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Abstract:

We introduce a semi-discrete version of the Finsler-
Haantjes metric curvature to define curvature for wavelets
and show that scale and curvature play similar roles with
respect to image presentation and analysis. More pre-
cisely, we show that there is an inverse relationship be-
tween local scale and local curvature in images. This al-
lows us to use curvature as a geometrically motivated auto-
matic scale selection in signal and image processing, this
being an incipient bridging of the gap between the meth-
ods employed in Computer Graphics and Image Process-
ing.

A natural extension to ridgelets and curvelets is also given.
Further directions of study, in particular the development
of a curvature transform and the study of its link with
wavelet and the scale transforms are also suggested.

1. Introduction

The versatility and adaptability of wavelets for a variety
of tasks in Image Processing and related fields is too well
established in the scientific community, and the bibliogra-
phy pertaining to it is far too extensive, to even begin to
review it here.

We do, however, stress the fact that the multiresolution
property of wavelets has been already applied in deter-
mining the curvature of planar curves [1] and to the in-
telligence and reconstruction of meshed surfaces (see, e.g.
[18], [26], amongst many others). Moreover, the intimate
relation between scale and differentiability in natural im-
ages has also been stressed [10].

We have presented in [24] and other related works, an
extension of Shannon’s Sampling Theorem when images
are viewed as higher dimensional objects (i.e. manifolds),
rather than 2-dimensional signals. More precisely, our ap-
proach to Shannon’s Sampling Theorem is based on sam-
pling the graph of the signal, considered as a manifold,
rather than sampling of the domain of the signal, as is cus-
tomary in both theoretical and applied signal and image
processing, motivated by the framework of harmonic anal-
ysis. The main tool for proving our geometric sampling
theorem, resides in the confluence of Differential Topol-
ogy and Differential Geometry. More precisely, we con-
sider piecewise-linear (P L) approximations of the mani-
fold, where the geometric feature (i.e. curvature) deter-
mines the proper size and shape-ration of the simplices of

the constructed triangulation.

Naturally, the question is whether the implementation of
the geometric sampling scheme is feasible. We do not
address here the purely geometric aspects, that would
be highly relevant in Computer Graphics implementation
(besides, these were partly addressed in [24]). Instead,
we focus on the far more important and popular Image
Processing tool of wavelets. The versatility and adaptabil-
ity of wavelets to a variety of tasks in Image Processing
and related fields is too well established in the scientific
community, and the bibliography pertaining to it is far to
extensive, to even begin to review it here.

Unfortunately, in contrast to Computer Graphics experts,
for many investigators concerned with wavelets applica-
tions, piecewise-linear approximations are not necessar-
ily among their most familiar tools. It is, therefore, a
challenge to consider the integration of tools practiced
by both communities. Although it may appear to be a
surprising result to those primarily familiar with classi-
cal wavelets, the Stromberg wavelets [27], are based on
piecewise-linear functions. Another, more intriguing issue
is whether one can replace the intuitive trade-off between
scale and curvature, by a formal concept of wavelet curva-
ture, in particular in cases such as those of the Stromberg
wavelets, or, in the more difficult case of Haar wavelets
that are not even piecewise linear.

Interestingly enough, this can be done by using metric cur-
vatures [2] (and [21] for a short presentation). It turns out
that the best candidate, for the desired metric curvature is
the Finsler-Haantjes curvature, due to its adaptability to
both continuous and discrete settings.

A more suitable approach to surface reconstruction could,
for example, implement ridgelets [5], or the more gener-
alized, curvelets [6].

2. Mathematical Background

The central mathematical concept of the present paper
is the following metric notion of curvature suggested by
Finsler and developed by Haantjes [12]:

Definition 1 Let (M,d) be a metric space, let ¢ : [ =
[0,1] = M be a homeomorphism, and let p,q,r €
¢(I), gq,7 # p. Denote by ¢r the arc of ¢(I) between
q and r, and by gr segment from ¢ to r. We say that c has



Figure 1: A metric arc and a metric segment.

Finsler-Haantjes curvature rpy(p) at the point p iff:

3
(d(g,7)))
where “I(¢i")” denotes the length, in intrinsic metric in-

duced by d, of gr — see Figure 1. (Here we assume that
the arc ¢ has finite length.)

Kpp(p) = 24 quf_f)lp

; (D

Note that, while highly intuitive and definable for a very
large class of curves in general rather metric spaces, this
definition of curvature would remain some esoteric notion,
without the following theorem (see [2]):

Theorem 2 Let ¢ € C3(I) be a smooth curve in R3, and
let p € c be a regular point. Then kppy(p) exists and,
moreover, kpp(p) = k(p) — the classical (differential)
curvature of c at p.

3. Finsler-Haantjes Curvature of Wavelets

In [23] we have introduced, in the context of both vertex
and edge weighted graphs, a discretization of the Finsler-
Haantjes curvature, (for applications in DNA analysis).
Here we consider a semi-discrete (or semi-continuous)
version, as follows:

Let ¢ be the typical piecewise-linear wavelet depicted in
Figure 2, let AE be the arc of curve between the points A
and F, and let d(A, E) is the length of the line-segment
AE. Then [(AE) = a+b+c+dand d(A, E) = e + f.
Then w34 (p) = 24[(a +b+c+d) — (e + f)]/(a +
b+ c + d)3. Note that, in addition to the “total” curvature
of ¢, one can also compute the “local” curvatures at the
“peaks” B and D: k% (B) = 24(a+c—e)/(a+b)> and
k% (D) = 24(c+d — f)/(a+ b)3, as well as the mean
curvature of these peaks: k = [krpp(B) + kru(B)]/2.
Even if these variations may prove to be useful in certain
applications, we believe that the correct approach, in the
sense that it best corresponds to the scale of the wavelet,
would be to compute the total curvature of (.

Let us compare the relationship between curvature and
scale, for a concrete piecewise-linear wavelet — the Meyer
wavelet [19] — see Figure 3. The results indicating the re-
lationship between scale and curvature, for this wavelet,
can be seen in the graph in Figure 4.

However, had the definition of Finsler-Haantjes curvature
been limited solely to piecewise-linear wavelets, its ap-
plicability would have also been diminished. We show,

Figure 3: The Meyer wavelet.

however, that it is also definable for the “classical” Haar
wavelets, in a rather straightforward manner. For example,
consider the basic Haar wavelet and Haar scaling function,
illustrated in Figure 5. Then for the scaling function we
have: [(AE) = d(A, B) +d(B, C) + d(C, D) = 3, while
d(A, D) = 1. Analogously, for the Haar wavelet we get:
I(AE) = d(M,N,) + d(N,P) + d(P,R) + d(R, S) +
d(S,T) = 5 and d(M,T) = 1. The expression for kg
follow easily in both cases and we present the results for
the first 10 scales in Figure 6 and Figure 7, respectively.

Moreover, while perhaps of lesser interest, it should be
mentioned that k() can also be computed for smooth
wavelets, using the classical formula for the arc-length:

(AB) = [gupp0 VI + ()2

4. Ridgelets and beyond

The wavelet curvature definition introduced above is ap-
plicable, through standard methods, for image processing
goals, by using separable 2-dimensional wavelets. How-
ever, while practical in many cases, this presumption con-
travenes to real geometric structure of images, as empha-
sized, for instance, in [24]. In addition, as it has already
been pointed out by Candes [5], “that wavelets can effi-
ciently represent only a small range of the full diversity of
interesting behavior”, since wavelets can cope well with
pointlike singularities, but they are not fitted for the analy-
sis and reconstruction of singularities of dimension greater
that 0, that are distributed along lines (and more general
curves), planes (and other surfaces), etc. It is therefore
natural to ask whether the notion of curvature defined for
wavelets can be extended to ridgelets as well.

The perhaps somewhat surprising answer is that such an
extension is not only possible, it is in fact more straight-
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Figure 4: Curvature as a function of scale:
wavelets.

Meyer

Figure 5: The Harr scaling function and wavelet.

forward and canonical. Indeed, 2-dimensional ridgelets
are, in fact, piecewise C? surfaces (with line singularities).
For these geometrical objects an almost standard notion
of curvature exists: the principal curvatures (i.e maximal
and minimal normal sectional curvatures — see [8]) at any
point of the surfaces. For ridgelets, we consider only the
maximal absolute curvature at points on the ridges (since,
along the ridge-line, curvature is 0 (cf. [8]) — see Figure
8. The sectional curvature of curves normal to the ridge
is then computed using the method described in the previ-
ous section. (See also [22] for the application of the this
method to piecewise-flat surfaces.)

Note that similar consideration apply with regard to
curvelets (and, evidently, to nonseparable 2-dimensional
wavelets as well). However, as far as curvature is con-
cerned, there exists a basic difference between curvelets
and ridgelets, which is a direct consequence of the differ-
ence between the geometric models employed. Namely,
as already noted above, the principal curvature associated
with the feature of interest (i.e. the ridge) vanishes. In
consequence, Gaussian curvature, being the product of the
principal curvatures, will also equal O for any point on the
ridge (see Figure 8). In contrast, curvelets, being modeled
on more flexible types of surfaces, can — and will — ex-
hibit Gaussian curvatures different from 0, both positive
and negative.

This geometric analysis can also be applied to shear-
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Figure 6: Curvature as a function of scale: The Haar scal-
ing functions.
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Figure 7: Curvature as a function of scale: The Haar
wavelets.

lets. As Figure 9 illustrates, shearlets display “peaks”
of high positive Gauss curvature. In consequence, they
are ideally suited for modeling phenomena which, in ge-
ometric terms, are characterized by positive curvature
concentrated at specific points. In view of this, shear-
lets may be viewed, in the context of our geometric ap-
proach, as a complementary tool to ridgelets. Indeed,
recall that ridgelets were developed as an extension of
wavelets, befitting the modeling of line-type singularities.
Point type singularities can still occur in conjunction to
1-dimensional singularities (not least as noise), hence a
combination of both type of tools, in a common, integrated
“dictionary” is, indeed, required. The geometric approach
presented above enables us to build such a “dictionary” in
natural manner.

5. Future work — Theory and Applications

As we have seen, curvature can serve as a local scale es-
timator that is natural, i.e. intrinsic to the geometry of the
image. Moreover, it can be easily calculated and used for
image analysis and enhancement, especially in edge detec-
tion and texture discrimination (since in both cases curva-
ture either large and/or exhibits a large variation). Results
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Figure 8: Lines of curvatures on a ridgelet (after [9]).

should be validated using previous work of Brox & We-
ickert [3] and Lindenberg [17]. It’s extension to ridgelets
(and curvelets) should be compared with such benchmark
works as [6]. Moreover, in view of such works as [4], [15],
[16] (to cite only a few), further applications to image
compression also impose themselves as naturally stem-
ming from our curvature analysis. In addition, feature ex-
traction is also a natural application for our method, since
it allows for a better correlation between the internal scale
of he image (i.e. curvature) and wavelets’ scale. (In fact,
experiments in this direction are currently in progress.)

On the theoretical end of the spectrum, one would like
to develop a full multi-curvature analysis framework,
where images are constructed using basis functions that
are curve-related to one another. This is not an impos-
sible task as it seems, since, as we have already men-
tioned, we have shown in [24] that image sampling and
reconstruction based on their curvature is possible. In
fact, in the said paper, we have proven that, in the ge-
ometric approach, the radius of curvature (see [8]) sub-
stitutes for the condition of the Nyquist rate, even in the
1-dimensional case. Since (sectional) curvature is defined
as 1/(curvature radius), the relationship between scale
and curvature becomes even clearer, in the light of the re-
sults presented herein. Therefore, we aim at presenting a
curvature transform, akin to the wavelet transform and to
the scale transform of [7]. Of course, in the context of
curvatures of ridgelets and curvelets one should consider
the appropriate types of transforms.

We conclude with a further natural application of metric
curvatures, lying at the confluence of theory and prac-
tice, namely to the fractals and their use, in conjunction
with wavelets or independent of them, to image processing
(see, e.g. [11], [13]). While a metric curvature — namely
Menger’s metric curvature (see [2], [21]) — was already
applied in a purely theoretical context to fractal analy-
sis [20], our geometric method allows for a more flexible
and coherent approach, that provides a unified treatment
of wavelets (including their extensions mentioned above)
and fractals.

Figure 9: Lines of curvatures on shearlets (after [14]).
Note the high positive curvature concentrated at the
“apex”.
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