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Abstract

The notion of curvature is explored, first in the classical context and

then in more general spaces. Emphasis is placed on the approximation of

various curvatures defined on smooth Riemnanian manifolds by piecewise-

linear and metrical analogues. The correlations between the different as-

pects are considered. Applications of metric methods to other fields are

also presented.

1 Introduction

“The fundamental notion of differential geometry is the concept of curvature.”
([13]) Indeed, it can be stated (only slightly exaggerating) that the subject of
differential geometry is the study of curvature. Therefore, any attempt to sum-
mary present even only the main aspects of this deep and multifaceted subject
would be vain and condemned to utter failure. Hence, given the vastness of the
expounded material and the enormous extent of the bibliographical matter, one
has to restrict himself to exploring (and even this only partially) certain selected
aspects of the subject. Such a choice is, of course, dependent on the tastes and
inclinations of the exposer. However, it seems to us that largely this choice is pre-
determined by the subject matter for “while all of us have an intuitive concept
of the difference between straight and curved, it is surprisingly difficult to make
the intuition precise”([13]). Therefore, the main task of any exposition of the
subject at hand – be it a course, a book or a short survey – is to convey at least
some of the geometric intuition behind such a fundamental concept. This is even
more true when the matter at hand is usually presented in an extremely tech-
nical manner, via a large number of intricate formulas and tedious, meandering
computations.

Nevertheless, it is important to understand that the use (and abuse) of the
technical apparatus is not just a consequence of the ossification of curricula or
of the commodity of the exposer, but it is intrinsically embedded in the very
fabric of the study matter. Indeed, intuition by itself does not suffice, since:
“the motivating force behind differential geometry is not a set of notions and
intuitions” but rather “the ability and the desire to translate these intuitions
into calculations” ([13]). The reason behind the quest for optimal formulas is
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partly innate, a consequence of the structure and functionality of our brains, for:
“Our brain has two halves: one is responsible for the multiplication of polynomials
and languages, and the other half is responsible for the orientation of figures in
space and all the things important in real life. Mathematics is Geometry when
you have to use both halves.”([1])).

It is precisely in the choice of computational material one presents that
individual tastes, interests and field of research are more evident and play a more
important role. We have settled to emphasize certain aspects in which intuition
and computation interact in the optimal manner, i.e. such that geometry is still
evident yet calculations are feasible. Two approaches are presented: one is the
more traditionalistic: the study of the approximation of differentiable structures
and their invariants by piecewise-linear ones. The second approach is even more
minimalistic: it dispenses with the classical world of locally Euclidean geometric
objects, and explores the existence and meaning of a notion of curvature in the
general setting of metric spaces. The question of the interrelation between the
two approaches is naturally raised.

At this point a few explanatory words are required: as it is clear from the
remarks above, this study is of an expository nature. It is not a research paper,
that inevitably would be restricted in scope and technical in character. However
this type of connections between PL approximations of curvature and metrical
ones has not been, as far as we are informed, raised till now. (However, see [43]
for a different approach.)

The nature of this work also dictates the choice of the included proofs:
rather then covering the more standard subjects, we have opted to present some
of the proofs pertaining to the least known material, i.e. the metrical curvatures.
Even here the more lengthy proofs and many of the technical intermediate steps
were omitted. Moreover, even such important notions as that of mean curvature
are omitted, if they represent a digression from the main goal.

The remainder of the paper is structured as follows: in Section 2 we intro-
duce, in logical and historical order, the classical notions, first for curves and
then for surfaces. This is followed in Section 3 by a brief excursus in the gener-
alizations of curvature to higher dimensions. In Section 4 we further widen the
generalizations to include metric spaces. We conclude in Section 5 with a few
remarks regarding the possibility of applying metric concepts and methods to
the problem of the approximation of curvatures of smooth manifolds by those
of much simpler geometrical objects, such as triangulations and graphs. We re-
gard this problem both from a theoretical viewpoint and from that of possible
practical applications.

Finally, before we start a few cautionary words regarding the apparatus
involved: while we tried to remain self contained, a certain degree of mathematical
literacy is needed, especially regarding fundamental notions of geometry and
topology.
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2 Classical Curvature

We first define the notion of curvature for plane curves. This not only follows
the historical development, it is also relevant for the generalizations considered
in Section 2.2 and even more so, in Section 4.1. The definition of curvature for
surfaces in R3 is introduced in Section 2.2 and various generalizations for higher
dimensional manifolds are considered in Section 3.

2.1 Curves

The definition of curvature for plane curves is based upon the classical notion
of curvature of a circle: K ≡ 1/R, where R denotes the radius of the circle.
More precisely, the curvature of the curve at the point p is the curvature of the
“best fitting” circle to γ at p. It can be defined as the largest circle that has
one common point with a curve and it is entirely contained on one side of the
curve. This however is a rather elusive property, in the sense that it is not readily
computable. Therefore, we (following Newton, 1665) define the osculatory circle
as a limit, more precisely the limit of circles that have 3 common points with the
curve. If the curve γ ⊂ R2 is the image of the function c : I = [0, 1]→ R2, then
the osculatory circle at γ0 = c(t0) is defined as:

C(γ0) = Cγ(γ0) = lim
γ1,γ2→γ0

C(γ0, γ1, γ2) = lim
t1,t2→t0

C(t0, t1, t2) ; γi = γ(ti) , i = 1, 2 .

Of course, the curvature κγ(γ0) of γ at γ0 is defined to be as 1/R
(
C(γ0)

)
,

where R
(
C(γ0)

)
is the radius of C(γ0).

It can be shown that the osculatory circle satisfies the maximality property
discussed above (see, e.g. [52]).

Moreover, its elements, i.e. radius and center, are easily computable if the
curve is given by a Ck-parameterization, k ≥ 2. More precisely, the radius of
curvature RC = R

(
C(γ0)

)
and the center of curvature OC = R(C(γ0)) of γ at

γ0 are respectively given by: RC = ||c′(t0)||3
||c′(t0)×c′′(t0)|| , OC = γ0+R

(
C(γ0)

)
n0, where

n0 denotes the normal to γ at the point γ0. (Here “|| · ||” denotes the Euclidean
norm on R2.)

We shall encounter both the second derivative (in Sections 2.2 and 3.1 below)
and, more important for our approach, the idea of the considering the radii of
circles passing through three points (in Section 4.1).

2.2 Surfaces

We have introduced above the notion of osculatory circle and we have remarked
that it admits further generalizations. One would expect that it would work
particularly well for one of the most immediate generalization of plane curves,
i.e. for surfaces in R3. But this idea, however nice, does not work for surfaces –
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the osculatory sphere (Fuss, 1829) can not be used to define a notion of curvature
for surfaces.

2.2.1 Sectional Curvatures and Gauss Curvature

The first, most natural idea, which was the one in use before the seminal work of
Gauss is to “dissect” the surface in all possible directions (by cutting the surfaces
with normal planes) and to define curvature for the surfaces S via the curvatures
of the sections. However, the idea above is far from satisfactory, since there exist
infinitely many directions and it is hard to ascertain in what way do the sectional
curvatures represent the curvature of the surface.

Gauss’ inspired idea was to define curvature as a measure of a surface from
“being straight” or equivalently, a measure of how much a surface has to be
bent in order to obtain a certain standard surface, i.e. the unit sphere S2. Gauss
achieved this by considering the normal mapping ν : S → S2 (see Figure 1 below).
Then the Gauss curvature of S at p is defined as:

S
S2

O

(p)

(p)
p

p

n
ν = (p)

p
n

ν

Figure 1: The Normal Mapping

K(p) = KS(p) = lim
diam(R)→0

Area(ν(R))

Area(R)
(1)

where R is a simple region, p ∈ R ⊂ S.
A sign is attached to K(p) in a natural way – see Figure 2 below:

Remark 2.1 Note that the same basic idea is also applicable for plane curves
(see, e.g. [52]).

Gauss proved also that:

K(p) = kminkMax

where kmin and kMax are the minimal, respective maximal normal curvatures of
the surface S at the point p. Recall that the normal curvature of γ ⊂ S in the
direction v at a point p is defined as: κv(p) = κγ(p), where γ = S∩P , and where
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Figure 2: Gauss Curvature Definition: (a) K(p) > 0 and (b) K(p) < 0

P is a plane such that P ⊥ Tp(S) and such that γ′ ‖ v. Here Tp(S) denotes
the tangent plane to S at p. This formula is unfortunately – since it is neither
immediate nor natural – employed as the definition of the Gauss curvature.

Both definitions of curvature considered above render themselves to gener-
alization, but the original, geometric idea of Gauss is the one that will provide
us in Section 4.2 with an extension of the notion of curvature to rather abstract
spaces.

The classical case of smooth surfaces, i.e. of class Ck, k ≥ 2, deserves, of
course, special attention: Let U = int(U) be an open set and let f : U ⊆ R2 → R3
be a smooth function (i.e. f ∈ Ck, k ≥ 2). Then the expression of K in local
coordinates is:

K =
eg − f2

EG− F 2
; (2)

where
E = fu · fu , F = fu · fv , G = fv · fv ; (3)

and

e =
det(fu, fv, Fuu)√

EG− F 2
, f =

det(fu, fv, Fuv)√
EG− F 2

, g =
det(fu, fv, Fvv)√

EG− F 2
; (4)
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where fu = ∂ f/∂ u, etc. and “·” denotes the scalar product.

If =

(
E F
F G

)
and IIf =

(
e f
f g

)
are called the first, respectively the

second fundamental form of S.
Note that IIf depends on the position of S in space (see e.g. [18], p.154),

i.e. upon the specific embedding considered. Therefore, the problem with the
definition of K given by formula (2) is that it is dependent upon IIf , hence upon
the specific embedding of S in R3, thus its relevance as an intrinsic geometric
invariant of the surface S appears to be limited, to say the least. (A property is
called intrinsic iff it depends solely upon the the first fundamental form of the
surface, hence it is invariant under local isometries.) However, it can be proved
(see [54], p. 112) that the following formula (of Frobenius) holds:

K = − 1

4(EG− F 2)2

∣∣∣∣∣∣

E Eu Ev

F Fu Fv

G Gu Gv

∣∣∣∣∣∣
− 1√

EG− F 2

(
∂

∂v

Ev − Fu√
EG− F 2

− ∂

∂u

Fv −Gu√
EG− F 2

)
;

where Fu = ∂ F/∂ u, etc.
Since Frobenius’ formula shows K is independent of IIf it proves:

Theorem 2.2 (Gauss’ Theorema Egregium) Gaussian curvature is intrin-
sic.

Remark 2.3 Both Theorema Egregium and the Gauss-Bonnet theorem admit
proofs for PL-manifolds – see [2], [3], [20], [32], [45].

2.2.2 The Bertrand-Diguet-Puiseaux Formulas

We include only a small part of the vast formulary pertaining to the Gauss curva-
ture (and, most notably, no references are brought to the Gauss-Bonnet formula).
The formulas we selected give simple geometric interpretation to Gaussian cur-
vature, that will be employed herein and on which we focus. They relate to the
circumference (respective area) of a small circle on a surface (or geodesic circle –
for the precise definition see, e.g. [18], p. 287).

Theorem 2.4 (Bertrand-Diguet-Puiseaux – 1848) Let S be a surface in
R3, p ∈ S and let ε > 0. Denote by C(p, ε), B(p, ε) the geodesic circle, respective
the geodesic ball of center p and radius ε > 0. Then:

lengthC(p, ε) = 2πε− π

3
K(p)ε3 + o(ε3) , (5)

and

areaB(p, ε) = πε− π

12
K(p)ε4 + o(ε4) . (6)

Hence:
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K(p) = lim
ε→0

3

π

2πε− lengthC(p, ε)

ε3
= lim

ε→0
12

π

πε2 − areaB(p, ε)

ε4
(7)

For a proof see e.g. [37], pp. 104-105, or [18], pp. 292 and 294.

3 Higher Dimensions

From here on we denote byMn an n-dimensional Ck-Riemannian manifold, k ≥ 2,
which we may presume, by Nash’s theorem (see, e.g. [53]), to be isometrically
embedded in RN , for some N sufficiently large. Analogously to the notation
for surfaces, let Tp(M

n) denote the tangent space at the point p ∈ Mn, and
let T⊥p (Mn) stand be the orthogonal complement of Tp(M

n) in Tp(RN ), i.e.

Tp(M
n) ⊕ T⊥p (Mn) = Tp(RN ). Then Mn can be locally written as the graph of

a function f : Tp(M
n)→ T⊥p (Mn).

3.1 Curvatures and their Geometric Interpretation

We restrict ourselves to the essentials necessary in the sequel. Therefore, except
definitions and notations, we present only those results that satisfy both of the
following conditions: they carry a meaningful geometric interpretation and are
further required in this study. (Once again this selection is dictated by the large
amount of existing material.) In consequence no proofs are given and even among
the most meaningful geometric results (such as the generalized Gauss-Bonnet
theorem), those who are not strictly needed below are (sadly) omitted.

3.1.1 The Curvature Tensor

Definition 3.1 Let Mn and f be as above, and let p ∈Mn ⊂ RN . The bilinear
form IIp : Tp(M

n)→ T⊥p (Mn)

IIp(M
n) = (βij)1≤i,j≤n (8)

where βij = ∂2f/∂ xi∂ xj , 1 ≤ i, j ≤ n ; is called the second fundamental tensor
of Mn at the point p.

The Riemannian curvature tensor (at a point p) is defined as the tensor of
2× 2-minors of IIp(M

n), i.e.:

Rijkl = βikβjl − βjkβil . (9)

Remark 3.2 Riemannian curvature is not intrinsic.
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3.1.2 Sectional Curvature

We begin by introducing the notion of sectional curvature – its definition being
a very direct, geometric generalization of its classical 2-dimensional counterpart:

Definition 3.3 Let p ∈Mn, and let Π ⊂ Tp(M
n) be a 2-dimensional plane, and

let S = Mn ∩
(
Π⊕ T⊥p (Mn)

)
. Then dimS = 2 and we define K(Π) = Kp(S),

where Kp(S) represents the Gauss curvature of S at the point p.

Of course, if n = 2, K reduces to the classical Gauss curvature, thus justi-
fying the name (and the notation).

There is a close connection between sectional curvature and the Riemannian
curvature tensor, as can be seen from the following formula:

K(Π) =
∑

1≤i,j,k,l≤n
Rijkl xixjxkxl ; (10)

where {xh}1≤h≤n is an orthonormal base of Tp(M
n).

Moreover, by direct computations it is easy to show that knowledge ofK(M)
on all tangent planes is equivalent to knowing the curvature tensor (see, e.g. [19],
pp. 94-95).

An analogue (and slight generalization) of the Bertrand-Diguet-Puiseaux
formula (5) is given by:

Proposition 3.4

lengthC(p, ε, α) = αε− α

3 sin2 α
K(p)ε3 + o(ε3) , (11)

where C(p, ε, α) denotes the arc of length α of C(p, ε). In particular, for α = 2π
(and n = 2) one gets the Bertrand-Diguet-Puiseaux formula in its classical form.

Thus sectional curvature (and the curvature tensor) measure the defect of
Mn from being locally Euclidean. This is done at the 2-dimensional level. More
precisely, Mn is flat (i.e. locally Euclidean) iff K ≡ 0. In addition, if K ≡ k0,
where k0 is a constant, then Mn is locally isometric to the simply connected
space of constant sectional curvature. (For the special case of simply connected
surfaces of constant Gauss curvature, see Section 4.2.)

Remark 3.5 K behaves like a second derivative (or as a Hessian) of the metric
g (see [6], p. 267).

3.1.3 Ricci Curvature

The Ricci curvature is obtained by contracting the Riemannian curvature tensor:
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Definition 3.6 Let v ∈ TpM
n be a unit vector. The Ricci curvature in the

direction v is defined (in local coordinates) as:

Ricciij =
∑

i

Rijil (12)

It also follows that:

Ricci(v) =
n∑

i=2

K(v,xi) =
n∑

i=2

R(v,xi,v,xi) , (13)

where {v,x1 , . . . ,xn−1} represents an orthonormal base of TpM
n.

The geometric meaning of the Ricci curvature is underlined by the following
version of the first Bertrand-Diguet-Puiseaux formula:

Theorem 3.7 ([34]) Let Mn be as above. Denote by dα the n-dimensional solid
angle in the direction of the vector v ∈ Tp(M

n) and by ω(α) the (n− 1)-volume
generated by geodesics of length ε in dα. Then:

vol
(
ω(α)

)
= dα εn−1

(
1− Ricci(v)

3
ε2 + o(ε2)

)
. (14)

Remark 3.8 See also [30], pp. 316-319, for a generalization of the result above.

Moreover, let < v,w > denote the plane spanned by v and w. Then the
following holds:

v · Ricci(v) =
n− 1

vol
(
Sn − 2

)
∫

w∈Tp(Mn), w⊥v

K(< v,w >) ; (15)

that is the Ricci curvature represents an average of sectional curvatures.
The counterpart of Remark 3.5 is:

Remark 3.9 The Ricci curvature behaves as the Laplacian of the metric g (see
[6], p. 267).

3.1.4 Scalar Curvature

Formally, scalar curvature is defined as the trace of the Ricci curvature:

Definition 3.10
Scal =

∑

i

Riciii . (16)
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It follows immediately from the definition that, for any orthonormal basis
{x1, . . . ,xn} of Tp(M

n), the following holds:

Scal = 2
∑

1≤i<j≤n
K(< xi,xj >) =

n(n− 1)

vol
(
Π
)
∫

Π∈P
K(Π) ; (17)

where P represents the collection of 2-planes in Tp(M
n).

This curvature also admits an analogue of the second Bertrand-Diguet-
Puiseaux formula:

Theorem 3.11 ([31], p. 166)

vol B(p, ε) = ωnε
n

(
1− 1

6(n+ 2)
Scal(p)ε2 + o(ε2)

)
; (18)

where ωn denotes the volume of the unit ball in Rn.

That is, scalar curvature measures the defect of the manifold from being
locally Euclidean at the level of volumes of small geodesic balls.

Remark 3.12 For an application of these formulas is the theory of subharmonic
functions see [22].

3.2 PL-Manifolds and Curvature Approximation

One of the most natural questions that arises when confronted with the technical
definitions and tedious derivations of cumbersome, intricate, complicated formu-
las, as compared to the simple geometric meaning of these notions, is the follow-
ing: do these notions translate to simpler geometrical objects, such as polyhedra
or PL-manifolds? That is: do there exist natural extensions of the definitions de-
veloped for the differentiable context and do the results obtained there still hold
in the PL setting? Or, more concretely: are there “good” PL-approximations to
the various notions of curvature?

The question was raised – and answered – several times, e.g. in the context
of the Gauss-Bonnet theorem and that of the Tube Formula, see, for example,
[2], [20], [25], [54] for the first problem, and [21], [26], [28], [33] for the second,
(amongst others). Yet, however tempting to cover these subjects, we restrict
ourselves to one aspect the problem of good approximations.

We concentrate on Lipschitz-Killing curvatures without, however, present-
ing all the technical details regarding his generalized notion of curvature (see
[20]), since they are beyond the scope of this paper. However, we emphasize
that, as a particular case of Lipschitz-Killing curvature one gets, for instance,
the scalar curvature. Therefore an approximation theorem for these curvatures
includes many separate results regarding other curvatures (such as the Chern-
Gauss-Bonnet theorem). Such a convergence result was proved in [20], namely
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that Lipschitz-Killing curvatures of smooth Riemannian manifolds can be ap-
proximated in polyhedral approximation. More precisely, we have the following
theorem:

Theorem 3.13 ([20]) LetMn be a smooth Riemannian manifold and let {Mn
j }j≥1

be a sequence of PL-manifolds that approximate Mn well (see Definition 3.17 be-
low). Denote by the R, Rj Lipschitz-Killing curvatures of Mn, Mn

j , respectively.
Then Rj → R in the sense of measures.

Definition 3.14 Let τ ⊂ Rn ; 0 ≤ k ≤ n be a k-dimensional simplex. The
fatness ϕ of τ is defined as being:

ϕ = ϕ(τ) = inf
σ<τ

dimσ = l

vol(σ)

diaml σ
(19)

The infimum is taken over all the faces of τ , σ < τ , and voleucl(σ) and
diamσ stand for the Euclidian l-volume and the diameter of σ respectively. (If
dimσ = 0, then voleucl(σ) = 1, by convention.)

The simplex τ is ϕ0-fat, for some ϕ0 > 0, if ϕ(τ) ≥ ϕ0.

Remark 3.15 There exists a constant c(k) that depends solely upon the dimen-
sion k of τ s.t.

1

c(k)
· ϕ(τ) ≤ min

σ<τ
dimσ = l

](τ, σ) ≤ c(k) · ϕ(τ) , (20)

and

ϕ(τ) ≤ vol(σ)

diaml σ
≤ c(k) · ϕ(τ) ; (21)

where ](τ, σ) denotes the (internal) dihedral angle of σ < τ . (For a formal defi-
nition, see [20], pp. 411-412.)

Remark 3.16 The definition above is the one introduced in [20]. Other equiva-
lent definitions were given in [16], [17], [40], [42], [56], amongst others. A some-
what more general definition was given in [25].

Definition 3.17 Let Mn be a smooth Riemannian manifold and let {Mn
j }j

be a sequence of PL-manifolds. We say that {Mn
j }j approximate Mn well iff

Mn
j →Mn as secant approximations and if all the simplices of {Mn

j }j , j ≥ 1 are
ϕ0-fat, for some given ϕ0.

The meaning of “convergence in the sense of measures” is that, when ap-
proximating the Lipschitz-Killing curvatures by their PL counterparts, at a spe-
cific vertex of the approximating space, any of these individually computed PL
versions may fail to represent a good approximation of Rj ’s, however they do so
in average. (For the convergence of PL-spaces and secant approximations, see
[40].)
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4 Generalization – Metric Spaces

A number of metric versions of curvature in metric spaces are given. First are
introduced metric analogues for the curvature of plane curves, then a number of
metric definitions for Gauss curvature are considered.

4.1 Menger, Alt and Haantjes Curvatures

The Menger, Alt and Haantjes curvatures are metric definitions of curvature for
curves.

We begin by introducing the most elementary of them: the Menger curva-
ture: this is a metric expression for the circumradius of a triangle – thus giving in
the limit a metric definition of the osculatory circle – and it is based upon some
elementary high-school formulas:

Definition 4.1 Let (M,d) be a metric space, and let p, q, r ∈M be three distinct
points. Then:

KM (p, q, r) =

√
(pq + qr + rp)(pq + qr − rp)(pq − qr + rp)(−pq + qr + rp)

pq · qr · rp ;

is called the Menger Curvature of the points p, q, r.

We can now define the Menger curvature at a given point by passing to the
limit:

Definition 4.2 Let (M,d) be a metric space and let p ∈M be an accumulation
point. Then M has at p Menger curvature κM (p) iff for any ε > 0, there exists
δ > 0, such that if d(p, pi) < δ, i = 1, 2, 3; then |K(Q)− κM (p)| < ε.

Remark 4.3 The apparent equivalent notion of Alt curvature, in which one uses
only two points converging to the third, is in fact more general, where we define
the Alt curvature by:

Definition 4.4 Let (M,d) be a metric space and let P ∈M be an accumulation
point. Then M has at p Alt curvature κA(p) iff the following limit exists

κA(p) = lim
q,r→p

K(p, q, r) ;

where K(p, q, r) = 1/R and R is the circumradius of the triangle of vertices p, q, r.

However, both κM (p) and κA(p) suffer from the same imperfection: since
they are both modelled closely after the Euclidean Plane, they convey this Eu-
clidean type of curvature upon the space they are defined on. However, the next
definition does not closely mimic R2, therefore is better fitted for generalizations
(see e.g. [51]):
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Definition 4.5 Let (M,d) be a metric space and let c : I = [0, 1]
∼→ M be a

homeomorphism, and let p, q, r ∈ c(I), q, r 6= p. Denote by q̂r the arc of c(I)
between q and r, and by qr segment from q to r.

Then c has Haantjes curvature κH(p) at the point p iff:

κ2H(p) = 24 lim
q,r→p

l(q̂r)− d(q, r)
(
l(q̂r)

)3 ;

where “l(q̂r)” denotes the length – in intrinsic metric induced by d – of q̂r.

Remark 4.6 κH exists only for rectifiable curves, but if κM exists at any point
p of c, then c is rectifiable.

Remark 4.7 Evidently, the existence of κM implies that of κA, while the exis-
tence of κA does not automatically imply that of κM (see [7], p. 76). However,
we can prove the following theorem:

Theorem 4.8 Let c : I →M be a rectifiable curve, and let p ∈M . If κA(p) (or
κM (p)) exists, then κH(p) exists and κA(p) = κH(p) .

4.2 The Embedding or Wald Curvature

This approach stems from the Gauss’ original method of comparing surface cur-
vature to a standard, model surface (i.e. the unit sphere in R3). Wald’s idea was
to use more types of gauge surfaces and to restrict oneself to the study of the
minimal geometric figure that allows this comparison.

Definition 4.9 Let (M,d) be a metric space, and let Q = {p1, ..., p4} ⊂ M ,
together with the mutual distances: dij = dji = d(pi, pj); 1 ≤ i, j ≤ 4. The set Q
together with the set of distances {dij}1≤i,j≤4 is called a metric quadruple.

Remark 4.10 One can define metric quadruples in slightly more abstract man-
ner, without the aid of the ambient space: a metric quadruple being a 4 point
metric space; i.e. Q =

(
{p1, ..., p4}, {dij}

)
, where the distances dij verify the

axioms for a metric.

Before we proceed to the next definition, let us introduce the following
notation: Sκ denotes the complete, simply connected surface of constant Gauss
curvature κ, i.e. Sκ ≡ R2, if κ = 0; Sκ ≡ S2√

κ
, if κ > 0; and Sκ ≡ H2√−κ ,if κ < 0.

Here Sκ ≡ S2√
κ
denotes the Sphere of radius R = 1/

√
κ, and Sκ ≡ H2√−κ stands

for the Hyperbolic plane of curvature
√−κ, as represented by the Poincaré model

of the plane disk of radius R = 1/
√−κ .

Definition 4.11 The embedding curvature κ(Q) of the metric quadruple Q is
defined be the curvature κ of the gauge surface Sκ into which Q can be isomet-
rically embedded. (See Figures 3 and 4 for embeddings of a metric quadruple in
S2√

κ
and H2√−κ, respectively.)
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Figure 3: Embedding of a Metric Quadruple in S2√
κ

We can now define the embedding curvature at a point in a natural way
by passing to the limit (but without neglecting the existence conditions), more
precisely:

Definition 4.12 (M,d) be a metric space, let p ∈ M and let N ∈ N (p). Then
N is called linear iff N is contained in a geodesic. (Here N (p) denotes the set of
neigbourhoods of N .)

Definition 4.13 Let (M,d) be a metric space, and let p ∈M be an accumulation
point. Then p is said to have Wald curvature κW (p) iff
(i) There exists N ∈ N (p), N linear (i.e. N is contained in a geodesic);
(ii) For any ε > 0, there exists δ > 0 such that Q = {p1, ..., p4} ⊂ M and such
that if d(p, pi) < δ , i = 1, ..., 4; then |κ(Q)− κW (p)| < ε.

Remark 4.14 1. If one uses the second (abstract) definition of the metric
curvature of quadruples, then the very existence of κ(Q) is not assured, as
it is shown by the following counterexample:

Counterxample 4.15 The metric quadruple of lengths

d12 = d13 = d14 = 1; d23 = d24 = d34 = 2

admits no embedding curvature.

2. Even if a quadruple has an embedding curvature, it still may be not unique
(even if Q is not linear), indeed, one can study the following examples:
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Figure 4: Embedding of a Metric Quadruple in H2√
κ

Example 4.16 (a) The quadruple Q of distances dij = π/2, 1 ≤ i < j ≤
4 is isometrically embeddable both in S0 = R2 and in S1 = S2.

(b) The quadruple Q of distances d13 = d14 = d23 = d24 = π, d12 =
d34 = 3π/2 admits exactly two embedding curvatures: κ1 ∈ (1.5, 2)
and κ2 = 3. (See [11].)

However, for “good” metric spaces (i.e. spaces that are locally “plane like”)
the embedding curvature exists and it is unique. And, what is even more relevant
for us, this embedding curvature coincides with the classical Gaussian curvature.
The proof of this result is rather long and tedious, therefore we shall present here
only a brief sketch of it. (This will prove to be somewhat redundant anyhow, in
view of the more general results presented in the previous section, a fact but we
shall emphasize later in our presentation.)

The main ingredient for this proof and for the analysis of yet another ap-
proach to curvature (the CAT one – see Section 5) is provided by the following
string of propositions (which are just generalizations of the classical triangle in-
equalities):

Proposition 4.17 Let 4(p1, q1, r1) ⊂ Sκ1
and 4(p2, q2, r2) ⊂ Sκ2

, such that
p1q1 = p2q2, p1r1 = p2r2 and ](q1, p1, r1) = ](q2, p2, r2).
Then: if κ1 < κ2 , then q1r1 > q2r2. (Here 4(p1, q1, r1) denotes the triangle of
vertices p1, p2, p3 .)
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Proposition 4.18 Let p1, q1, r1 ∈ Sκ1
, p2, q2, r2 ∈ Sκ2

, κ1 < κ2 be two isomet-
ric triples of points, such that the triple p1, q1, r1 is not linear. Then:
](q1, p1, r1) < ](q2, p2, r2),](p1, q1, r1) < ](p2, q2, r2),](q1, r1, p1) < ](q2, r2, p2).

Proposition 4.19 Let Q1 = {p1, q1, r1, s1}, Q2 = {p2, q2, r2, s2} be non-linear
and non-degenerate quadruples in Sκ1

, Sκ2
, respectively. If4(p1, q1, r1) ∼= 4(p2, q2, r2)

and κ1 < κ2, then:

1. p1s1 = p2s2, q1s1 = q2s2 =⇒ r1s1 > r2s2 ;

2. r1s1 = r2s2, q1s1 = q2s2 =⇒ p1s1 > p2s2 ;

3. p1s1 = p2s2, r1s1 = r2s2 =⇒ q1s1 < q2s2 .

To fully exploit the results above we need the following definition:

Definition 4.20 A metric quadruple Q = Q(p1, p2, p3, p4), of distances
dij = dist(pi, pj), i = 1, ..., 4, is called semi-dependent (or a sd-quad, for brevity),
iff 3 of its points are on a common geodesic, i.e. there exist 3 indices – e.g. 1,2,3
– such that: d12 + d23 = d13.

Now we can easily formulate the following immediate consequence of Propo-
sition 4.19 :

Corollary 4.21 A sd-quad admits at most one embedding curvature.

Unfortunately – as we have already noticed – in the general case the unique-
ness of the embedding curvature is not guaranteed. However we can be a bit more
explicit regarding the existence of the embedding curvature by using the following
definition:

Definition 4.22 Let Q = {p, q, r, s} be a non-linear and non-degenerate quadru-
ple. Q is called planar iff ](q, p, r) + ](q, p, s) + ](s, p, r) = 2π.

Proposition 4.23 LetQ = {p, q, r, s} be a non-linear and non-degenerate quadru-
ple in Sκ. Then

1. If Q is planar, then it admits no isometric embedding in Sκ1
, κ1 > κ.

2. If Q is not planar, then it admits no isometric embedding in Sκ2
, κ2 < κ.

Corollary 4.24 Let Q = {p, q, r, s} be a non-linear and non-degenerate quadru-
ple. Then Q has at most two different embedding curvatures.

In fact we can state a much stronger assertion, of which Example 4.16(a) is
just a very particular case:
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Proposition 4.25 For any p ∈ Sκ, and for any κ > 0, there exists U ∈ N (p)
such that there exists a non-linear, non-degenerate quadruple Q ⊂ U of embed-
ding curvature 0.

Proof: Let γ1, γ2 ∈ U , two great-circle arcs such that γ1 ∩ γ2 = p. Let q1, q2 ∈ γ1
such that pq1 = pq2 6= 0 and let q ∈ γ2 such that pq < π/2

√
κ. Consider

4(q′1q
′
2, q
′) ⊂ R2, 4(q′1q

′
2, q
′) ∼= 4(q1q2, q), let p′ = 1

2q
′
1q
′
2, and let h = q′p′.

(Here 4(q′1q
′
2, q
′) denotes the triangle of base q′1q

′
2 and vertex q′, etc.)
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Figure 5: A Non-degenerate Quadruple of Zero Embedding Curvature

Then since 0 < κ, Proposition 4.19(3) applied to the quadruples {q, q1, q2, p}
and {q′, q′1, q′2, p′} implies that h < pq.

Now let x ∈ γ2, x between p and q, and let x′ ∈ R2 such that 4(q′1q
′
2, x
′) ∼=

4(q1q2, x) and such that x and q′ are on different sides of the line
←→
q1q2. Then, if

x = p, then xq > x′q′, and if x = q, then xq = 0 < x′q′ = 2h, where, in this case
x′ = q′′. (See Figure 5.) Then it follows from a continuity argument that there
exists x0 ∈ γ2, x0 between p and q, such that x0q = x′0q

′, thus implying that
{q1, q2, q, x} ∼= {q′1, q′2, q′, x′}. QED
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4.3 Wald Curvature and Gauss Curvature Comparison

The discussion above would be nothing more than a nice intellectual exercise
where it not for the fact that the metric (Wald) and the classical (Gauss) curva-
tures coincide whenever the second notion makes sense, that is for smooth (i.e.
of class ≥ C2) surfaces in R3. More precisely the following theorem holds:

Theorem 4.26 (Wald) Let S ⊂ R3, S ∈ Cm, m ≥ 2 be a smooth surface.
Then, given p ∈ S, κW (p) exists and κW (p) = κG(p).

Moreover, Wald also proved that a partial reciprocal theorem holds, more
precisely he proved the following:

Theorem 4.27 Let M be a compact and convex metric space. If κW (p) exists,
for all p ∈M , then M is a smooth surface and κW (p) = κG(p), for all p ∈M .

Remark 4.28 If one tries to restrict oneself, in the building of Definition 4.13
only to sd-quads, then Theorem 4.27 holds only if the following presumption is
added:

Condition 4.29 M is locally homeomorphic to R2.

However the proof of this facts is involved and, as such, beyond the scope of
this presentation. Therefore we shall restrict ourselves to a succinct description of
the principal steps towards the proofs. The basic idea is to show that if a metric
M space admits a Wald curvature at any point, than M is locally homeomorphic
to R2, thus any metric proprieties of R2 can be translated to M , (in particular
the first fundamental form). The first of these partial results is:

Theorem 4.30 Let M be a convex metric space. Then M admits at most one
Wald curvature κW (p), for any p ∈M .

Proof: By Corollary 4.21 it suffices to prove that any disk neighborhoodB(p ; ρ) ∈
N (p) contains a non degenerate sd-quad. Without loss of generality one can as-
sume that B(p ; ρ) contains three points p1, p2, p3 such that d(p, pi) < ρ/2, i =
1, 2, 3 (see [7]). Then, by the convexity of M it follows that there exists q ∈ M
such that p 6= p2, p3 and p2q+p3q = p2p3. But p2p3 ≤ pp2+pp3 < ρ implies that
pq < ρ/2 or pp2 < ρ/2. If the first inequality holds, then pq ≤ pp2 + p2q < ρ, i.e
q ∈ B(p ; ρ); and if the second one holds, then pd ≤ pp3+p3q < ρ, i.e. q ∈ B(p ; ρ).
But p 6= q, therefore p, p2, p3, q are not linear. QED

Our next step will be to analyze those neighborhoods that display “a nor-
mal behavior”, both metrically and curvature-wise: that is precisely those disk
neighborhoods in which the Wald curvature is defined and ranges over a small,
bounded set of values prescribed by the very radius of the disk:
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Definition 4.31 A disk neighborhood B(p ; ρ); ρ > 0 is called regular iff for any
non-degenerate quadruple Q ⊂ B(p ; ρ) , κW (Q) exists and |κW (Q)| < π2/16ρ2.

Remark 4.32 If κW (p) exists, then for any sufficiently small ρ, B(p ; ρ) will be
regular.

It turns out that regular neighborhoods, in compact, convex spaces have the
following “nice” (i.e. real plane like) proprieties:

Proposition 4.33 Let M be a compact, convex metric space and let B(p ; ρ) ⊂
M be a regular neighborhood. If a non-degenerate quadruple Q ⊂ B(p ; ρ) con-
tains two linear triples of points, then Q is linear.

Proposition 4.34 Let M be a compact, convex metric space. Then: for any
p ∈M and for any regular neighbourhood B(p ; ρ) of p, there exist q, r ∈ B(p ; ρ)
such that p, q, r are not linear.

Proposition 4.35 Any regular neighborhood B(p ; ρ) of a compact, convex met-
ric space is strictly convex, i.e. q, r ∈ B(p ; ρ) =⇒ int(qr) ⊂ B(p ; ρ).

While the proof of this last proposition is lengthy and therefore we omit it,
that of the following important corollary is not:

Corollary 4.36 Let B(p ; ρ) be a regular neighborhood. Then, for any q, r ∈
B(p ; ρ), the geodesic segment qr exists and int(qr) ⊂ B(p ; ρ).

Proof: By the convexity of B(p ; ρ) it follows the existence of at least one geodesic
qr, for all q, r ∈ B(p ; ρ). If s ∈ int(q)r, then by the proposition above we have
that s ∈ B(p ; ρ). It follows that B(p ; ρ) contains all the geodesics with end points
q, r. Hence, by Proposition 4.33, the geodesic segment qr is unique. QED

We can now begin to prove that a compact, convex metric space locally
mimics R2. We start by showing that the sinus function is defined on M , thus
allowing for angle measure, hence for the definition of polar coordinates on regular
neighbourhoods (in the same way geodesic polar coordinates are used on classical
surfaces).

First, let M be as before, and let p ∈ M s.t. κW (p) exists. Let q, r ∈
B(p ; ρ), q 6= p 6= r, where B(p ; ρ) is a regular neighborhood of p. Then, for any
x ∈ [0,min{pq, pr}), define q(x) ∈ pq, r(x) ∈ pr by: d(p, q(x)) = x = d(p, r(x)),
and let d(x) = d(, q(x), r(x)) (see Figure 6 bellow).

Proposition 4.37 The following limit exists:

lim
x→0

d(x)

x
.
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Figure 6: Metric Definition of the Sinus Function

We omit the proof since it is rather involved (but canonical for any axiomatic
approach to Euclidean Geometry – see, for instance, [7], [48]).

Now we can define the measure of angles at a point p :

Definition 4.38 The measure of the angle ](q, p, r)) is given by:

m(](q, p, r)) = 2arcsin
(1
2
lim
x→0

d(x)

x

)
.

Remark 4.39 The definition above enables us to define polar coordinates on
regular neighborhoods in the following manner:

Let p1, p2 ∈ B(p ; ρ) such that p, p1, p2 are not collinear. (Such points exist
by Proposition 4.34). To every point q ∈ B(p ; ρ) we associate the following pair of
real numbers (defining the polar coordinates at q relative to the frame determined
by p, p1, p2): (r(q), θ(q)), where

r(q) = d(p, q)

and

θ(q)) =

{
m(](q, p, p1)) if |m(](p2, p, p1))−m(](q, p, p1))| = m(](q, p, p1)) ;

2π −m(](q, p, p1)) if |m(](p2, p, p1))−m(](q, p, p1))| 6= m(](q, p, p1)) .

Once coordinates (be they polar or cartesian) are introduced, the local ho-
momorphism with R2 is immediate (see e.g. [12]) and we can thus now safely
state the foretold homomorphism result:

Proposition 4.40 Any convex, compact metric space is locally homeomorphic
to the real plane.
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4.3.1 Computation of Wald Curvature

In this section we develop formulas for the computation of embedding curvature
of quadruples. First we follow the classical approach of Wald-Blumenthal that
employs the so-called Cayley-Menger determinants (see below). Unfortunately,
the formulas obtained, albeit precise are transcendental. Therefore we present,
in the next subsection, the approximate formulas developed by C.V. Robinson
([47]).

The Cayley-Menger Determinant Given a general metric quadruple Q =
Q(p1, p2, p3, p4), of distances dij = dist(pi, pj), i = 1, ..., 4; we denote by D(Q) =
D(p1, p2, p3, p4) the following determinant:

D(p1, p2, p3, p4) =

∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 d212 d213 d214
1 d212 0 d223 d224
1 d213 d223 0 d234
1 d214 d224 d234 0

∣∣∣∣∣∣∣∣∣∣

(22)

Then the embedding curvature κ(Q) of Q is given – depending upon the
embedding space (i.e. upon the sign of the curvature) – by the following formulae:

κ(Q) =





0 if D(Q) = 0 ;
κ, κ < 0 if det(cosh

√−κ · dij) = 0 ;
κ, κ > 0 if det(cos

√
κ · dij) and

√
κ · dij ≤ π

and all the principal minors of order 3 are ≥ 0.

(23)

The determinant D(Q) = D(p1, p2, p3, p4) is called the Cayley-Menger de-
terminant (of the points p1, ...p4). Of course, this definition readily generalizes to
any dimension, as do the results bellow. To get some geometric intuition regarding
Formula (23) we look into the Euclidean case.

In order to prove the case κ(Q) = 0 of (23) we need first to investigate some
of its properties (see [7], [4] for details). We start with the following proposition:

Proposition 4.41 The points p1, ..., p4 are the vertices of a simplex in R3 iff
D(p1, p2, p3, p4) 6= 0 .

However, we can prove the much strong result below:

Theorem 4.42 Let dij > 0 , 1 ≤ 4 , i 6= j. Then there exists a simplex T =
T (p1, ..., p4) ⊆ R3 such that dist(xi, xj) = dij , i 6= j; iff D(pi, pj) < 0, for any
{i, j} ⊂ {1, ..., 4} and D(pi, pj , pk) > 0, for any {i, j, k} ⊂ {1, ..., 4}; where, for
instance,

D(p1, p2) =

∣∣∣∣∣∣

0 1 1
1 0 d212
1 d212 0

∣∣∣∣∣∣
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and

D(p1, p2, p3) =

∣∣∣∣∣∣∣∣

0 1 1 1
1 0 d212 d213
1 d212 0 d223
1 d213 d223 0

∣∣∣∣∣∣∣∣
;

etc...

In fact, the necessary and sufficient condition above can be relaxed. Indeed
one can also show that the following result (which we formulate – for convenience
– for the case n = 3 only, even if it is readily generalized to any dimension) holds:

Proposition 4.43 Let dij > 0 , 1 ≤ 4 , i 6= j. Then there exists a simplex T =
T (p1, ..., p4) ⊆ R3 such that dist(xi, xj) = dij , i 6= j; iff D(p1, p2, p3, p4) 6= 0 and
signD(p1, p2, p3, p4) = +1 .

The proof of Formula (23) for the spherical and hyperbolical cases would
prove to be to technical for this limited exposition; suffice to say that they essen-
tially reproduce the proof given in the Euclidean case, taking into account the
fact that performing computations in the spherical (resp. hyperbolic) metric one
has to replace the distances dij by cos dij (resp. cosh dij) – see [7] for the full
details.

Approximate Formulas The formulas we just developed in are not only tran-
scendental, but also the computed curvature may fail to be unique (see the pre-
ceding section). However, uniqueness is guaranteed for sd-quads. Moreover, the
relatively simple geometric setting of sd-quads allows for the development of sim-
ple (i.e. rational) formulas for the approximation of the embedding curvature.

Theorem 4.44 ([47]) Given the metric quadruple Q = Q(p1, p2, p3, p4), of dis-
tances dij = dist(pi, pj), i, j = 1, ..., 4; the embedding curvature κ(Q) is well
approximated by:

K(Q) =
6(cos]02 + cos]02

′)

d24
(
d12 sin

2(]02) + d23 sin
2(]02′)

) (24)

where: ]02 = ](p1p2p4) , ]02
′ = ](p3p2p4) represent the angles of the Euclidian

triangles of sides d12, d14, d24 and d23, d24, d34 , respectively.
The error R can be estimated by using the following inequality:

|R| = |R(Q)| = |κ(Q)−K(Q)| < 4κ2(Q)diam2(Q)/λ(Q) (25)

where we put: λ(Q) = d24(d12 sin]02+d23 sin]02
′)/S2, and where S = Max{p, p′};

2p = d12 + d14 + d24 , 2p
′ = d32 + d34 + d24.
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Proof: The basic idea of the proof is to recreate, in a general metric setting, the
Gauss Map – in this case one measures the curvature by the amount of “bending”
one has to apply to a general planar quadruple so that it may be “straightened”
(i.e. isometrically embedded as a sd-quad) in some Sκ.

Consider two planar (i.e. embedded in R2 ≡ S0) triangles 4p1p2p4 and
4p2p3p4, and denote by 4p1,kp2,kp4,k and 4p2,kp3,kp4,k their respective isomet-
ric embeddings into Sk . Then pi,kpj,k will denote the geodesic (of Sk) through
pi,k and pj,k. Also, let ]k2 and ]k2

′ denote, respectively, the following angles of
4p1,kp2,kp4,k and 4p2,kp3,kp4,k : ]k2 = ]p1,kp2,kp4,k and ]k2

′ = ]p2,kp3,kp4,k
(see Fig. 7).

p

p

p

d

d

d

d2 2'

3

2

23

34

12
d

d
4

24

14

1

Figure 7: An sd-quad

But ]k2 and ]k2
′ are strictly increasing as functions of k. Therefore the

equation

]k2 + ]k2
′ = π (26)

has at most one solution k∗, i.e. k∗ represents the unique value for which
the points p1, p2, p4 are on a geodesic in Sk (for instance on p1p4).

But that means that k∗ is precisely the embedding curvature, i.e. k∗ = κ(Q) ,
where Q = Q(p1, p2, p3, p4).

Equation (26) is equivalent to

cos2
]k∗2

2
+ cos2

]k∗2
′

2
= 1

The basic idea being the comparison between metric triangles with equal
sides, embedded in S0 and Sk, respectively, it is natural to consider instead of
the previous equation, the following equality:
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θ(k, 2) · cos2 ]02
2

+ θ(k, 2′) · cos2 ]02
′

2
= 1 (27)

where we denote:

θ(k, 2) =
cos2 ]k∗2

2

cos2 ]02
2

; θ(k, 2′) =
cos2 ]k∗2

′

2

cos2 ]02
2

.

Since we want to approximate κ(Q) by K(Q) we shall resort – naturally – to
expansion into MacLaurin series. We are able to do this because of the existence
of the following classical formulas:

cos2
]k2

2
=

sin(p
√
k) · sin(d

√
k)

sin(d12
√
k) · sin(d24

√
k)

; k > 0 ;

cos2
]k2

2
=

sinh(p
√
k) · sinh(d

√
k)

sinh(d12
√
k) · sinh(d24

√
k)

; k < 0 ;

and, of course

cos2
]02

2
=

pd

d12d24
;

were d = p−d14 = (d12+d24−d14)/2 (and the analogous formulas for cos2 ]k′2
2 ).

By using the development into series of f1(x) =
sin
√
x√

x
and f2(x) =

sinh
√
x√

x
;

one (easily) gets the desired expansion for θ(k, 2):

θ(k, 2) = 1 +
1

6
kd12d24

(
cos(]02)− 1

)
+ r ; (28)

where: |r| < 3
8k
2p4 , for |kp2| < 1/16 .

By applying (28) to (27), we receive:

[
1 +

1

6
k∗d12d24

(
cos(]02)− 1

)
+ r
]
cos2

]02

2
+ (29)

[
1 +

1

6
k∗d23d24

(
cos(]02

′)− 1
)
+ r′

]
cos2

]02
′

2
= 1 ;

for: |r|+ |r′| < 3
4 (k
∗)2(Max{p, p′})4 = 3

4 (k
∗)2S4 .

By solving the linear equation (in variable k∗) (29) and using some elemen-
tary trigonometric transformation one has:

k∗ =
6(cos]02 + cos]02

′)

d24
(
d12 sin

2(]02) + d23 sin
2(]02′)

) +R ;
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where:

|R| < 12(|r|+ |r′|)
d24
(
d12 sin

2(]02) + d23 sin
2(]02′)

) <
9(k∗)2max{p, p′}

d24
(
d12 sin

2(]02) + d23 sin
2(]02′)

) .

But k∗ ≡ κ(Q), so we get the desired formula (24) .
To prove the correctness of the bound (25) one has only to observe that:

S = Max{p, p′} < 2diam(Q),
(
diam(Q) = max

1≤i<j≤4
{dij}

)
,

and perform the necessary arithmetic manipulations. QED

Remark 4.45 (a) The function λ = λ(Q) is continuous and 0-homogenous as a
function of the dij-s. Moreover: λ(Q) ≥ 0 and λ(Q) = 0⇔ sin]02 = sin]02

′ = 0,
i.e. iff Q is linear. (Therefore for sd-quads λ(Q) > 0. Moreover, when λ(Q) tends
to 0, Q approaches linearity.)

(b) Since λ(Q) 6= 0 it follows that: K(Q) ∈ R for any quadrangle
Q. Moreover: sign(κ(Q)) = sign(K(Q)).

(c) If Q is any sd-quad, then κ2(Q)diam2(Q)/λ(Q) < ∞. More-
over, |R| is small if Q is not close to linearity. In this case |R(Q)| ∼ diam2(Q)
(for any given Q).

Since the Gaussian curvature KG(p) at a point p is given by:

KG(p) = lim
n→0

κ(Qn) ;

where Qn → Q = ¤p1pp3p4 ; diam(Qn) → 0,, from Remark 4.45(c) we immedi-
ately infer that the following holds:

Theorem 4.46 Let S be a differentiable surface. Then, for any point p ∈ S:

KG(p) = lim
n→0

K(Qn) ;

for any sequence {Qn} of sd-quads that satisfy the following condition:

Qn → Q = ¤p1pp3p4 ; diam(Qn)→ 0 .

Remark 4.47 In the following special cases even “nicer” formulas are obtained:

1. If d12 = d32, then

K(Q) =
12

d13 · d24
· cos]02 + cos]02

′

sin2 ]02 + sin2 ]02′
; (30)

(here we have of course: d13 = 2d12 = 2d32); or, expressed as a function of
distances alone:

K(Q) = 12
2d212 + 2d224 − d214 − d213

8d212d
2
24 − (d212 + d224 − d214)

2 − (d212 + d224 − d234)
2

(31)
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2. If d12 = d32 = d24 and if the following condition also holds:

3. ]02
′ = π/2; i.e. if d234 = d212 + d224 or, considering 2., also: d234 = 2d212 , then

K(Q) =
6 cos]02

d12(1 + sin2 ]02)
=

2d212 − d214
4d412 + 4d214d

2
12 − d414

. (32)

4.4 Rinow Curvature

The curvatures introduced before may seem a bit archaic in comparison to the
more fashionable approach of comparison triangles (see Section 5), with their far
reaching applications. We present here one of these comparison criteria and show
its equivalence with the Wald curvature. We start with the following definition:

Definition 4.48 Let (M,d) be a metric space, together with the intrinsic metric
induced by d. Let R = int(R) ⊆M be a region of M . We say that R is a region
of curvature ≤ κ (κ ∈ R) iff

1. For any p, q ∈ R there exists a geodesic segment pq ⊂ R;

2. Any triangle T (p, q, r) ⊂ R is isometrically embeddable in Sκ;

3. If T (p, q, r) ⊂ R and x ∈ pq, y ∈ pr and if the points pκ, qκ, rκ, xκ, yκ ∈ Sκ
satisfy the following conditions:

(a) T (p, q, r) ∼= T (pκ, qκ, rκ);

(b) T (p, q, x) ∼= T (pκ, qκ, xκ);

(c) T (p, r, y) ∼= T (pκ, rκ, yκ);

then xy ≤ xκyκ.

By replacing the condition: ”xy ≤ xκyκ” with: ”xy ≥ xκyκ”, we obtain the
definition of a region of curvature ≥ κ (see Figure 8).

We now pass to the localization of the definition above:

Definition 4.49 Let (M,d) be a metric space, together with the intrinsic metric
induced by d, and let p ∈M be an accumulation point. Then M has at p Rinow
curvature κR(p) iff

1. There exists a linear neighbourhood N ∈ N (p);

2. For any ε > 0, there exists δ > 0, such that B(p; δ) is

(a) a region of Rinow curvature ≤ κR(p) + ε

and

(b) a region of Rinow curvature ≥ κR(p)− ε.
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Figure 8: Positive Rinow Curvature

While its greater generality endows the Rinow curvature with more flexibil-
ity in applications and makes it easier in generalization, it is even more difficult
to compute than Wald curvature. However this quandary has an almost ideal
solution, due to Kirk (see [36]), solution which we briefly expose here:

Theorem 4.50 ([36]) Let M be a compact, convex metric space, and let p ∈M .
If κW (p) exists, then κR(p) exists, and κR(p) = κW (p).

Unfortunately, since κR(p) makes no presumption of dimensionality, the
existence of κR(p) does not imply the existence of κW (p).

Counterxample 4.51 Let M ≡ R3. Then κR(p) ≡ 0, but κW (p) does not exist
at any point, since every neighborhood contains linear quadruples.

Kirk’s solution of this problem is to consider the modified Wald curvature
κWK , defined as follows:

Definition 4.52 Let (M,d) be a metric space, together with the intrinsic metric
induced by d, and let p ∈ M . Then M has modified Wald curvature κWK(p) at
p iff

1. There exists a linear neighbourhood N ∈ N (p);
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2. For any ε > 0, there exists δ > 0, such that if Q ⊂ B(p; δ) is a non-
degenerate sd-quad, then κW (Q) exists and |κWK(p)− κW (Q)| < ε.

Remark 4.53 If κW (p) exists, then κWK(p) exists but the existence of κWK(p)
does not imply that of κW (p). Indeed, if p ∈ R3, then κWK(p) = 0 but κW (p)
does not exist.

This modified curvature indeed represents the wished for solution, as proved
by the following two theorems:

Theorem 4.54 ([36]) Let (M,d) be a metric space. Then: if κR(p) exists, then
κWK(p) also exists and κR(p) = κWK(p).

Theorem 4.55 ([36]) Let (M,d) be a metric space together with the associated
intrinsic metric, and let p ∈M . Suppose that

1. κWK(p) exists

and

2. There exists B(p ; ρ) ∈ N (p), such that qr ⊂ B(p ; ρ), for all q, r ∈ B(p ; ρ).

Then κR(p) exists and κR(p) = κWK(p).

5 Applications of Metric Curvatures

We first discuss a few direct applications of the various metric curvatures. The
most elementary amongst them – the Menger curvature – was employed the most,
both in a pure theoretical context, for estimating (via the Cauchy integral) the
regularity of fractals and flatness of sets in the plane (see [41]); and for practical
implementations, for curve reconstruction ([27]).

Haantjes curvature does not impose an Euclidean-type geometry upon the
modelled space, therefore it is better suited for the geometrization of graphs (see
[51]).

Of course, both curvatures above (as well as Alt curvature) can be employed
– as approximations to sectional curvatures – in estimating curvatures of smooth
curves on triangulated surfaces (see [49]).

Also, one is inclined to study the relationship between the generalizations
presented in Section 3, and the more abstract ones introduced in Section 4. The
relationship is rather straightforward when considering, for instance, sectional
curvature on manifolds: these curvatures admit good metric approximations via
“good” triangulations, whose existence is guaranteed by Theorem 3.13. It is in-
teresting – both from the geometer’s point of view and from the standpoint of
Applied Mathematics, to ask whether one can use the existence of such trian-
gulations to show directly, via the Bertrand-Diguet-Puiseaux theorem and its
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generalization, the convergence of curvatures in secant approximation (by PL
manifolds). Such study is currently undertaken ([50]).

We could not conclude this brief excursus into the notion of curvature and
its metric aspects, in particular Wald and Rinow curvatures, without at least
alluding to the new developments in Comparison Geometry and their plethora of
implications in a variety of fields, such as Geometric Group Theory, Partial Dif-
ferential Equations, Dynamical Systems, Relativity and even Computer Science
(see [14], [15], [23], [29], [30], [46]).
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