
Race Cars vs. Trailer Trucks: Switch Buffers Sizing
vs. Latency Trade-offs in Data Center Networks

Alexander Shpiner, Eitan Zahavi
Mellanox Technologies

{alexshp,eitan}@mellanox.com

Abstract— This paper raises the data center designers question
of trade-off between high-buffer switches versus low-latency
switches. Packet buffer hardware dictates this trade-off due to the
constraints of DRAM and SRAM technologies. While the
designers who prefer network robust solutions would typically
prefer large-buffer switches with settling for high latency; the
designers who can adapt applications to the network behavior
would prefer the low-latency switches in order to gain better
application performance.

In this paper, we review the question of switch buffer sizing in
data center networks, by considering the switch delay in light of
common traffic patterns in data centers. To the best of our
knowledge, this is the first paper that discusses the switch buffer
sizing question by considering switch latency trade-off. We review
previous works on switch buffer sizing given the typical
parameters of data center networks, and survey the typical data
center traffic patterns that challenge the switch buffer. Also, we
provide simulation results that show the effect of switch latency on
the effective bandwidth of acknowledgement-based congestion
controlled flows. Finally, we discuss the gain that flow control
provides to end-to-end network performance.

Keywords—switch; packet buffer sizing; data center network

I. INTRODUCTION

Data center network designers face the issue of handling
congestion in the network. Every network is prone to
congestion, and the most common solutions to address it can be
grouped into two categories: solutions that allow applications to
adapt to the network behavior and solutions that try to make the
network as robust as possible.

The first solution category typically leads to the choice of
low-latency1 switches, typically with modest packet buffering.
The second category favors switches with large buffering
(ideally infinite), and are willing to settle for much higher
network latency.

Large buffer switches can accumulate traffic when
congestion occurs, but are subject to queuing delays and high
switching latency. Small-buffer switches provide low switching
latencies, but are potentially more vulnerable to incast scenarios,
in which the arriving traffic to the switch is much larger than the
switch can forward, due to the limited link capacities.

1 Unless stated differently, by switch latency we refer to the empty switch
port-to-port packet latency, and not to the queueing latency.

In this paper, we analyze buffers and latency trade-offs and
suggest buffer size optimizations for typical data center traffic
patterns. We show that network performance is not linear with
buffer sizes, i.e. from a certain size, additional buffering only
adds latency without significantly improving handling of incast
scenarios. Moreover, latency sensitive applications, such as
distributed computing, database query, web search, high
performance computing, etc., demand a non-blocking and low-
latency network. When networks are not overloaded, the higher
switch latency has a negative effect on TCP flow throughput.

We review the previous work on buffer sizing, focusing on
the data center network’s typical characteristics. Next, we
analyze the buffer sizing and latency for popular data center
traffic patterns: web search, distributed storage, Map Reduce,
and high performance computing (HPC). Next, we show that in
typical high-performance networks, switch latency can actually
have significant impact on the effective achieved throughput,
when common window-based congestion control is used. Last,
we show that network congestion is better managed by flow and
congestion control, rather than by huge buffers.

Throughout the paper, we used an OMNet++-based Inet-
enhanced network simulator[1][2] to evaluate our statements.

II. SWITCH BUFFER SIZING AND LATENCY: TRADE-OFF OF
RACE CARS VS. TRAILER TRUCKS

Large-buffer switches are analogous to trailer trucks, as the
packet buffers are large but slow. Their large packet buffers are
normally implemented in slow DRAM memory. That leads to
higher, varying switching latency, usually over-microseconds
(e.g. Arista DCS-7280E latency is 3.8us with 9GB buffer [3],
Arista DCS-7500E latency can go to 12us with 72GB-144GB
buffer [4], Juniper QFX10000 latency is 5.5us with 8GB and
12GB buffers [5], Cisco Nexus 7000 latency is 9.5us with 5.6GB
buffers [6]).

Small-buffer switches are analogous to race cars, as the
packet buffers are implemented using fast SRAM memory, but
with lower buffering size. Such switches usually have sub-
microsecond latencies (for example, 220 ns in Mellanox
SX1036 [3][7]), 550ns in Arista 7050QX [8]). Several
enhancements, such as cut-through and advanced store and
forward, are used to decrease the switch latency even further.
Therefore, the trade-off of the network designer is essentially

between low latency and big buffers. We will evaluate this trade-
off in the following sections.

III. OPTIMAL BUFFER SIZING

The question of optimal buffer sizing has been studied for
more than two decades [9][10]. Insufficient buffers can cause a
high packet drop rate and throughput collapse due to incast,
while large buffers cause unnecessary latency and slow reaction
to congestion.

The most popular work on buffer sizing is reference [11].
The suggested buffer sizing rule is to set the buffers to be equal
to the product of the bandwidth times the flow round trip time
divided by the square root of the number of flows (/ #). This rule follows from the conventional TCP
congestion control behavior with fast recovery function,
according to which the congestion window is decreased by two
upon a packet loss event. The buffer size is defined as a value
that keeps the full bandwidth for a flow with minimal queueing
latency. When the number of flows is large enough to avoid their
inter-synchronization, the buffer is required to absorb only the
accumulated rate fluctuation, which is reduced when the number
of flows is large. Using the typical data center network
parameters (link bandwidth of 100 Gigabits per second, round-
trip propagation time of 200 microseconds and roughly 200
flows per link: = 100 , = 200 , # = 200),
it suggests very low buffers (~178KB) per switch. However, the
drawback of that model is that it does not consider the fact that
the fast recovery function of TCP does not enter into operation
if the flow congestion window is under 4 segments (due to the 3
duplicate ACKs required to trigger the fast recovery mode).
Therefore, it does not suit common incast scenarios in which the
drops happen before the flows reach a congestion window of 4,
as described in the literature [12][13][14][15].

Other works [16][17] extend the model to other cases, adding
that when the number of flows is large, the buffering should be
proportional to the number of flows. The suggested egress buffer
size is equal to 9 packets multiplied by the number of flows
(9[] #). With a rule-of-thumb of 200
concurrent flows in the switch, this would need a 2.7MB buffer
per switch for 1.5KB packets. In other words, they suggest a
buffer size that will avoid the TCP incast throughput collapse,
without naming that specifically (References [16][17] were
published before the TCP incast works).

The most recent IETF draft [18] strongly recommends using
ECN and AQM schemes over implementation of large buffers.
The Bufferbloat project [19][20] aims to solve the “laggy
network performance” by actively limiting the queuing delay in
the buffers. Subsequent works [21][22][23] recommend even
smaller buffer switches than the original work.

The direct drawback of the unnecessarily large buffer on
network performance is the extended end-to-end network
queueing latency the packets may suffer. The impact of
excessive queues reduces the performance of low-latency-
sensitive transactions.

We evaluated the above statement of the buffer size impact
on the switch queueing latency by running the following set of
simulations. We simulated many-to-one scenario of 20

persistent (long) TCP incast flows sent from 20 hosts to a
common destination over a single switch with a bottlenecked
100Gbps link. We varied switch buffer sizes and checked the
end-to-end packet delay for each buffer size. The end-to-end
packet delay was measured by periodically sending a UDP
packet from each of the TCP flow injectors to a common
destination and measuring its end-to-end latency. The UDP
packets’ injection rate is low enough so as not to produce a
meaningful effect on the TCP traffic. Under the given network
parameters, the system converges to the point where the TCP
flows operate in the congestion-avoidance state without
retransmission timeouts. We also calculated the theoretical
bound of the queuing delay of the full buffer. The theoretical
bound is calculated by dividing the switch buffer size by the link
rate and adding the switch processing delay and links
propagation time. We draw both the simulated end-to-end
latency result and the theoretical bound on Fig. 1. The result
shows that mean end-to-end latency is increased linearly with
the increase in buffer size. In addition, since the end-to-end
latency was relatively close to the theoretical bound hints that
the buffers are kept almost full, even with increasing the buffer
capacity.

Conclusion: TCP-based traffic keeps the buffers almost full
for any buffer size and the mean queueing delay increases almost
linearly with the buffer size.

In addition, as we will show in Section V, the end-to-end
latency is also crucial for achieving high throughput for long
flows driven by acknowledgement-based congestion control
algorithms, such as TCP.

IV. WHEN DO WE NEED BUFFERS IN DATA CENTERS?
In this section we analyze the large-buffer vs. low-latency

trade-off by discussing the buffering requirements in the typical
data center scenarios. A popular method for estimating the
buffering requirements of data center switches is the incast
scenario [12]. In this scenario, multiple TCP flows are
transmitted over a single switch to a common destination
through the same output port over a bottleneck link. The incast
scenario is normally related to data center applications such as
web search, distributed storage, Map Reduce, and HPC. We will
take a deeper look into each of them in the following paragraphs.

Fig. 1. End-to-end packet delay as a function of switch buffer size

0
200
400
600
800

1000
1200
1400

0 5 10 15

Pa
ck

et
 e

nd
-t

o-
en

d
la

te
nc

y
[u

s]

Switch Buffer Size [MBytes]

Simulated Result
Theoretical Bound

A. Web Search
Web search is a typical example of a partition/aggregate

traffic pattern, explained in [24]. Applications set very tight
deadline times for web queries, such that it is very hard for
conventional TCP to meet them. Therefore, software designers
use proprietary UDP-based transport layer protocols [25], and
hence the conventional TCP throughput collapse incast problem
is not applicable in these cases. Moreover, as stated in [24], data
center network delays play a significant role in application
design, causing the network designers to avoid network under-
provisioning and to use the fastest possible low-latency network
devices.

Due to the reasons stated above, the large buffering is
unnecessary in web-search application networks. Hence, we
analyze the application performance by switch latency
parameter. We simulated partition/aggregate transactions over
64 hosts connected in a two-level fat tree network. The
transaction is combined from 64B request messages into a
random subset of the hosts and 20KB reply messages. The
transaction is defined as completed after all the reply messages
have been received. Transaction request arrivals were modeled
as exponentially distributed with a mean of 1ms per host. We

varied the switch latencies from 300ns up to 9μs and checked
the mean transaction completion time. Fig. 2 shows the mean
completion time of transactions as a function of the switch
latency. The results show that using fast switches of 300 ns
latency reduces the transaction time by almost twice compared
to 9us switches. The longer transaction times are caused both
directly by the longer switch latency, and indirectly by
additional queueing delay due to the larger amount of data in the
network at each point of time.

Conclusion: Since web search applications are latency-
sensitive and hence deployed on over-provisioned networks, the
switch delay has more significant effect on the application
performance than switch buffer size parameter.

B. Distributed Storage
Distributed storage applications are the first that were found

to suffer from the TCP incast throughput collapse
problem[13][26]. The problem is described as throughput
collapse of a distributed storage request, where a bottleneck link
is not utilized while the flows are in time-out mode, as depicted
in Fig. 3. Synchronized flows create excessive packet drop rate,
which enters the flows into a time-out state. During the time-out,
the link bandwidth is not utilized. Since the distributed storage
read transaction completes when all the flows involved are
finished, the effective throughput of the transaction is drastically
reduced.

There are various methods to mitigate and overcome the
incast problem. Specifically, TCP incast throughput collapse can
be solved in several different ways on the upper layers
(application, transport, link, etc.) [14]. The straightforward
solution in the switch architecture level is to increase the switch
buffers. The incast papers refer to switches with buffer sizes of
32KB to 1MB to illustrate the problem [12] [15].

However, current switches have typically buffer size that is
larger than the 1MB mentioned above. Hence, we aimed to
evaluate the TCP throughput collapse problem with larger
switch buffers of several Mbytes (Those buffer sizes are still
small enough to be implemented using fast SRAM memories).
In order to quantify the effect of buffer size in a distributed
storage environment, we simulated an incast scenario with block
size of 80MB, exactly as referred to as next generation data
centers in [27], and 10 hosts with 20 sender servers on each, over
40Gbps and 100Gbps links to a common client server (Fig. 3).
We varied the shared buffer size of the switch from 0.5MB to Fig. 3. Incast scenario [26]

Fig. 4. Incast scenario goodput as a function of switch buffer size

10

100

1000

10000

100000

0 5 10 15

Go
od

pu
t [

M
By

te
s/

s]

Switch Buffer Size [MBytes]

100 Gbps

40 Gbps

Fig. 2. Mean completion time of web search partition/aggregate
transactions as a function of switch latency. Switches with smaller
latency also have smaller buffer sizes, such that 300ns-latency switch
is capable to 0.5MBytes of buffering, and 9μs-latency switch is
capable to 16MBytes of buffering.

0

50

100

150

200

250

0 2 4 6 8

Tr
an

sa
ct

io
n

Co
m

pl
et

io
n

Ti
m

e
[μ

s]

Switch Latency [μs]

16MB and checked the effective goodput under every buffer size
value. We avoided to vary switch latency as well, since in
current scenario the queueing latency dictates the latency of the
packets inside the switch. As shown in Fig. 4, increasing the
switching buffer in a shared memory model is efficient up to
6MB of buffer size. We show that shared buffer size of 6MB is
enough for the typical incast scenarios that are presented in the
known literature. Real environments combine background
traffic, which was not considered in that analysis, hence real
buffering requirements would be a bit larger.

Conclusion: Current SRAM based switch buffers are large
enough to handle typical TCP incast scenarios.

C. MapReduce
MapReduce [28] is a popular operation in data centers that is

used for Big Data computation. The common belief is that
MapReduce requires large network bandwidth and large buffers.
The demand for bandwidth is reasonable due to the large amount
of data that must be transferred quickly in the Shuffle stage
(when each mapper sends its results to each of the reducer
processes). However, the desire for large buffers is questionable.
Since the MapReduce communication stage shuffles traffic from
many nodes to many nodes, its traffic pattern is similar to all-to-
all with many short data transmission flows, usually of 100B to
10KB [29] [30]. In other words, each physical host participates
in several parallel many-to-one traffic transactions. Since the
traffic pattern is well spread [31], the network does not suffer
from heavy congestion events, and therefore does not require
huge buffers. Reference [32] analyzed popular data center
network characteristics and could not find any direct evidence of
incast problem. Moreover, the benefits of addressing incast are
completely masked by overhead from other parts of the system.
As reference [33] states: “Small jobs dominate several
production Hadoop workloads. Non-network overhead in
present Hadoop versions mask incast behavior for these jobs”.

In the following simulations we evaluated the completion
time of typical MapReduce pattern of Terasort. We simulated
multiple incast flows with MapReduce flow parameters based
on a 20GB, 40GB, and 80GB Terasort example [33]. 20 hosts of
mappers and 20 hosts of reducers connected to a single switch
in a star topology. Each host of reducers ran 10 reduce processes.
20, 40, and 80 GB of data was distributed on 20 mappers equally
and was shuffled to the 200 reducer processes uniformly, such
that each one of the 200 reduce processes received 5MB, 10MB,

and 20MB of data respectively from each mapper (5MB * 200
reducers * 20 mappers = 20 GB). We varied the switch buffer
size and collected the shuffle phase completion time. As in the
previous simulations set, we avoided to vary switch latency as
well, from the same reason. Fig. 5 shows the completion time of
the communication phase as a function of switch shared buffer
size. The results show that there is no observable benefit of
increasing the buffers beyond 8MB in this case.

Conclusion: Current SRAM based switch buffers are large
enough to handle typical MapReduce scenarios.

D. HPC Benchmark
High-performance computing (HPC) applications demand

stiff high throughput and low-latency requirements from the
network. HPC Challenge (HPCC) [34] is a popular benchmark
suite to measure the performance of HPC applications. One of
the benchmarks it includes is the ‘effective bandwidth’ (b_eff)
test [35] that challenges the network performance. We simulated
a b_eff test combined from 1500 nodes in a 3-level fat tree
topology over a 56Gbps InfiniBand network, with switches of
16MB, 40MB, 80MB, 276MB, 666MB, and 1GB buffer sizes
and 0.3us, 0.6us, 1us, 3us, 6us, and 9us latency respectively.
Rank placement was random and the network topology was non-
blocking. The simulation was run for three values of message
size: 32KB, 64KB, and 128KB. The simulation results are
shown in Fig. 6. It can be seen that using fast switches of
hundreds of nanoseconds latency improves the benchmark run-
times by 4 times in the 32KB messages case and by 45% in the
128KB messages case compared to the switches with 9us
latency. This is despite the larger buffer sizes in the slower
switches, which are supposed to better absorb the temporal
incast load.

Conclusion: HPC application performance gains higher
performance benefit from small-latency switches than from
high-buffer switches.

V. LATENCY IMPACT ON THE EFFECTIVE THROUGHPUT

In order to make latency sensitive transactions complete
quickly, a low-latency end-to-end network is desired. One must
also note that specifically the switch latency is an important

Fig. 6. Completion time of b_eff test under various switch parameters.
Switch buffers are modeled with latencies of 0.3μs, 0.6μs, 1μs, 3μs,
6μs and 9μs and with buffer sizes of 16MB, 40MB, 80MB, 276MB,
666MB and 1GB respectively

0

5

10

15

20

25

30

35

0 2 4 6 8

Be
nc

hm
ar

k
ru

n-
tim

e
[m

s]

Switch Latency [μs]

Message Size 32KB
Message Size 64KB
Message Size 128KB

Fig. 5. Completion time of MapReduce shuffle phase as a function of
buffer size

0.05

0.5

5

0 5 10 15

Co
m

pl
et

io
n

Ti
m

e
[s

ec
]

Switch Buffer Size [MBytes]

20GB
40GB
80GB

2 We assume that the initial congestion window is equal to one MSS.
Several operating systems configure slightly larger value.

factor on short congestion-controlled (for example TCP)
transactions. For short TCP transactions, the flow completion
time is inverse to RTT (round trip time), due to the
acknowledgement-based congestion control, since the flow
transmission rate is roughly equal to the congestion window
divided by RTT. The transaction begins from connection
establishment, which takes one RTT, then it sends one packet2,
waits an RTT for ACK, sends two more packets, waits another
RTT for ACKs, and so on. Hence, for short transactions the link
bandwidth is not fully utilized, and the transaction completion
time is mostly defined by the end-to-end network latency.

We evaluated the switch latency impact on the effective
bandwidth for short transactions using the following
simulations. We simulated a two-level fat-tree network of 64
hosts with 100 Gbps bandwidth and 10 ns latency links. We
injected random TCP flows of an average of 10KB length under
low load and compared their completion times using several
types of switches with latencies and buffer varying from 300 ns
with 0.5MB buffer up to 9 us with 16MB buffer (since the
injected traffic load was low, increasing the buffer size further
was unnecessary).

Fig. 7 shows the mean completion time of the flows as a
function of the switch latencies. It can be estimated that the
effective bandwidth of the short flows linearly depends on the
switch latency parameter.

In some cases, an application operation depends on
completion of several transactions, for example file retrieval in
distributed storage. Then the application performance depends
not only on the mean metrics of completion time, but also on the
completion time of 99% and more percentile of flows. Fig. 8
shows histograms of the completion time of flows in a network
with switches of 300 ns latency and network with switches of
9us latency. It can be seen that low-latency switches reduce the
99%-th percentile flow completion time by 95.1%, from ~450us
to 22us. The result implies that with 300ns latency switches in
the network, the effective achieved throughput is equal to
3.6Gbps and with 9us latency switches it is only 170Mbps. Thus,
latency is an important factor that also affects the throughput of
the network.

Conclusion: Network latency in general, and switch latency
specifically, dictate the effective throughput of short
acknowledge-based congestion-controlled transactions.

VI. MITIGATING INCAST THROUGHPUT COLLAPSE BY FLOW
CONTROL

TCP incast throughput collapse can be solved in various
ways other than using extremely large buffers. These solutions
are based on adapting the application or transport
layers [13][14].

From the network designer point of view, the recommended
solution is to deploy small-buffer switches in the network with
a congestion control algorithm that is based on congestion
notification in the switches (for example, ECN) or round-trip
delay measuring (for example, TCP Vegas) as notification of
congestion prior to when the packets begin to be dropped. Using

(a) 9us-latency switch: flow completion times are up to 450us

(b) 300 ns-latency switch: flow completion times are up to 22us

Fig. 8. Histogram of flow completion time vs switch latency under low
load

0
200
400
600
800

1000
1200
1400

50 103 157 210 263 317 370 423 476

N
um

be
r o

f f
lo

w
s

Flow completion time [us]

0

200

400

600

800

1000

1200

1 3 5 7 9 11 13 15 17 19 21 23

N
um

be
r o

f f
lo

w
s

Flow completion time [us]

Fig. 7. Mean flow completion time vs switch latency under low load.
Switches with smaller latency also have smaller buffer sizes, such
that 300ns-latency switch is capable to 0.5MBytes of buffering,
and 9μs-latency switch is capable to 16MBytes of buffering.

0

50

100

150

200

250

0 2 4 6 8 10M
ea

n
Fl

ow
 C

om
pl

et
io

n
Ti

m
e

[u
s]

Switch latency [us]

small-buffer switches, the applications gain from the advantages
shown for low latency, while the congestion control algorithm
can mitigate the queuing latencies. The latest trend in data center
networking is to use the Converged Enhanced Ethernet (CEE),
whose key feature is the losslessness of the network [36].
Lossless networks do not drop packets, but use Priority Flow
Control (PFC) [37] to pause the incoming packet transmission
before the ingress buffers fill up. Lossless networks were
evaluated in several prior works [38][39][40], and were shown
to perform better than lossy networks in typical data center
scenarios. Moreover, lossless networks possess the property that
increased link capacity allows switch buffers to be reduced even
more to achieve the same application performance [41].

We present simulation results that compare lossy and
lossless networks performance under various switch buffer size.
We simulated a two-level fat tree network of 40Gbps links with
64 hosts and varied the switch buffer sizes. We injected traffic
of random-destination and random-length TCP flows and
compared the performance under lossy and lossless networks
with and without ECN. Fig. 9 shows the comparison between
the lossy and lossless networks under various switch buffer
sizes. Figure 9(a) shows the number of completed transactions
during the simulated time of five seconds, and Figure 9(b) shows
the average completion time of the transaction. The results show
that lossless scenarios outperform lossy scenarios, while using
ECN provides additional performance gain. The reason for this

behavior is that pausing incoming traffic is less expensive than
dropping traffic when the switch buffer overflows; while adding
ECN provides congestion control for the lossless networks as
well.

Conclusion: Lossless network with ECN-based congestion
control provides better network application performance than
conventional lossy networks.

VII. SUMMARY

This paper strives to determine the guidelines for switch
buffer sizing for popular traffic patterns in data center networks.
In addition, the switch latency parameter was introduced into
consideration and was shown to have a non-negligible effect on
network application performance.

As this paper’s analysis shows, the preferred methods of
achieving high application performance involve low-latency
networks. MapReduce and other TCP applications perform
better when the network round trip is short. Non-TCP
applications, such as web search, prefer non-blocking networks
and also benefit from low latency.

The network that delivers the lowest latency is built of small-
buffering switches that implement flow control and congestion
control mechanisms. While buffering is always required for
transient events, excess buffering only has a negative impact on
the data center. Our evaluation showed that there is no evidence
for gain of switch buffer sizes larger than several MBytes. The
right amount of buffering is correlated with the switch and its
port speeds, such that bigger is not necessarily better.

REFERENCES

[1] A. Varga, “Omnet++”, 2004. http://www.omnetpp.org/
[2] “INET framework”, 2006. http://inet.omnetpp.org/
[3] Arista 7280E Series Specification,

http://www.arista.com/en/products/7280e-series
[4] Arista 7500E Switch Performance Test, Lippis Report, 2014,

https://www.arista.com/assets/data/pdf/7500E-Lippis-Report.pdf
[5] Juniper QFX10000 Modular Ethernet Switches,

https://www.juniper.net/assets/us/en/local/pdf/datasheets/1000529-
en.pdf

[6] Cisco Nexus 7000 F1 and M1 Modules,
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/
VMDC/2-6/vmdcmodulesaag.pdf

[7] Mellanox SwitchX-2 (SX1036) vs. Broadcom StrataXGS Trident II
(Arista DCS-7050QX) Performance Evaluation Qualifying Data Center
Ethernet Networks with RFC2544 at 40Gbps, Tolly Group Report, 2015,
http://www.mellanox.com/related-docs/products/Tolly-215111-
Mellanox-SwitchX-2_Performance.pdf .

[8] Arista 7050X Series Specification,
http://www.arista.com/en/products/7050x-series

[9] “Ancient History of Buffer Sizing”,
http://people.ucsc.edu/~warner/Bufs/buffer-requirements

[10] V. Arun, V. Sivaraman, and M. Thottan. "Perspectives on router buffer
sizing: recent results and open problems", ACM SIGCOMM Computer
Communication Review 39.2: 34-39, 2009.

[11] “Buffer Sizing in the Internet”, http://yuba.stanford.edu/buffersizing/
[12] Y. Chen, et al., "Understanding TCP incast throughput collapse in

datacenter networks." Proceedings of the 1st ACM workshop on Research
on enterprise networking. ACM, 2009.

[13] E. Krevat, V. Vasudevan, A. Phanishayee, D. G. Andersen, G. R. Ganger,
G. A. Gibson and S. Seshan, “On application-level approaches to avoiding

(a) Number of completed flows

(b) Average completion time of the flows

Fig. 9. Flow completion time vs buffer size in lossy and lossless network

0

10000

20000

30000

40000

50000

0 5 10 15

Co
m

pl
et

ed
 F

lo
w

s

Switch Buffer Size [MBytes]

Lossy
Lossy + ECN
Lossless
Lossless + ECN

0.005

0.01

0.02

0.04

0.08

0 5 10 15

M
ea

n
Fl

ow
 C

om
pl

et
io

n
Ti

m
e

[s
ec

]

Switch Buffer Size [MBytes]

Lossy
Lossy + ECN
Lossless
Lossless + ECN

TCP throughput collapse in cluster-based storage systems,”
Supercomputing, 2007.

[14] Y. Ren, et al., "A survey on TCP Incast in data center networks."
International Journal of Communication Systems 27.8: 1160-1172, 2014.

[15] V. Vasudevan, et al., “A (In) Cast of thousands: scaling datacenter TCP
to kiloservers and gigabits. No. CMU-PDL-09-101. Carnegie-Mellon
Univ. Pittsburgh, PA, Parallel Data Laboratory, 2009.

[16] A. Dhamdhere, H. Jiang, and C. Dovrolis. "Buffer sizing for congested
internet links." INFOCOM, 2005.

[17] R. Morris, “TCP behavior with many flows,” IEEE International
Conference on Network Protocols, pp. 205–211, 1997.

[18] G. Fairhurst, “Advice on network buffering”, TSVWG Working Group,
2013, https://tools.ietf.org/id/draft-fairhurst-tsvwg-buffers-00.txt

[19] Bufferbloat Project, http://www.bufferbloat.net/
[20] J. Gettys and K. Nichols, “Bufferbloat: Dark Buffers in the Internet”,

2011.
[21] N. Beheshti, et al., "Obtaining high throughput in networks with tiny

buffers", IWQoS, 2008.
[22] M. Enachescu, et al., "Routers with Very Small Buffers." INFOCOM,

2006.
[23] N. Beheshti, et al., "Experimental study of router buffer sizing", ACM

SIGCOMM conference on Internet measurement, 2008.
[24] M. Alizadeh, et al. "Data center tcp (DCTCP)," ACM SIGCOMM

computer communication review 41.4: 63-74, 2011.
[25] J. Rothschild, “High performance at massive scale: Lessons learned at

facebook”,
mms://video-jsoe.ucsd.edu/calit2/JeffRothschildFacebook.wmv.

[26] Incast, Parallel Data Lab Project, http://www.pdl.cmu.edu/Incast/
[27] V. Vasudevan, et al., “Safe and Effective Fine-grained TCP

Retransmissions for Datacenter Communication,” SIGCOMM, 2009.
[28] J. Dean and S. Ghemawat. “MapReduce: Simplified Data Processing on

Large Clusters”, In USENIX OSDI, pages 137–150, 2004.
[29] T. Benson, A. Akella, and D. A. Maltz. "Network traffic characteristics of

data centers in the wild." ACM SIGCOMM conference on Internet
measurement, 2010.

[30] N. Dukkipati, et al., "Proportional rate reduction for TCP", ACM
SIGCOMM conference on Internet measurement conference, 2011.

[31] M. Chowdhury, et al. "Managing data transfers in computer clusters with
orchestra." ACM SIGCOMM Computer Communication Review 41.4: 98-
109, 2011.

[32] S. Kandula, et al., "The nature of data center traffic: measurements &
analysis." ACM SIGCOMM conference on Internet measurement
conference, 2009.

[33] Y. Chen, et al., “Understanding tcp incast and its implications for big data
workloads”, No. UCB/EECS-2012-40. California Univ. Berkeley, Dept.
of Electrical Engineering and Computer Science, 2012.

[34] HPC challenge benchmark suite, http://icl.cs.utk.edu/hpcc/
[35] R. Rabenseifner, Effective Bandwidth (b_eff) Benchmark,

www.hlrs.de/mpi/b eff/
[36] M. Ko, D. Eisenhauer, and R. Recio, “A case for convergence enhanced

ethernet: Requirements and applications,” IEEE ICC, 2008.
[37] P802.1Qbb/D1.3 Virtual bridged local area networks - amendment:

Priority-based flow control,” IEEE Draft Standard, 2010.
http://www.ieee802.org/1/pages/802.1bb.html

[38] A. S. Anghel, R. Birke, D. Crisan, and M. Gusat, “Cross-layer flow and
congestion control for datacenter networks,” DC-CaVES, 2011.

[39] D. Crisan, et al. "Short and fat: TCP performance in CEE datacenter
networks", IEEE High Performance Interconnects (HOTI), 2011.

[40] M. Gusat, Cyriel Minkenberg, and Gergely János Paljak. "Flow and
congestion control for datacenter networks", RZ3742, 2009.

[41] A. Shpiner, E. Zahavi, and O. Rottenstreich. "The Buffer Size vs Link
Bandwidth Tradeoff in Lossless Networks", IEEE High-Performance
Interconnects (HOTI), 2014.

