network with VMs of a tenant



2 Technical Report TR13-01, Comnet, Technion, Israel

i, it only needs to follow the location of the other VMs
of tenant i, and can ignore the resolution information of
VMs of any tenant j 6= i. This selective learning makes
the table usage more efficient and increases its hit rate.
In addition, SAL decreases the network load, because
the VM location updates are only sent to the tables that
serve the same tenant, instead of being flooded.

The SAL approach can be easily combined in current
data center architectures with any network core rout-
ing protocol and it is distributed, scalable and fault-
tolerant. We introduce two versions of our approach:
pull and push, which differ by the trigger of address
learning.

We further provide an analytical model for the eval-
uation of the table sizes and the network load under
SAL and other resolution methods. In addition, we
compare SAL against alternative methods using simula-
tions based on synthetic as well as real-life VM creation,
placement and tenancy traces.

To our knowledge, this paper is the first to introduce
a model for comparing address resolution methods in
data centers, as well as the first to evaluate them using
real-life trace simulations.

Our analytical model and simulation results show
that SAL can reduce the network load for a given res-
olution table size by up to four orders of magnitude.
It also yields a lower update rate and a higher hit rate
in the resolution table, thus potentially enabling imple-
mentation of fast on-chip resolution tables even for large
multi-tenant data centers.

2. RELATED WORK
Commodity techniques of location resolution in small

networks cannot be directly applied to the large-scale
data center networks. One such technique, ARP over
Ethernet layer-2 infrastructure, limits the scalability of
the network due to the high load of the broadcast mes-
sages and the large forwarding tables [24, 31]. For in-
stance, [11] states that address resolution traffic con-
stitutes more than 88% of the whole broadcast traffic
in the data center networks, and that less than 32, 000
hosts in the same broadcast domain can saturate 100
Mb/s network links with their peak load ARP traffic.
Moreover, the broadcast domain is recommended to be
limited to several hundreds of nodes. As the network
grows, the broadcast messages significantly increase the
network load, and the forwarding database tables grow
as well, due to a larger number of addresses to learn.

Another commodity technique, the hierarchical IP-
based layer-3 addressing, mitigates the advantages of
VM migration by limiting it to a specific subnet, be-
cause the VM needs to maintain its IP address during
its runtime, which can be difficult to do while crossing
subnets.

In recent years, several overlay network architectures

have been proposed to break this limitations in the data
centers [6,10–12,18,19,23,25,26,29]. In these architec-
tures, the VM packets are encapsulated in (or rewritten
with) the overlay network headers. The overlay network
header is used to route the packet through the network
core, which can be implemented using various routing
protocols such us commodity Ethernet, hierarchical IP
routing, TRILL, MPLS etc. The encapsulation point,
denoted edge bridge, can be for instance the server hy-
pervisor or the top-of-the-rack switch.

Table 1 summarizes the differences between these ap-
proaches, and compares them with our suggested SAL
approach. As mentioned, these methods still lack of
scalability in either network load or table sizes when
the number of VMs increases. In addition, the table
compares additional desired properties, including dis-
tribution, fault-tolerance, and compatibility with the
commodity techniques. The methods can be roughly
divided into three categories:

Central database — The central database ap-
proach is used in VL2 [12] and Portland [26]. The dis-
tributed hash table on the aggregation switches, as used
in SEATTLE [18], also relates to this category. In this
approach each VM location is listed in a unique central
consistent database. The edge bridge resolves the loca-
tion by sending a unicast request message to the con-
sistent directory. Note that the edge bridges also hold
a cache table that lists the recently-used resolution en-
tries. The usage of a central address resolution database
has several drawbacks. These methods may have scal-
ability problems in large data centers due to high res-
olution updates and unbalanced requests rate. For in-
stance, [26] states that for maintaining the resolution
requests, approximately 70 processing cores are needed,
which is beyond the capacity of a single commodity
machine. VL2 [12] replicates the database to multi-
ple cached servers. However, this raises consistency
and concurrent-replication issues, as well as potential
scalability problems with when the update rate is high.
Moreover, it requires maintaining additional servers for
backing up the data. It is also vulnerable to malicious
attacks, which lead to service unavailability if the fabric
manager fails to perform address resolution [5]. In addi-
tion, SEATTLE [18] presents potential fault-tolerance
weakness, because the mapping DBs/switches are not
backed up, and in a case of DB/switch failure, all the
associated mapping information is lost.

We next examine two distributed approaches:
Pull — The distributed Pull approach does not rely

on a consistent database, but on broadcasting resolution
request messages over the network and learning the res-
olution from the reply. The address resolution is pulled
on-demand, meaning, at the time the resolution is re-
quired at the edge bridge. This approach is used in
EtherProxy [11], Diverter [10], SARP [25] and several



3

Table 1: Comparison of the Resolution Methods.
Location of the
consistent infor-
mation

Cache inconsistency or miss
cost

Total number of en-
tries

Potential
hot spot

Central
DB [12,26]

Central DB Request-reply message to DB Minimal Severe

DHT-based
DB [18]

Distributed Hash
Table (DHT)

Request message to DHT and
redirect

Minimal Moderate

Pull [10,11] None Resolution request broadcast
(high frequency)

As low as needed None

Push [23] Edge bridge (server
or TOR switch)

Resolution request broadcast
(less likely to happen)

Maximal None

SAL + Pull None Resolution request broadcast
(medium frequency)

As low as needed None

SAL + Push Edge bridge (server
or TOR switch)

Resolution request broadcast
(less likely to happen)

Medium None

other architectures. Unfortunately, this broadcasting
may evolve into a vast flooding of the data center net-
work core, and therefore cause a prohibitive network
load. Note that here as well, the edge bridges may hold
a cache table that lists the recently used resolution en-
tries, and attempt to store entries for the active connec-
tions. However, these entries may be inconsistent.

Push — The distributed Push approach relies on
sending address resolution updates with each location
change. The edge bridges learn the VM addresses at
each location update, and manages resolution tables at
the edge bridges. Thus, it avoids request broadcast-
ing, but requires larger resolution tables. Keeping the
location information consistent and close to the VM al-
lows for a faster start-up time of the new connections
and a lower network load. For instance, this approach
is used in Netlord NL-ARP address learning approach
[23]. Netlord replicates the resolution database on every
server, and therefore uses a maximal possible number of
entries. The consistency exists due to update pushing,
i.e. the edge bridge sends an update message upon every
change of the VM status that it is responsible of, sim-
ilarly to the gracious ARP mechanism. Unfortunately,
in order to be efficient, this approach requires large ta-
bles. Note that if the table capacity is large enough and
the update messages always arrive within a negligible
time, the push architectures tables are always consis-
tent. Usually, the Push approach is combined with the
Pull approach for resolving cases with resolution table
inconsistency due to table overflow or resolution packet
losses.

In summary, both current centralized and distributed
address resolution approaches in the data center have
limited scalability when the number of VMs increases.

As mentioned before our suggested approach is based
on selective learning of addresses from the incoming res-

Figure 1: Network Model. The edge bridge (EB)
connects the VMs in its L2 network to the other
VMs through the data center network core. The
EB implements overlay network encapsulation.
It uses two tables for the address resolution. The
first is a consistent table that lists all the local
VMs under the EB, while the second lists the
address resolution of the VMs outside the net-
work under the EB. In the paper, we focus on
the scalability of the second table.

olution request messages. A similar idea is used in the
selective ARP learning [8], where an ARP table is con-
figured to learn a pre-configured specific set of IP ad-
dresses. However, the selective ARP learning approach
uses only a passive filtering, without dynamic adaption
to VM re-placement and to tenancy.

3. NETWORK MODEL AND ASSUMP-
TIONS

We begin by defining the network model, as illus-
trated in Figure 1. The model is fairly standard and
follows recent literature [11,12,25,26].

We use the terms application address (AA) and loca-
tion address (LA) to define both the addresses in the
user VM address space and in the physical data center
address space, respectively [12]. Note that both those



4 Technical Report TR13-01, Comnet, Technion, Israel

address spaces can be assigned in Ethernet layer 2, IP
layer 3 or any other proprietary protocol of the data
center provider. For example, in VL2 [12] both AA and
LA are IP addresses, while in Portland [26] both AA
and LA are MAC addresses. The VM AA is combined
from a pair of identifiers: the tenant ID within the data
center and the VM ID within the tenant, and thus al-
lows easy association of the VM to a tenant. By the
term resolution we further refer to the translation of
the AA address of a VM into its LA address.

We denote as an edge bridge (EB) the encapsulation
point where the inter-VM data packets are encapsulated
in (or rewritten with) the overlay data center network
header. In general, the encapsulation point can be ei-
ther the ToR switch, the aggregation switch, or the
server hypervisor. We assume for simplicity that the
communication inside the local network under the EB
is L2-protocol based, but other methods would hold as
well. One advantage of this approach is that the VMs
in a network under the EB are interconnected over an
L2 network, and do not necessarily need to send inter-
nal messages through the EB. Furthermore, broadcast
ARP-request messages that are injected by a VM are
stopped at the EB and do not propagate to the core
network. For the address resolution requests for VMs
outside the L2 network, the EB replies using an ARP-
reply message with its own MAC address. This common
approach is also used by many other overlay network ar-
chitectures [11,12,25,26].

Our model supports any common network core pro-
tocol and topology. The routing between the EBs can
be implemented using standard IP routing with ECMP,
MPLS or TRILL tunnels, layer-2 Ethernet with VLANs
[22], or any other protocol, as long as each EB can com-
municate with each other EB.

Each edge bridge stores an LA-to-AA resolution table
and a local forwarding table. The LA-to-AA resolution
table is used to resolve the destination AA for a given
LA. The next section introduces SAL, a novel learning
scheme for the resolution entries. In addition, the local
forwarding table lists the AAs of all the VMs under the
edge bridge layer-2 network together with their layer-2
MAC addresses and the output port towards them. We
assume that the placement controller of the data center
keeps the forwarding table consistent.

The time-out mechanism is popular in the conven-
tional ARP tables, because the tables are stored in
a shared memory space and the timeout mechanism
avoids their overflow on the account of other system
processes. Hence, the ARP tables intend to store the en-
tries for the active entries only. However, in our model,
the EBs use dedicated fast memory to store the resolu-
tion entries in order to allow fast access times and high
bandwidth. So, there is no cost of storing inconsistent
entries. On the other hand, repeatedly acquiring infor-

mation for the resolution entries that were removed by
the time-out mechanism cost in additional network load.
Therefore, the resolution tables in our model avoid us-
ing the time-out mechanism for the entries. The old,
last recently used, inconsistent entries are overwritten,
when a new resolution information is required to be
written to a full memory.

Finally, in the multi-tenant environment, the VMs are
divided into groups of tenants. The VMs of a tenant are
assumed to communicate only between themselves, and
possibly with hosts outside of the data center, but not
with VMs of other tenants. This is logical, since they
belong to different applications. It also makes sense for
security isolation. Therefore, VMs typically only com-
municate with a small number of other VMs [7, 16, 18].
We will leverage this assumption in the paper to reduce
the amount of information that needs to be stored in
the resolution tables. For simplicity, we only focus on
internal VM-to-VM communication in this paper, and
neglect the communications to hosts outside of the data
center.

4. SMART ADDRESS LEARNING (SAL)

4.1 SAL Overview
This section presents our suggested Smart Address

Learning (SAL) approach. SAL implements a dis-
tributed resolution database, in which the resolution ta-
bles are stored on the edge bridges (EBs).

In SAL, the EB resolution tables only store the ad-
dresses of the VMs that belong to the tenants of the VMs
hosted in the EB network. For example, consider Figure
2. The servers under EB I host VMs of tenants A and B
only. Therefore, the resolution table of EB I only stores
the addresses of VMs of the tenants A and B. Likewise,
the servers under EB III host VMs of tenant B only,
hence the resolution table of EB III would only store
VM addresses for tenant B.

More specifically, any EB that broadcasts an address
resolution request message will include the AA and LA
of its requesting VM. Upon receiving the message, the
other EBs will selectively learn this AA-to-LA mapping
in their resolution table if and only if their network con-
tains another VM of the same tenant as the requesting
VM. Therefore, EBs without VMs of this tenant can dis-
regard this message, and as a result their resolution can
typically be smaller than without this selective learning.

4.2 Resolution Table Update
This section presents how our suggested SAL algo-

rithm updates the EB resolution tables following a VM
location update, i.e. following a VM creation, destruc-
tion or migration. We consider two variants of the up-
date method: pull and push.

In the pull version, the location information is pulled



5

by the EB when this information is required by the en-
capsulation process, and is not available in its resolu-
tion table. On the other hand, in the push variant, the
location updates are immediately propagated to other
forwarding databases on selected EBs.

Intuitively, the pull version is preferable when the
location update rate is high relative to the address res-
olution request rate, and when pushing the updates
through broadcasting is costly. We further analyze the
tradeoffs involved in the next sections.

4.2.1 Pull Update (On-Demand Update)
In the pull variant, the location information is pulled

to the EB resolution table at the time of resolution re-
quest if the information is unavailable in the table. The
update is done by broadcasting an address resolution
request message to all the other EBs. This message
also contains the AA and LA of the source VM that
requests the connection. In SAL, the smart learning
ensures that other EBs that receive this message only
insert this LA address in their tables if they host VM
of the same tenant.

Figure 2 illustrates the pull variant. It shows how
EB I requests information on VM A.4 by broadcast-
ing a request message, thus pulling information from
the network. It further emphasizes how only EBs with
VMs from tenant will add information on VM A.1, while
other EBs such as EB III will not. This is the core se-
lection principle behind the SAL algorithm.

Note that if a VM is migrated during an active con-
nection, its resolution update can be pushed immedi-
ately in order to avoid a communication disruption by
the migration process. In addition, due to the inconsis-
tent information in the resolution tables, it may happen
that an EB receives a data message that is destined to
the VM that was previously hosted in its network, but
already migrated from it. Then the EB answers the
source EB with an error message, and the source EB
will re-initiate the full address resolutions process. In-
cidentally, an optional alternative implementation for
the EB is to redirect the packets to the EB of the up-
dated VM location, and then ask it to inform back the
source EB of the new location.

For simplicity, we assume that each use and update
of an entry in the table refreshes its update timestamp.
When the table fills up, the oldest entry is cleared from
the table.

4.2.2 Push Update (On-Change Update)
In the push variant, the updates are pushed to the res-

olution tables. In our suggested SAL algorithm, in order
to reduce network load, the location update broadcast
is replaced with a selective multicast to selected EBs
only.

Specifically, upon VM location change, the update is

propagated (pushed) immediately through a multicast
message to the EBs that host VMs of the same tenant
of the VM. The multicast destination EBs are known
to the sending EB, because it holds the address reso-
lution of all the tenant VMs in its address resolution
table. When an update needs to be sent, the EB selects
from the forwarding database the location addresses of
all the VMs of the tenant whose VM is updated. An
easy and fast selection can be achieved by assigning ap-
plication addresses (AAs) that contain the tenant ID in
the specific bits, or even better, by logically organizing
the table as a tree with a single node per AA, pointing
to the different VMs.

An alternative implementation is to send the loca-
tion update message from a data center controller that
decides on the placement of the VMs. This controller
manages the VM placement and thus has a consistent
VM location information.

Figure 3 depicts the push process. It shows how EB I
pushes information on newly-created VM A.5 of tenant
A, by selectively multicasting an update message only
to the relevant EBs that contain VMs from the same
tenant A. Thus, the network load is typically less than
in a full broadcast message.

Special treatment is required in the following two
cases. First, when a VM is assigned to an EB network
where no other VM of the same tenant exists, the EB
needs to retrieve the location information of all other
VMs of the tenant. This can be done by broadcasting a
request message to all other EBs, or with the assistance
of the data center placement controller.

In a second special case, the last VM of a tenant in
an EB is removed due to deletion or migration to other
EBs. In this case, the EB can remove all the location
entries of all other VMs of this tenant in other EBs.
This can be done easily by the EB itself, by checking the
number of remaining VMs of the tenant in its resolution
table after removing a VM.

In order to preserve consistency of the updates, a
timestamping mechanism is used. An update message
holds a timestamp of the update time. Before the ta-
ble update, the EB validates that the received message
timestamp is newer than the last time the entry was
updated. Each table entry update refreshes its recently
used timestamp. When the table fills up, the oldest
entry is cleared from the table.

Inconsistency of the information in the tables may
still occur with the push variant. It can happen if the
message arrival fails, or if the table is filled up. To
overcome this inconsistency, the pull update mechanism
is still preserved in the push variant. If an entry that
was previously removed is required for a resolution, a
resolution request is broadcast to all the other EBs.

5. ANALYTICAL MODEL



6 Technical Report TR13-01, Comnet, Technion, Israel

Figure 2: Pull variant of SAL. VM A.1 initializes a connection with VM A.4 and the resolution process
starts. (a) A.1 transmits a data packet destined to A.4. Both VMs belong to tenant A. The packet
arrives to EB I, which needs to encapsulate it with the LA of A.4. (b) The LA of A.4 is checked in the
resolution table. If it is absent, (c) the EB creates an address resolution message and broadcasts it to
other EBs in the network. The address resolution message contains the LA information of the source
A.1. (d) Upon reception of this address resolution message, each EB that serves VMs of tenant A
learns or updates the LA of A.1. Other EBs do not learn the address in their tables. (e) In addition,
EB II that serves the destination A.4, replies by unicast message to EB I with the LA of A.4. (f)
Finally, EB I inserts the LA of A.4 in the resolution table and forwards the data packet from A.1 to
A.4.

Figure 3: Push variant of SAL. A new VM is created and the resolution update process occurs. (a)
The new VM A.5 of tenant A is created in a server under EB I. (b) The VM location is updated in
the local EB table. (c) EB I multicasts an address update message with the LA of A.5 to the other
EBs that serve VMs of tenant A. EB I determines the EBs to multicast using the entries of tenant A
VMs in its resolution table. (d) Finally, the multicast EBs insert the new address in their resolution
tables.

5.1 Notations and Assumptions
We would now like to compare the various approaches

by formally analyzing their performance. Unfortu-
nately, the performance of each approach is sensitive
to many parameters, such as the data center topology,

the placement policy, the number of tenants, the dis-
tribution of VMs per tenant, the rate of VM creations,
migrations and destructions, the burstiness of the ap-
plication changes, and so on. As a result, to gain some
insight, we are reduced to providing a first model in sig-



7

Table 2: Analysis Notations
N # of EBs 128

V # of VMs per EB 640

T # of tenants 5000

U # of VMs per tenant (≡ V N/T ) 16

C Active Connections (≤ V N(U − 1)) 1.2 · 106

B EB resolution table capacity 105

λc Total VM creation rate (1/sec) 10

λm Total VM migration rate (1/sec) 1

λd Total VM destruction rate (1/sec) 10

λu Total VM location update rate
(1/sec) (≡ λc + λm + λd)

21

λs Total resolution request rate (1/sec) 105

nificantly simplified settings. In our analysis we com-
pare the following approaches: Central DB, Push with
and without SAL, and Pull with and without SAL. We
do not analyze DHT-based DB specifically, since in our
model, its network load is similar to the network load
in the Central DB for the same set of parameters.

Table 2 illustrates the settings for our model. We
make several simplifying assumptions. For instance,
we assume fixed numbers of VMs per tenant, fixed ta-
ble capacity at each EB, as well as fixed rates of vari-
ous VM location update events and VM resolution re-
quests, each following exponentially-distributed inter-
event times. We further assume links with infinite ca-
pacity and zero propagation time.

In addition, we consider two simple VM placement
strategies: packed and round-robin, similarly to [6].
These two placement strategies are two extremes that
typically cause the best- and worst-performance cases.
The best case typically corresponds to the packed place-
ment, in which VMs of a tenant are locally packed under
the lowest number of EBs as possible. This placement
is typically chosen to minimize the network load. On
the other hand, the worst case typically corresponds to
the round-robin placement, in which VMs of a tenant
are spread equally among the servers. This placement
strategy may be chosen for its fault-tolerance proper-
ties.

For each of the placements we impose an additional
condition. We distinguish two cases for each of the
placements.
For the packed placement: Case 1a: If the number of
VMs per tenant is small enough to be placed under a
single EB (U ≤ V or N ≤ T ), no intra-tenant VM com-
munication is passed through EBs.
Case 1b: Otherwise, (U > V or N > T ), each tenant
occupies several EBs.
For the round-robin placement: Case 2a: For the
round-robin placement, if the number of VMs per tenant
is smaller than the number of EBs (U ≤ N or V ≤ T ),

there are no two VMs of any tenant under the same EB.
Case 2b: Otherwise, if the number of VMs per tenant
is larger than the number of EBs (U > N or V > T ),
there are VMs of all T tenants under each EB, and each
EB serves V

T VMs of a tenant.
In addition, to quantify our models, as shown in Table

2, we assume some typical values (based on [1,2,4,6,12,
13, 15, 17, 20, 26, 28, 30, 32], as well as private talks to
industry engineers).

5.2 Resolution Table Length
In this section we evaluate for each of the compared

architectures the resolution table length (or occupancy),
i.e. the required number of resolution entries in the con-
sistent resolution database tables for minimal resolution
network load. Specifically, in the pull variant, the table
length in an EB is the number of resolution table en-
tries needed to support the active connections outgoing
from the EB. In the push variant, the table length in an
EB is the number of VM addresses that are stored in
the resolution table. In other words, for a general push
architecture it is simply the number of VMs in the data
center, while for the push architecture with SAL it is
the number of VMs of the tenants that have some VMs
under the EB. The local VMs of the EB are not counted.
For the central DB, it is simply the number of VMs in
the data center.

5.2.1 Central DB
The Central DB architecture maintains a central res-

olution data base that provides resolution for all the
VMs, thus the final resolution table length is simply
the number of VMs in the data center, which is V N .

5.2.2 Push
In the general push architecture each EB table stores

the resolution entries for all the VMs in the data cen-
ter, except the local VMs under EB, thus the resolution
table length is V (N − 1).

In the push architecture with SAL, the number of
resolution entries depends on the placement of VMs, as
discussed in Section 5.1.

For the packed placement, in Case 1a, no intra-tenant
VM communication is passed through EBs, thus the
resolution tables are empty. Otherwise, in Case 1b, each
resolution table stores entries for one tenant only, of all
VMs of a tenant besides the ones that are located under
the EB, i.e. a total of U − V = V (N−T )

T entries.
For the round-robin placement, in Case 2a, there are

no two VMs of any tenant under the same EB, thus each
resolution table needs to store entries for all other U
VMs of a tenant, for each of its V VMs, except for a sin-
gle local VM, i.e. a total of V (U−1) entries. Otherwise,
in Case 2b, there are VMs of all T tenants under each
EB, and each EB serves V

T VMs of a tenant. Thus, the



8 Technical Report TR13-01, Comnet, Technion, Israel

resolution table, for each of the tenants, stores entries of
VMs under other EBs, i.e. total of T (U−V

T ) = V (N−1)
entries.

5.2.3 Pull
In the Pull and SAL-Pull architectures the consis-

tency in the resolution tables is kept only for the entries
used in the active connections C. Therefore, each EB
resolution table stores consistent entries for the connec-
tion between its VMs and VMs under other EBs.

Each tenant has an average of CT connections between
its VMs, out of the U(U − 1) possible connections be-
tween its U VMs. Therefore, given a pair of VMs, the
probability that there is a connection between them is

Pconnect = C/T
U(U−1) ≈

CT
V 2N2 .

Next, for the evaluation, the previously defined types
of placements are considered.

For the packed placement, we again observe the two
cases. In Case 1a, there is no connection between the
EBs, thus the resolution tables are empty. Otherwise,
in Case 1b, the V VMs under EB communicating with
other U − V VMs of the tenant outside the EB. Thus,
the possible number of VMs to connect to outside of
the EB is V (U−V ). The probability that an resolution
entry for any VM X outside the EB is needed, is the
probability that exists any VM from the V VMs under
EB that connecting with this VM X. It is equal to
1 − (1 − Pconnect)

V . Then, the number of resolution
entries in the EB is the product of the number of all
resolution entries for the tenant U−V by the probability
that this entry is needed: (U−V )(1−(1−Pconnect)V ) =
(U − V )(1− (1− CT

V 2N2 )V ).
For the round-robin placement, in Case 2a, there are

U − 1 potential connections for each for the V VMs
under EB. Therefore the number of active connections
through the EB is CT

V 2N2 · V (U − 1) ≈ C
N . Other-

wise, in Case 2b, each of the T tenants has V
T VMs

under the EB. For each tenant, the possible number
of VMs to connect to outside of the EB is U − V

T ,
and the probability that the entry for VM is needed
is 1− (1−Pconnect)

V
T . Thus, the number of connections

out of each EB is T (U − V
T )(1 − (1 − Pconnect)

V
T ) =

T (U−VT )(1−(1− CT
V 2N2 )

V
T ) = V (N−1)(1−(1− CT

V 2N2 )
V
T ).

5.2.4 Summary
Table 3 summarizes the expression for the resolution

table length in each of the compared methods. In
addition, the numerical estimations are based on the
values in Table 2.

Figure 4 plots the resolution table lengths as a func-
tion of the number N of EBs, based on Table 3. Fig-
ures 4(a) and 4(b) show the resolution table length as
a function of the number of EBs for the packed and
for the round-robin placement, respectively. The values
for SAL and for Pull in Figure 4(a) are equal to 0 for

N < T , therefore they are not seen in the left side of the
graphs. Similarly, Figures 4(c) and 4(d) plot the same
table lengths, but assuming that the number of tenants
T is scaled such that the ratio N

T is kept fixed. The
values for SAL and for Pull in Figure 4(a) are equal to
0 for all N , therefore they are not seen in the graphs.

5.3 Network Load
Next we evaluate the network load of the address res-

olution management packets as a function of VM loca-
tion updates and address resolution requests rates. The
network load is expressed as the rate of address resolu-
tion packets. For ease of an evaluation, a single multi-
cast or broadcast packet to k destinations is counted as
k packets.

5.3.1 Preliminary Notations
Before we begin with the analysis of the network load,

we define several probability notations.
First, we denote the Pmiss as the probability that the

resolution entry is unknown in the table. We assume
a uniform probability of each entry to store resolution
of any VM. For general Pull or Push method, the Pmiss

is approximated as Pmiss = 1−min{1, B
VN }, since B is

the table length and V N is the total number of VMs
to store. Similarly, for SAL-Push approach Pmiss is ap-
proximated as Pmiss = 1 −min{1, B

U ·tenants per EB}, be-
cause the table stores entries for VMs of the served ten-
ants only. We consider two types of placement. For
the packed placement, the number of tenants per EB
is approximated as min{1, VU } = min{1, TN } (Pmiss =

1 − min{1, B
U ·min{1,VU }

}). For the round-robin place-

ment, it is min{V, T} (Pmiss = 1−min{1, B
U ·min{V,T}}).

We also define Pwrong as the probability that the res-
olution entry in the table is inconsistent. It equals
Pwrong = λu

λu+
λs
N

for Pull. It is equal to 0 for Push,

since the entries in Push are consistent.
We also define the probability Pin other EB that the

resolution is to another EB and it is calculated as fol-
lows. In the packed placement, each tenant occupies
dUV e = dNT e EBs, so the probability to find the reso-
lution destination under another EB is the complimen-
tary to a probability of finding the destination under
current EB, and is equal to Pin other EB = 1 − 1

dUV e
. In

the round-robin placement, each tenant has d UN e = dVT e
VMs under EB. Therefore, for each tenant there are up
to dVT e VMs in a specific EB out of its all U VMs,
so the probability to find the connection destination in
another EB is the complimentary to a probability of
finding the destination under a specific EB, thus it is

equal to Pin other EB = 1−min{1, d
V
T e−1
U }.

5.3.2 Central DB
In the Central DB architecture each new connection



9

Table 3: Resolution Table Lengths (entries).
Architecture Packed Placement Typical

Estima-
tion

Round-robin Placement Typical
Estima-
tion

Central DB V N 8.2 · 104 V N 8.2 · 104

Push V (N − 1) 8.2 · 104 V (N − 1) 8.2 · 104

SAL-Push V max{0,(N−T )}
T 0 V (min{U,N} − 1) 9.8 · 103

Pull, SAL-
Pull

max{0, U − V }(1−
(1− CT

V 2N2 )V )
0 C

N , if U ≤ N ; 9.8 · 103

V (N − 1)(1− (1− CT
V 2N2 )

V
T ), if U > N

(a) Packed Placement.
Fixed number of tenants.

(b) Round-robin Place-
ment. Fixed number of
tenants.

(c) Packed Placement.
Number of tenants is
scaled with N .

(d) Round-robin Place-
ment. Number of tenants
is scaled with N .

Figure 4: Model. Resolution Table Length as a Function of Number N of EBs.

retrieves the resolution from central DB. Each new con-
nection with unknown resolution requires two messages:
one for the request to the DB and one for the reply
back. For the wrong inconsistent resolution entry in
the EB table, two additional messages are required: one
for sending to a wrong destination and another one for
error reply.

Therefore the network load for Central DB is:

NLc u
=2λsPin other EB(Pmiss + 2(1− Pmiss)Pwrong).

(1)

For the packed placement it is:

NLc−packed u

2λs(1−
1

dUV e
) · (1−min{1, B

V N
}

+ 2(min{1, B

V N
}) λu

λu + λs
N

).

(2)

and for the round-robin placement it is:

NLc−roundrobin u

2λs(1−min{1,
dVT e − 1

U
}) · (1−min{1, B

V N
}

+ 2(min{1, B

V N
}) λu

λu + λs
N

).

(3)

In DHT-based DB architecture the address resolu-
tion is done by the resolver switches, thus it is similar
to Central DB with the exception that the resolution re-
quests are to the resolution switches in which the DHT

is located. Therefore the network load of the resolution
packets is similar to the load in Central DB architec-
ture.

5.3.3 Push
In the Push architecture each location update in-

volves broadcasting update messages to all other N − 1
edge bridges. Also, in the absence of the requested entry
from the table, the EB needs to broadcast the resolu-
tion request to N − 1 other EBs and receive one reply.
Therefore, the network load in the Push architecture is:

NLpush u λu(N − 1) + λsNPin other EBPmiss. (4)

For the packed placement it equals:

NLpush−packed u

u λu(N − 1) + λsN(1− 1

dUV e
)(1−min{1, B

V N
}).

(5)

and for the round-robin placement it equals:

NLpush−roundrobin u λu(N − 1)+

+ λsN(1−min{1,
dVT e − 1

U
})(1−min{1, B

V N
}).

(6)

5.3.4 SAL-Push
SAL-Push variant is similar to general Push with the

difference that the update messages are sent only to
the selected EBs. In the packed placement, the average
number of EBs under which the VMs of a single tenant



10 Technical Report TR13-01, Comnet, Technion, Israel

VMs are stored is bUV c. In Case 1a it is equal to 0,
and no update messages are required. In Case 1b the
network load equals:

NLS−push−packed

u λu(bU
V
c − 1) + λsNPin other EBPmiss =

= λu(bU
V
c − 1)+

+ λsN(1− 1

dUV e
)(1−min{1, B

U ·min{1, VU }
}).

(7)

In the round-robin placement, in Case 2a, each loca-
tion update requires U − 1 messages, one for each other
VM of a tenant. Therefore, the network load equals:

NLS−push−roundrobin−Case3

u λu(U − 1) + λsNPin other EBPmiss =

= λu(U − 1)+

+ λsN(1−min{1,
dVT e − 1

U
})(1−min{1, B

U ·min{V, T}
}).

(8)

Otherwise, in Case 2b, there is a VM of each tenant
on each EB, and location update requires a message to
every other EB. Therefore, the network load is:

NLS−push−roundrobin−Case4

u λu(N − 1) + λsNPin other EBPmiss =

= λu(N − 1)+

+ λsN(1−min{1,
dVT e − 1

U
})(1−min{1, B

U ·min{V, T}
}).

(9)

5.3.5 Pull
In Pull architectures the network load consists of the

cost of broadcasting resolution request messages to all
other EBs. The broadcasting happens when the re-
quested entry is not in the table, or when the entry
in the table, but holds the wrong resolution. The last
case can happen if the requested VM has moved since
its last entry update in the table. The network load for
Pull architecture equals:

NLpull = NLS−pull

u λsNPin other EB(Pmiss + (1− Pmiss)Pwrong).
(10)

Using the notations defined in Section 5.3.1, with
packed placement, the network load for general Pull
equals:

NLPull−packed u λsN(1− 1

dUV e
)·

· ((1−min{1, B

V N
}) + (min{1, B

V N
}) λu

λu + λs
N

).

(11)

(a) Packed Placement. (b) Round-robin Place-
ment.

Figure 5: Model. Network Load as a Function
of Table Capacity B.

and with round-robin placement, the network load for
general Pull equals:

NLPull−roundrobin u λsN(1− dV/T e − 1

U
)·

· ((1−min{1, B

V N
}) + min{1, B

V N
} λu

λu + λs
N

).
(12)

5.3.6 SAL-Pull
In continue to Equation 10 the network load of SAL-

Pull with packed placement equals:

NLS−pull−packed

λsN(1− 1

dUV e
) · ((1−min{1, B

U ·min{1, VU }
})+

+ (min{1, B

U ·min{1, VU }
}) λu

λu + λs
N

).

(13)

and for the round-robin placement:

NLS−Pull−roundrobin

λsN(1− dV/T e − 1

U
)((1−min{1, B

U ·min{V, T}
})+

+ (min{1, B

U ·min{V, T}
}) λu

λu + λs
N

).

(14)

5.3.7 Summary
The network load estimation of the resolution archi-

tectures for the packed and round-robin placements is
summarized in Table 4. The expressions are next eval-
uated in Figures 5 and 6.

Figure 5 shows the network load of the resolution
packets as a function of the table capacity B in the
packed placement and the round-robin placement. The
packed placement result is trivial, as resolution packets
are sent in the Push architecture only. The round-robin
placement result is explained next. We can see that
for small table capacities, the hit rate is low in the EBs
under all architecture, therefore the Central DB archi-
tecture has lower network load, because the resolution
requests are sent in unicast and not flooded as in other
architectures. In large table capacities, the Push ar-



11

Table 4: Network Load.
Architecture Packed Placement Round-robin Placement

Central DB 2λs(1 − 1
dUV e

)(1 − min{1, B
VN } +

2(min{1, B
VN })

λu
λu+

λs
N

)

2λs(1 − min{1, d
V
T e−1
U })(1 − min{1, B

VN } +

2(min{1, B
VN })

λu
λu+

λs
N

)

Push λu(N − 1) + λsN(1− 1
dUV e

)(1−min{1, B
VN }) λu(N − 1) + λsN(1 − min{1, d

V
T e−1
U })(1 −

min{1, B
VN })

SAL-Push λu(bUV c − 1) + λs(N − 1)(1 − 1
dUV e

)(1 −
min{1, B

U ·min{U,V }})
λu(min{U,N} − 1) + λs(N − 1)(1 −
min{1, d

V
T e−1
U })(1−min{1, B

U ·min{V,T}})
Pull λsN(1 − 1

dUV e
)((1 − min{1, B

VN }) +

(min{1, B
VN })

λu
λu+

λs
N

)

λsN(1 − dV/Te−1
U )((1 − min{1, B

VN }) +

min{1, B
VN }

λu
λu+

λs
N

)

SAL-Pull λsN(1 − 1
dUV e

)((1 − min{1, B
min{U,V }}) +

(min{1, B
U ·min{U,V }})

λu
λu+

λs
N

)

λsN(1− dV/Te−1U )((1−min{1, B
U ·min{V,T}}) +

(min{1, B
U ·min{V,T}})

λu
λu+

λs
N

)

(a) Packed placement. (b) Round-robin place-
ment.

(c) Packed placement.
Number of tenants scales
with N .

(d) Round-robin place-
ment. Number of tenants
scales with N .

(e) Packed placement.
Number of tenants and
rates scale with N .

(f) Round-robin place-
ment. Number of tenants
and rates scale with N .

(g) Packed placement.
Number of tenants, table
capacity and rates scale
with N .

(h) Round-robin place-
ment. Number of tenants,
table capacity and rates
scale with N .

Figure 6: Model. Network Load vs Number of EBs N .



12 Technical Report TR13-01, Comnet, Technion, Israel

chitectures has lower network load than in other archi-
tectures, because the tables are large enough to store
the resolution for all the VMs, the information is up-
dated instantly and the multiple request broadcasts are
avoided. For Pull, the SAL approach improves the net-
work load under middle table capacities. For small table
capacities, the difference in the gain of a slightly better
hit rate in the tables is negligible considering the miss
cost, and for the large table capacities, the tables are
large enough. Both in Pull with and without SAL the
table hit rate is not bounded by the table capacity.

Figure 6 shows the network load as function of num-
ber of EBs N in the packed placement and round-robin
placement.

Figures 6(a) and 6(b) present the network load for
the packed and round-robin placements, respectively,
keeping other parameters fixed. In the packed place-
ment, the network load for N ≤ T is equal to 0 in
all the architectures besides Push. For large N , Push
with SAL and the Central DB outperform the other ap-
proaches. For the round-robin placement, the Central
DB approach outperforms the distributed approaches.
Figures 6(c) and 6(d) present the network load as func-
tion of number of EBs (N) for the packed and round-
robin placements, respectively, scaling also the number
of tenants (T ), such that the ratio N/T is kept fixed.
Moreover, Figures 6(e) and 6(f) present the network
load as function of number of EBs (N) for the packed
and round-robin placements, respectively, scaling also
the number of tenants (T ) and the rates λc, λm, λd and
λs with N . Finally, Figures 6(g) and 6(h) present the
network load as function of number of EBs (N) for the
packed and round-robin placements, respectively, scal-
ing also the number of tenants (T ), the rates λc, λm,
λd and λs, and the table capacities (B) with N . With
the packed placement, only the Push architecture has a
positive network load, since all the VMs of each tenant
are served by a single EB. With round-robin placement,
Push with SAL outperforms the other approaches.

6. SIMULATIONS
In this section, we describe a set of simulation results

evaluating SAL and comparing it to several existing ad-
dress resolution methods.

6.1 Simulator
We implemented an event-driven simulation of the

data center network address resolution system. The
simulation includes VM location update events, i.e. cre-
ations, migrations and destructions, as well as VM ad-
dress resolution events, which are initiated by VMs and
request for a resolution of other VMs.

In the simulation, tenants are defined as disjoint sets
of virtual machines. The VMs are assigned to the host-
ing edge bridges independently of the tenant they be-

long to. Furthermore, the source and destination VMs
of each resolution request are chosen uniformly within
the VMs of each tenant.

We implemented the following address resolution
schemes: Central DB, Push with and without SAL, and
Pull with and without SAL. The Pull scheme consists
of three variants besides SAL. On the figures they are
marked by Pull (complete), Pull (connection) and Pull
(conservative). The difference between these three Pull
schemes is the way in which the EB learns resolution
information from the incoming broadcast resolution re-
quests that are not destined to the EB. In Pull (com-
plete), the EBs stores information of each incoming res-
olution request message. In Pull (connection), only the
entries that already exist in the resolution table are up-
dated, but no new entry is learned. This method is
similar to ARP. Lastly, in Pull (conservative), the EB
does not learn from any resolution request not destined
to it.

In all the schemes, the table lengths are limited by a
fixed table capacity. When an entry is added to a full
table, the oldest entry is overwritten. In addition, an
entry with a wrong information is revealed when it is
accessed. The wrong entries and the missing entries are
resolved by the broadcast resolution request messages
to all the servers — except for the Central DB scheme,
where the resolution is done by an access to the central
directory.

The output of the simulator includes the number of
transmitted resolution messages, as well as the occu-
pancy, the number of updates, and the hit percentage
of the resolution tables. For simplicity, we neglect the
impact of the network topology. Thus, each unicast
message between a pair of VMs is counted as a sin-
gle message, and a multicast or a broadcast message is
counted as the number of recipients. For example, a re-
quest broadcast by an EB in a data center with N EBs
is counted as N − 1 messages, since it is sent to N − 1
EBs; and the unicast reply is counted as a single mes-
sage. Pulling the address resolution data base in the
Central DB architecture is counted as two messages:
one for the request and one for the reply. Revealing
a wrong entry costs two additional messages: one for
sending a packet to a wrong destination, and the sec-
ond for receiving a reply message indicating that the
destination is wrong.

6.2 Synthetic Trace Simulation Results
We start by running simulations with a synthetically-

generated trace. We use the typical values from Table
2, and vary the table capacity B from 10 to 106 entries.
The placement distribution is uniform, such that at ev-
ery placement decision, the edge bridge for each VM is
chosen uniformly. New VMs pick uniformly their ten-
ants. The VM chosen for migration or destruction are



13

also picked uniformly. At the initial state of the simu-
lations, the data center is full with random VMs up to
its capacity (V ·N). The simulations are run until the
steady state.

Figures 7(a), 7(b) and 7(c) show the impact of the
resolution table capacity on the mean resolution packet
network load, the largest mean update rate of a table,
and the mean hit rate, respectively, for each of the ar-
chitectures. Note that for the Central DB, the shown
table capacity is for the tables in EBs and not for the
central data base.

Specifically, Figure 7(a) confirms our intuition that
as table capacity increases, the miss rate decreases and
therefore network load decreases, up to a specific large
value of table capacity, beyond which there are no fur-
ther gains. The result also supports our insight from the
model that for larger table sizes, the Push architectures
perform better than the Pull architectures, and that
the SAL approach for both Push and Pull reduces the
network load for some ranges of table capacities, while
never increasing the network load. It also seems that for
low table sizes, the preferred resolution method is the
Central DB. However, it also relies on a large memory
storage with a central data base that holds the resolu-
tion of all the VMs. This large memory is not reflected
in this plot.

Figure 7(b) presents the update rate of a single table.
By table update, we define each change of the resolution
entry in the table, including the address change in an
existing entry, and an old entry overwrite for a different
VM. For the Central DB architecture, the updates are
counted on the central data base, since it suffers a larger
update rate than the EB tables. Since the central data
base is updated upon each VM location change only,
the shown update rate for Central DB is fixed for any
table size in the EB.

Figure 7(c) confirms the intuition that the table hit
rate increases with the table capacity, and that for the
Push and complete Pull architectures, the hit rate is
lower than for the other approaches, since in these ar-
chitectures the resolution tables store information about
VMs that are irrelevant.

6.3 Benchmark Trace
Next, we evaluate the system with a benchmark

trace from the IBM Research Compute Cloud (RCCv2),
where the customer data was anonymized [3]. The ex-
tracted events from the trace are the creation and de-
struction times for various VMs in the data center, their
placement, and their tenant assignment. Furthermore,
the address resolutions are randomly added with a ratio
of 100 resolution events per VM location update event.
The RCCv2 system does not include migration, thus
the update events only consist of VM creation and de-
struction events.

Figure 9: Placement Effect on Network Load
and Resolution Table Length. p = 1 is the right-
most point for each architecture. p = 0.2 is the
leftmost point for each architecture. For p = 0
the values are equal to 0, thus are not shown.

Figure 8 is analogous to Figure 7 of the synthetic
trace simulations. Most algorithms behave similarly.
Moreover, since we now use a slightly higher rate of VM
location updates compared to the resolution request
rate, the Central DB approach presents a lower asymp-
totic network load than the Push architectures. This
is because a higher location update rate requires un-
necessary location update messages in the Push archi-
tectures, since an update message may be unnecessary
in practice when a VM is moved again before its loca-
tion resolution is requested by the other EBs. Although
the Central DB architecture slightly outperforms the
Push with SAL approach, it still requires a higher ta-
ble update rate, as shown in Figure 6.3. Clearly, higher
VM update rates have are detrimental for Push archi-
tectures, other parameters being equal. Lastly, Figure
8(c) shows that the SAL approach also improves the
resolution table hit rate.

6.4 Placement Strategy Effect
Next we check the effect of the placement strategy

on the resolution packets network load and the reso-
lution table length. We already discussed in Section
5.1 the two extreme placement strategies: packed and
round-robin. We simulate hybrid placement strategies in
which, given a parameter p between 0 and 1, each place-
ment decision picks the packed placement strategy with
probability p, and the round-robin placement strategy
with probability 1 − p. We run simulations with the
hybrid placement strategies by varying p from 0 to 1 in
steps of 0.2. The resolution table capacities are chosen
as infinity large so as to evaluate the resolution table
length in an unconstrained manner. Other parameters
are chosen based on the values in Table 2.

Figure 9 shows the largest resolution table at the end
of the simulation run vs. the cumulative number of reso-
lution packets sent for the synthetic trace. For each type
of architecture the results from various hybrid place-



14 Technical Report TR13-01, Comnet, Technion, Israel

(a) Network Load vs. Resolution Ta-
ble Capacity.

(b) Largest Table Update Rate vs.
Resolution Table Capacity.

(c) Mean Table Hit Rate vs. Resolu-
tion Table Capacity.

Figure 7: Synthetic Event Trace Simulation Results.

(a) Network Load vs. Resolution Ta-
ble Capacity.

(b) Largest Table Update Rate vs.
Resolution Table Capacity.

(c) Mean Table Hit Rate vs. Resolu-
tion Table Capacity.

Figure 8: Benchmark Trace Simulation Results.

ment strategies are connected by a line. The rightmost
point for each architecture line is for p = 1, and the
leftmost point is for p = 0.2. For the packed place-
ment (p = 0), all the VMs of each of the tenants are
packed under a single EB, thus no resolution request is
exchanged between the EBs and no updates are pushed
in SAL. Therefore, the result for p = 0 is omitted, since
all the values are equal to 0. The only exception is the
Push architecture, in which the updates are still pushed
between the EBs and the network load and table sizes
are larger than 0. Also, for the Push architecture, all the
values (including p = 0) are concentrated in the graph,
since it is less affected by the placement strategy.

It appears that the relative performance of diverse ap-
proaches is relatively insensitive to the placement strat-
egy. Therefore, the main insight is that the impact of
the placement strategy is less significant than we ex-
pectd before running the simulation.

7. CONCLUSIONS
In the paper we proposed Smart Address Learning

(SAL), a novel approach that expands the scalability
of current address resolution mechanisms in the data
centers, for both the network load and the resolution
table sizes, which makes it possible to be implemented
on faster memory devices. The key property of the ap-

proach is to selectively learn the addresses in the resolu-
tion tables, based on the fact that the VMs of different
tenants do not communicate.

We presented an analytical model of the network load
and resolution table sizes for the presented resolution
methods. We further used the model and simulations
to evaluate the tradeoff of the network load and the res-
olution table size. Our analysis showed that both the
network load and the resolution table sizes can be re-
duced by orders of magnitude depending on the system
parameters.

More generally, to our knowledge, this paper is the
first to introduce a model for comparing address res-
olution methods in data centers, as well as the first
to evaluate them using real-life trace simulations. A
more advanced analysis of the optimal address resolu-
tion tradeoff in data centers is left for future work.

Acknowledgment
The authors would like to thank Orna Agmon Ben-
Yehuda and Aran Bergman for their helpful comments,
as well as Mariusz Sabath and David Breitgand, IBM
WRC, who kindly shared the data of the IBM Research
Compute Cloud (RCCv2) traces [3]. This work was
partly supported by the Hasso Plattner Institute Re-
search School, the Intel ICRI-CI Center, the Israel Min-



15

istry of Science and Technology, and European Research
Council Starting Grant No. 210389.

8. REFERENCES
[1] Amazon web services LLC.

”https://aws.amazon.com”.
[2] Microsoft Corporation, an overview of Windows

Azure. ”http://www.microsoft.com/ down-
loads/details.aspx?displaylang=en&FamilyID
=96d08ded-bbb9-450b-b180-b9d1f04c3b7f.”.

[3] G. Ammons et al. RC2: A living lab for cloud
computing. IBM, IBM Research Report RC24947,
2010.

[4] D. Ármannsson, G. Hjálmtýsson, P. D. Smith,
and L. Mathy. Controlling the effects of
anomalous arp behaviour on ethernet networks.
ACM CoNEXT ’05, 2005.

[5] F. Bari, R. Boutaba, R. Esteves, M. Podlesny,
G. Rabbani, Q. Zhang, F. Zhani, and
L. Granville. Data center network virtualization:
A survey. IEEE Communications Surveys and
Tutorials, 2012.

[6] T. Benson, A. Akella, A. Shaikh, and S. Sahu.
CloudNaaS: a cloud networking platform for
enterprise applications. SOCC ’11, 2011.

[7] P. Bod́ık, I. Menache, M. Chowdhury, P. Mani,
D. A. Maltz, and I. Stoica. Surviving failures in
bandwidth-constrained datacenters. SIGCOMM
’12, 2012.

[8] R. Chamarajanagar, P. Hunt, S. Kimble,
T. Nguyen, and G. Rashiyamany. Selective
passive address resolution learning. US Patent
Application 20080144634, 2008.

[9] L. Dunbar, W. Kumari, and I. Gashinsky.
Practices for scaling ARP and ND for large data
centers. Network Working Group Internet Draft
work in progress.

[10] A. Edwards, A. Fischer, and A. Lain. Diverter: a
new approach to networking within virtualized
infrastructures. ACM WREN ’09, 2009.

[11] K. Elmeleegy and A. Cox. Etherproxy: Scaling
ethernet by suppressing broadcast traffic. In IEEE
INFOCOM’09, 2009.

[12] A. Greenberg, J. R. Hamilton, N. Jain,
S. Kandula, C. Kim, P. Lahiri, D. A. Maltz,
P. Patel, and S. Sengupta. VL2: a scalable and
flexible data center network. ACM SIGCOMM
’09, 2009.

[13] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong,
P. Sun, W. Wu, and Y. Zhang. SecondNet: a data
center network virtualization architecture with
bandwidth guarantees. ACM Co-NEXT ’10, 2010.

[14] G. Hankins. Pushing the limits, a perspective on
router architecture challenges. In North American
Network Operators Group, NANOG 53.

[15] N. Ilyadis. The evolution of next-generation data
center networks for high capacity computing. In
VLSI Circuits (VLSIC), 2012, 2012.

[16] S. Kandula, S. Sengupta, A. Greenberg, P. Patel,
and R. Chaiken. The nature of data center traffic:
measurements and analysis. ACM IMC ’09, 2009.

[17] R. Katz. Tech titans building boom. IEEE
Spectrum, 46(2):40 –54, Feb. 2009.

[18] C. Kim, M. Caesar, and J. Rexford. Floodless in
seattle: a scalable ethernet architecture for large
enterprises. In ACM SIGCOMM ’08, 2008.

[19] M. Mahalingam and et al. VXLAN: A framework
for overlaying virtualized layer 2 networks over
layer 3 networks. In Network Working Group
Internet Draft, 2011.

[20] J. Metzler, A. Metzler, and et al. The emerging
data center LAN. Webtorials Analyst Division,
Cloud Networking Reports 2010 - 2012.

[21] D. Meyer, L. Zhang, and K. Fall. Report from the
IAB workshop on routing and addressing. In
IETF, RFC 4984, 2007.

[22] J. Mudigonda, P. Yalagandula, M. Al-Fares, and
J. C. Mogul. SPAIN: COTS data-center Ethernet
for multipathing over arbitrary topologies.
USENIX NSDI’10, 2010.

[23] J. Mudigonda, P. Yalagandula, J. Mogul,
B. Stiekes, and Y. Pouffary. NetLord: a scalable
multi-tenant network architecture for virtualized
datacenters. ACM SIGCOMM ’11, 2011.

[24] A. Myers, T. E. Ng, and H. Zhang. Rethinking
the service model: Scaling ethernet to a million
nodes, 2004.

[25] Y. Nachum, L. Dunbar, I. Yerushalmi, and
T. Mizrahi. Scaling the address resolution protocol
for large data centers (SARP). INTAREA
Working Group Internet Draft (work in progress).

[26] R. Niranjan Mysore, A. Pamboris, N. Farrington,
N. Huang, P. Miri, S. Radhakrishnan,
V. Subramanya, and A. Vahdat. Portland: a
scalable fault-tolerant layer 2 data center network
fabric. ACM SIGCOMM ’09, 2009.

[27] M. Saluan. Want to Provide Cloud Services? You
Need to Understand Multi-Tenancy.
http://mspmentor.net/blog/

want-provide-cloud-services-you-need-\

\understand-multi-tenancy, 2013.
[28] A. Shieh, S. Kandula, A. Greenberg, and C. Kim.

Seawall: performance isolation for cloud
datacenter networks. HotCloud’10, 2010.

[29] M. Sridharan and et al. NVGRE: Network
virtualization using generic routing encapsulation.
In Network Working Group Internet Draft, 2011.

[30] B. Stephens, A. Cox, W. Felter, C. Dixon, and
J. Carter. PAST: scalable ethernet for data
centers. ACM CoNEXT ’12, 2012.



16 Technical Report TR13-01, Comnet, Technion, Israel

[31] B. Stephens, A. L. Cox, S. Rixner, and T. S. E.
Ng. A scalability study of enterprise network
architectures. ACM/IEEE ANCS ’11, 2011.

[32] Q. Zhang, L. Cheng, and R. Boutaba. Cloud
computing: state-of-the-art and research
challenges. Journal of Internet Services and
Applications, 2010.


