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Abstract— This paper raises the data center designers question 
of trade-off between high-buffer switches versus low-latency 
switches. Packet buffer hardware dictates this trade-off due to the 
constraints of DRAM and SRAM technologies. While the 
designers who prefer network robust solutions would typically 
prefer large-buffer switches with settling for high latency; the 
designers who can adapt applications to the network behavior 
would prefer the low-latency switches in order to gain better 
application performance.

In this paper, we review the question of switch buffer sizing in 
data center networks, by considering the switch delay in light of 
common traffic patterns in data centers. To the best of our 
knowledge, this is the first paper that discusses the switch buffer 
sizing question by considering switch latency trade-off. We review 
previous works on switch buffer sizing given the typical 
parameters of data center networks, and survey the typical data 
center traffic patterns that challenge the switch buffer. Also, we 
provide simulation results that show the effect of switch latency on 
the effective bandwidth of acknowledgement-based congestion 
controlled flows. Finally, we discuss the gain that flow control 
provides to end-to-end network performance.
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I. INTRODUCTION

Data center network designers face the issue of handling 
congestion in the network. Every network is prone to 
congestion, and the most common solutions to address it can be 
grouped into two categories: solutions that allow applications to 
adapt to the network behavior and solutions that try to make the 
network as robust as possible.

The first solution category typically leads to the choice of 
low-latency1 switches, typically with modest packet buffering. 
The second category favors switches with large buffering 
(ideally infinite), and are willing to settle for much higher 
network latency.

Large buffer switches can accumulate traffic when 
congestion occurs, but are subject to queuing delays and high 
switching latency. Small-buffer switches provide low switching 
latencies, but are potentially more vulnerable to incast scenarios, 
in which the arriving traffic to the switch is much larger than the 
switch can forward, due to the limited link capacities. 

1 Unless stated differently, by switch latency we refer to the empty switch 
port-to-port packet latency, and not to the queueing latency.

In this paper, we analyze buffers and latency trade-offs and 
suggest buffer size optimizations for typical data center traffic 
patterns. We show that network performance is not linear with 
buffer sizes, i.e. from a certain size, additional buffering only 
adds latency without significantly improving handling of incast 
scenarios. Moreover, latency sensitive applications, such as
distributed computing, database query, web search, high 
performance computing, etc., demand a non-blocking and low-
latency network. When networks are not overloaded, the higher 
switch latency has a negative effect on TCP flow throughput. 

We review the previous work on buffer sizing, focusing on 
the data center network’s typical characteristics. Next, we 
analyze the buffer sizing and latency for popular data center 
traffic patterns: web search, distributed storage, Map Reduce,
and high performance computing (HPC). Next, we show that in 
typical high-performance networks, switch latency can actually 
have significant impact on the effective achieved throughput,
when common window-based congestion control is used. Last, 
we show that network congestion is better managed by flow and 
congestion control, rather than by huge buffers. 

Throughout the paper, we used an OMNet++-based Inet-
enhanced network simulator[1][2] to evaluate our statements. 

II. SWITCH BUFFER SIZING AND LATENCY: TRADE-OFF OF 
RACE CARS VS. TRAILER TRUCKS

Large-buffer switches are analogous to trailer trucks, as the 
packet buffers are large but slow. Their large packet buffers are
normally implemented in slow DRAM memory. That leads to 
higher, varying switching latency, usually over-microseconds 
(e.g. Arista DCS-7280E latency is 3.8us with 9GB buffer [3],
Arista DCS-7500E latency can go to 12us  with 72GB-144GB 
buffer [4], Juniper QFX10000 latency is 5.5us with 8GB and 
12GB buffers [5], Cisco Nexus 7000 latency is 9.5us with 5.6GB 
buffers [6]).

Small-buffer switches are analogous to race cars, as the 
packet buffers are implemented using fast SRAM memory, but 
with lower buffering size. Such switches usually have sub-
microsecond latencies (for example, 220 ns in Mellanox 
SX1036 [3][7]), 550ns in Arista 7050QX [8]). Several 
enhancements, such as cut-through and advanced store and 
forward, are used to decrease the switch latency even further.
Therefore, the trade-off of the network designer is essentially 



between low latency and big buffers. We will evaluate this trade-
off in the following sections.

III. OPTIMAL BUFFER SIZING

The question of optimal buffer sizing has been studied for 
more than two decades [9][10]. Insufficient buffers can cause a
high packet drop rate and throughput collapse due to incast,
while large buffers cause unnecessary latency and slow reaction 
to congestion.

The most popular work on buffer sizing is reference [11].
The suggested buffer sizing rule is to set the buffers to be equal 
to the product of the bandwidth times the flow round trip time 
divided by the square root of the number of flows   ( / # ). This rule follows from the conventional TCP 
congestion control behavior with fast recovery function, 
according to which the congestion window is decreased by two 
upon a packet loss event. The buffer size is defined as a value 
that keeps the full bandwidth for a flow with minimal queueing 
latency. When the number of flows is large enough to avoid their 
inter-synchronization, the buffer is required to absorb only the 
accumulated rate fluctuation, which is reduced when the number 
of flows is large. Using the typical data center network 
parameters (link bandwidth of 100 Gigabits per second, round-
trip propagation time of 200 microseconds and roughly 200 
flows per link: = 100 , = 200 , # = 200),
it suggests very low buffers (~178KB) per switch. However, the 
drawback of that model is that it does not consider the fact that 
the fast recovery function of TCP does not enter into operation 
if the flow congestion window is under 4 segments (due to the 3 
duplicate ACKs required to trigger the fast recovery mode). 
Therefore, it does not suit common incast scenarios in which the 
drops happen before the flows reach a congestion window of 4, 
as described in the literature [12][13][14][15].

Other works [16][17] extend the model to other cases, adding
that when the number of flows is large, the buffering should be 
proportional to the number of flows. The suggested egress buffer
size is equal to 9 packets multiplied by the number of flows
(9[ ] # ). With a rule-of-thumb of 200 
concurrent flows in the switch, this would need a 2.7MB buffer 
per switch for 1.5KB packets. In other words, they suggest a
buffer size that will avoid the TCP incast throughput collapse,
without naming that specifically (References [16][17] were 
published before the TCP incast works).

The most recent IETF draft [18] strongly recommends using
ECN and AQM schemes over implementation of large buffers.
The Bufferbloat project [19][20] aims to solve the “laggy 
network performance” by actively limiting the queuing delay in 
the buffers. Subsequent works [21][22][23] recommend even 
smaller buffer switches than the original work.

The direct drawback of the unnecessarily large buffer on 
network performance is the extended end-to-end network 
queueing latency the packets may suffer. The impact of 
excessive queues reduces the performance of low-latency-
sensitive transactions.

We evaluated the above statement of the buffer size impact 
on the switch queueing latency by running the following set of 
simulations. We simulated many-to-one scenario of 20 

persistent (long) TCP incast flows sent from 20 hosts to a
common destination over a single switch with a bottlenecked 
100Gbps link. We varied switch buffer sizes and checked the 
end-to-end packet delay for each buffer size. The end-to-end 
packet delay was measured by periodically sending a UDP 
packet from each of the TCP flow injectors to a common 
destination and measuring its end-to-end latency. The UDP 
packets’ injection rate is low enough so as not to produce a
meaningful effect on the TCP traffic. Under the given network 
parameters, the system converges to the point where the TCP 
flows operate in the congestion-avoidance state without 
retransmission timeouts. We also calculated the theoretical 
bound of the queuing delay of the full buffer. The theoretical 
bound is calculated by dividing the switch buffer size by the link 
rate and adding the switch processing delay and links 
propagation time. We draw both the simulated end-to-end 
latency result and the theoretical bound on Fig. 1. The result
shows that mean end-to-end latency is increased linearly with 
the increase in buffer size. In addition, since the end-to-end 
latency was relatively close to the theoretical bound hints that 
the buffers are kept almost full, even with increasing the buffer 
capacity. 

Conclusion: TCP-based traffic keeps the buffers almost full 
for any buffer size and the mean queueing delay increases almost 
linearly with the buffer size.

In addition, as we will show in Section V, the end-to-end 
latency is also crucial for achieving high throughput for long 
flows driven by acknowledgement-based congestion control 
algorithms, such as TCP.

IV. WHEN DO WE NEED BUFFERS IN DATA CENTERS?
In this section we analyze the large-buffer vs. low-latency 

trade-off by discussing the buffering requirements in the typical 
data center scenarios. A popular method for estimating the 
buffering requirements of data center switches is the incast 
scenario [12].  In this scenario, multiple TCP flows are 
transmitted over a single switch to a common destination 
through the same output port over a bottleneck link. The incast 
scenario is normally related to data center applications such as 
web search, distributed storage, Map Reduce, and HPC. We will 
take a deeper look into each of them in the following paragraphs.

Fig. 1. End-to-end packet delay as a function of switch buffer size
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A. Web Search
Web search is a typical example of a partition/aggregate 

traffic pattern, explained in [24]. Applications set very tight 
deadline times for web queries, such that it is very hard for 
conventional TCP to meet them. Therefore, software designers 
use proprietary UDP-based transport layer protocols [25], and 
hence the conventional TCP throughput collapse incast problem
is not applicable in these cases. Moreover, as stated in [24], data 
center network delays play a significant role in application 
design, causing the network designers to avoid network under-
provisioning and to use the fastest possible low-latency network 
devices.

Due to the reasons stated above, the large buffering is 
unnecessary in web-search application networks. Hence, we
analyze the application performance by switch latency 
parameter. We simulated partition/aggregate transactions over 
64 hosts connected in a two-level fat tree network. The 
transaction is combined from 64B request messages into a
random subset of the hosts and 20KB reply messages. The 
transaction is defined as completed after all the reply messages
have been received. Transaction request arrivals were modeled 
as exponentially distributed with a mean of 1ms per host. We 

varied the switch latencies from 300ns up to 9μs and checked 
the mean transaction completion time. Fig. 2 shows the mean 
completion time of transactions as a function of the switch 
latency. The results show that using fast switches of 300 ns 
latency reduces the transaction time by almost twice compared 
to 9us switches. The longer transaction times are caused both 
directly by the longer switch latency, and indirectly by
additional queueing delay due to the larger amount of data in the 
network at each point of time.

Conclusion: Since web search applications are latency-
sensitive and hence deployed on over-provisioned networks, the 
switch delay has more significant effect on the application 
performance than switch buffer size parameter. 

B. Distributed Storage
Distributed storage applications are the first that were found 

to suffer from the TCP incast throughput collapse 
problem[13][26]. The problem is described as throughput 
collapse of a distributed storage request, where a bottleneck link 
is not utilized while the flows are in time-out mode, as depicted 
in Fig. 3. Synchronized flows create excessive packet drop rate, 
which enters the flows into a time-out state. During the time-out,
the link bandwidth is not utilized. Since the distributed storage 
read transaction completes when all the flows involved are 
finished, the effective throughput of the transaction is drastically 
reduced.

There are various methods to mitigate and overcome the 
incast problem. Specifically, TCP incast throughput collapse can 
be solved in several different ways on the upper layers 
(application, transport, link, etc.) [14]. The straightforward 
solution in the switch architecture level is to increase the switch 
buffers. The incast papers refer to switches with buffer sizes of 
32KB to 1MB to illustrate the problem [12] [15].

However, current switches have typically buffer size that is 
larger than the 1MB mentioned above. Hence, we aimed to 
evaluate the TCP throughput collapse problem with larger 
switch buffers of several Mbytes (Those buffer sizes are still 
small enough to be implemented using fast SRAM memories). 
In order to quantify the effect of buffer size in a distributed 
storage environment, we simulated an incast scenario with block 
size of 80MB, exactly as referred to as next generation data 
centers in [27], and 10 hosts with 20 sender servers on each, over 
40Gbps and 100Gbps links to a common client server (Fig. 3). 
We varied the shared buffer size of the switch from 0.5MB to Fig. 3. Incast scenario [26]

Fig. 4. Incast scenario goodput as a function of switch buffer size
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16MB and checked the effective goodput under every buffer size 
value. We avoided to vary switch latency as well, since in 
current scenario the queueing latency dictates the latency of the 
packets inside the switch. As shown in Fig. 4, increasing the 
switching buffer in a shared memory model is efficient up to 
6MB of buffer size. We show that shared buffer size of 6MB is 
enough for the typical incast scenarios that are presented in the
known literature. Real environments combine background 
traffic, which was not considered in that analysis, hence real 
buffering requirements would be a bit larger.

Conclusion: Current SRAM based switch buffers are large 
enough to handle typical TCP incast scenarios.

C. MapReduce
MapReduce [28] is a popular operation in data centers that is 

used for Big Data computation. The common belief is that 
MapReduce requires large network bandwidth and large buffers. 
The demand for bandwidth is reasonable due to the large amount 
of data that must be transferred quickly in the Shuffle stage
(when each mapper sends its results to each of the reducer 
processes). However, the desire for large buffers is questionable. 
Since the MapReduce communication stage shuffles traffic from 
many nodes to many nodes, its traffic pattern is similar to all-to-
all with many short data transmission flows, usually of 100B to 
10KB [29] [30]. In other words, each physical host participates 
in several parallel many-to-one traffic transactions.  Since the 
traffic pattern is well spread [31], the network does not suffer 
from heavy congestion events, and therefore does not require 
huge buffers. Reference [32] analyzed popular data center 
network characteristics and could not find any direct evidence of 
incast problem. Moreover, the benefits of addressing incast are 
completely masked by overhead from other parts of the system. 
As reference [33] states: “Small jobs dominate several 
production Hadoop workloads. Non-network overhead in 
present Hadoop versions mask incast behavior for these jobs”.

In the following simulations we evaluated the completion 
time of typical MapReduce pattern of Terasort. We simulated 
multiple incast flows with MapReduce flow parameters based 
on a 20GB, 40GB, and 80GB Terasort example [33]. 20 hosts of 
mappers and 20 hosts of reducers connected to a single switch
in a star topology. Each host of reducers ran 10 reduce processes. 
20, 40, and 80 GB of data was distributed on 20 mappers equally 
and was shuffled to the 200 reducer processes uniformly, such 
that each one of the 200 reduce processes received 5MB, 10MB, 

and 20MB of data respectively from each mapper (5MB * 200 
reducers * 20 mappers = 20 GB). We varied the switch buffer 
size and collected the shuffle phase completion time. As in the 
previous simulations set, we avoided to vary switch latency as 
well, from the same reason. Fig. 5 shows the completion time of 
the communication phase as a function of switch shared buffer 
size. The results show that there is no observable benefit of 
increasing the buffers beyond 8MB in this case.

Conclusion: Current SRAM based switch buffers are large 
enough to handle typical MapReduce scenarios.

D. HPC Benchmark
High-performance computing (HPC) applications demand 

stiff high throughput and low-latency requirements from the 
network. HPC Challenge (HPCC) [34] is a popular benchmark 
suite to measure the performance of HPC applications. One of 
the benchmarks it includes is the ‘effective bandwidth’ (b_eff) 
test [35] that challenges the network performance. We simulated 
a b_eff test combined from 1500 nodes in a 3-level fat tree 
topology over a 56Gbps InfiniBand network, with switches of 
16MB, 40MB, 80MB, 276MB, 666MB, and 1GB buffer sizes
and 0.3us, 0.6us, 1us, 3us, 6us, and 9us latency respectively.
Rank placement was random and the network topology was non-
blocking. The simulation was run for three values of message 
size: 32KB, 64KB, and 128KB. The simulation results are 
shown in Fig. 6. It can be seen that using fast switches of 
hundreds of nanoseconds latency improves the benchmark run-
times by 4 times in the 32KB messages case and by 45% in the 
128KB messages case compared to the switches with 9us 
latency. This is despite the larger buffer sizes in the slower 
switches, which are supposed to better absorb the temporal 
incast load.

Conclusion: HPC application performance gains higher 
performance benefit from small-latency switches than from 
high-buffer switches.

V. LATENCY IMPACT ON THE EFFECTIVE THROUGHPUT

In order to make latency sensitive transactions complete 
quickly, a low-latency end-to-end network is desired. One must 
also note that specifically the switch latency is an important 

Fig. 6. Completion time of b_eff test under various switch parameters. 
Switch buffers are modeled with latencies of 0.3μs, 0.6μs, 1μs, 3μs, 
6μs and 9μs and with buffer sizes of 16MB, 40MB, 80MB, 276MB, 
666MB and 1GB respectively
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2 We assume that the initial congestion window is equal to one MSS. 
Several operating systems configure slightly larger value.

factor on short congestion-controlled (for example TCP) 
transactions. For short TCP transactions, the flow completion 
time is inverse to RTT (round trip time), due to the 
acknowledgement-based congestion control, since the flow 
transmission rate is roughly equal to the congestion window 
divided by RTT. The transaction begins from connection 
establishment, which takes one RTT, then it sends one packet2,
waits an RTT for ACK, sends two more packets, waits another 
RTT for ACKs, and so on. Hence, for short transactions the link 
bandwidth is not fully utilized, and the transaction completion 
time is mostly defined by the end-to-end network latency.

We evaluated the switch latency impact on the effective 
bandwidth for short transactions using the following 
simulations. We simulated a two-level fat-tree network of 64 
hosts with 100 Gbps bandwidth and 10 ns latency links. We 
injected random TCP flows of an average of 10KB length under 
low load and compared their completion times using several 
types of switches with latencies and buffer varying from 300 ns 
with 0.5MB buffer up to 9 us with 16MB buffer (since the 
injected traffic load was low, increasing the buffer size further 
was unnecessary).

Fig. 7 shows the mean completion time of the flows as a
function of the switch latencies. It can be estimated that the 
effective bandwidth of the short flows linearly depends on the 
switch latency parameter. 

In some cases, an application operation depends on 
completion of several transactions, for example file retrieval in 
distributed storage. Then the application performance depends 
not only on the mean metrics of completion time, but also on the 
completion time of 99% and more percentile of flows. Fig. 8
shows histograms of the completion time of flows in a network 
with switches of 300 ns latency and network with switches of
9us latency. It can be seen that low-latency switches reduce the 
99%-th percentile flow completion time by 95.1%, from ~450us 
to 22us. The result implies that with 300ns latency switches in 
the network, the effective achieved throughput is equal to 
3.6Gbps and with 9us latency switches it is only 170Mbps. Thus, 
latency is an important factor that also affects the throughput of 
the network.

Conclusion: Network latency in general, and switch latency 
specifically, dictate the effective throughput of short 
acknowledge-based congestion-controlled transactions.

VI. MITIGATING INCAST THROUGHPUT COLLAPSE BY FLOW 
CONTROL

TCP incast throughput collapse can be solved in various 
ways other than using extremely large buffers. These solutions 
are based on adapting the application or transport 
layers [13][14].

From the network designer point of view, the recommended 
solution is to deploy small-buffer switches in the network with 
a congestion control algorithm that is based on congestion 
notification in the switches (for example, ECN) or round-trip 
delay measuring (for example, TCP Vegas) as notification of 
congestion prior to when the packets begin to be dropped. Using 

(a) 9us-latency switch: flow completion times are up to 450us

(b) 300 ns-latency switch: flow completion times are up to 22us

Fig. 8. Histogram of flow completion time vs switch latency under low 
load
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small-buffer switches, the applications gain from the advantages 
shown for low latency, while the congestion control algorithm 
can mitigate the queuing latencies. The latest trend in data center 
networking is to use the Converged Enhanced Ethernet (CEE), 
whose key feature is the losslessness of the network [36].
Lossless networks do not drop packets, but use Priority Flow 
Control (PFC) [37] to pause the incoming packet transmission 
before the ingress buffers fill up. Lossless networks were 
evaluated in several prior works [38][39][40], and were shown 
to perform better than lossy networks in typical data center 
scenarios. Moreover, lossless networks possess the property that 
increased link capacity allows switch buffers to be reduced even 
more to achieve the same application performance [41].

We present simulation results that compare lossy and 
lossless networks performance under various switch buffer size. 
We simulated a two-level fat tree network of 40Gbps links with 
64 hosts and varied the switch buffer sizes. We injected traffic 
of random-destination and random-length TCP flows and 
compared the performance under lossy and lossless networks 
with and without ECN. Fig. 9 shows the comparison between 
the lossy and lossless networks under various switch buffer 
sizes. Figure 9(a) shows the number of completed transactions 
during the simulated time of five seconds, and Figure 9(b) shows 
the average completion time of the transaction. The results show 
that lossless scenarios outperform lossy scenarios, while using 
ECN provides additional performance gain. The reason for this 

behavior is that pausing incoming traffic is less expensive than 
dropping traffic when the switch buffer overflows; while adding 
ECN provides congestion control for the lossless networks as 
well.

Conclusion: Lossless network with ECN-based congestion 
control provides better network application performance than 
conventional lossy networks.

VII. SUMMARY

This paper strives to determine the guidelines for switch 
buffer sizing for popular traffic patterns in data center networks. 
In addition, the switch latency parameter was introduced into 
consideration and was shown to have a non-negligible effect on 
network application performance. 

As this paper’s analysis shows, the preferred methods of 
achieving high application performance involve low-latency 
networks. MapReduce and other TCP applications perform 
better when the network round trip is short. Non-TCP 
applications, such as web search, prefer non-blocking networks 
and also benefit from low latency.

The network that delivers the lowest latency is built of small-
buffering switches that implement flow control and congestion 
control mechanisms. While buffering is always required for 
transient events, excess buffering only has a negative impact on 
the data center. Our evaluation showed that there is no evidence 
for gain of switch buffer sizes larger than several MBytes. The 
right amount of buffering is correlated with the switch and its 
port speeds, such that bigger is not necessarily better.
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