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Abstract

The interest, in recent years, in the geometric processing of polygonal meshes,
has spawned a whole range of algorithms to estimate curvature properties over
smooth polygonal meshes. Being a discrete approximation of a C? continuous
surface, these methods attempt to estimate the curvature properties of the orig-
inal surface. The best known methods are quite effective in estimating the total
or Gaussian curvature but less so in estimating the mean curvature.

In this work, we present a scheme to accurately estimate the mean curvature
of smooth polygonal meshes using a one sided tube formula [16] of the volume
above the surface. In the presented comparison, the proposed scheme yielded
results whose accuracy is amongst the highest compared to similar techniques
for estimating the mean curvature.

1 Introduction

Polygonal meshes are basic representations of geometry that are employed in a
whole variety of fields from vision and image processing to computer graphics,
geometric modeling and manufacturing. Analysis of such data sets is of great
value in many applications such as reconstruction, segmentation and recognition
or even non photorealistic rendering. In this context, curvature analysis plays
a major role. As an example, curvature analysis of 3D scanned data sets were
shown to be one of the best approaches to segmenting the data [32].

Though many algorithms attempt to estimate the total, or Gaussian cur-
vature K, and mean curvature, H, of the original surface, given its polygonal
approximation, we will discuss here only the most well known and accurate
ones. For a more rigorous comparison of curvature estimation methods, see, for
example, [28].



In [17,26], the principal curvatures and principal directions of a triangulated
surface are estimated at each vertex by a least square fitting of an osculating
paraboloid to the vertex and its neighbors. These references use quadratic ap-
proximation methods where the approximated surface is obtained by solving an
over-determined system of linear equations.

In [23], one can find an asymptotic analysis of the paraboloid fitting scheme
and an algorithm based on the Gauss-Bonnet Theorem [11], which we refer to
as the Gauss-Bonnet scheme, that also known as the angle deficit method [23].
In [6,12], the angular deficiency around a vertex is used to estimate the total
curvature at a vertex. In a planar domain, the angles around a vertex sums to
27. The deviation from this value directly reflects on the total curvature at the
vertex. A similar estimation is derived for the mean curvature, this time through
the dihedral angle of the incoming edges to the vertex.

In [22], circular cross sections, near the examined vertex, are fitted to the
surface. Then, the principal curvatures are computed using Meusnier’s and Eu-
ler’s theorems (see [11]). In [29], the principal curvatures are estimated with the
aid of an eigenvalues/vectors analysis of 3 x 3 symmetric matrices that are de-

fined via an integral formulation. In [30], the fact that ;- f027r kn(p)dy = H and

5 OQW ky(p)?de = 3H? — 1K, where k,(¢) is the normal curvature in direction

@, is used to estimate K and H, via discrete approximations of these integrals
around a vertex.

In this work, we present a curvature estimation scheme that exploits an
infinitesimal volume above the piecewise linear surface to estimate both the
total, Gaussian curvature K, and the mean curvature H. It will be shown that
this volume above the surface is related to both H as a second order term and to
K as a third order term. This identity is then exploited to estimate H accurately
and to a lesser extent, K. Further, it will be shown that this formulation is similar
to the one offered in [6,12] for the estimation of K and H while more precise
results are achieved here for H.

The rest of this paper is organized as follows. In Section 2, we discuss related
work and provide the background that is necessary for the proposed algorithm
and present the half tube formula. In Section 3, we present the proposed al-
gorithm for the discrete, polygonal case. Then, in Section 4, we provide some
examples and compare our results to other curvature estimation algorithms. We
summarize our results in Section 5, and give some possible directions for further
research.

2 Background and Related Work

Let S C R3 be an orientable surface and let N, denote the unit normal of S at p.
For each p € S consider, in the direction of N,, the open symmetric interval of
length 2¢,, I, ., where €, is chosen to be small enough such that I, . NI, .. =0,
for any p,q € S such that [|p — ¢|| > £ € Ry. Then, Tub:(S) = U,cs Ip,e, is an
open set that contains S and such that for any point © € Tub.(.5), there exists a

unique normal line to S through . Tub.(S) is called a tubular neighborhood of S



or just a tube; See Figure 1. The two surfaces S+. = S +¢eN are called the offset
surfaces of S with offset distance €. We shall consider sets of constant offset ¢.

Fig. 1. Tubular neighborhood of S.

Note that, since €, depends upon p, Tub.(S) does not, in general, coincide
with the e-neigbourhood of S, i.e., with the set N.(S) = {x € R?|dist(z,S) = €}.
Also, it is important to know that, while not evident, the existence of tubular
neighborhoods is assured both locally, for any regular, orientable surface (see [11],
Proposition 1, p. 111), and globally for regular, compact, orientable surfaces (see
[11], Proposition 3, p. 113).

In addition, we note a number of facts about the existence and regularity of
the offset surface S.: If S is convex, then Si. are piecewise C1'! surfaces (i.e.,
they admit parameterizations with continuous and bounded derivatives), for all
e > 0. Also, if S is a smooth enough surface with a boundary (that is, at least
piecewise C?), then Sy, are piecewise C? surfaces, for all small enough ¢ (see
[13], p. 1025). Moreover, for any compact set S C R3, S, are Lipschitz surfaces
for almost any ¢ (see [18]). This is extremely pertinent to our study, since it
allows the computation of the mean curvature for local triangulations, not only
for smooth surfaces (see also the discussion in Section 5 below).

Theorem 1. (The Tube Formula) Let S C R? be a compact orientable sur-
face. Then

3
Vol (Tube(S)) = 2eArea(S) + 2%/SKdA. (1)

Proof: Following [16]. Let S = f(U) be a local parametrization of the surface.
Define fs5: U — R3, fs(u,v) = f(u,v) + 6N (u,v). Then, for a sufficiently small
|0], fe is injective, for all || < |§]. Thus, one can choose € such that f. represents
a parametrization of Sy..

Then: of of N
Pu T ou TE

of of ON (2)
6_716 = v + 6@.
However, IIs(w) = —dN -w, where IIg denotes the second fundamental form
of S (see [11], p. 141). Thus, one can express the partial derivatives of f. as:



g% = 9N

ou ou
of _ N
IIS% - dv *

Therefore (2.2) becomes:

9 = (1 -ells)2L,

’ ®)
8= = (1-ells)2L,
and
ofe  Of: of  of
5 X gy = detl=ells) (G x 50).
Moreover, det(1 + elg) > 0, for small enough ¢, thus
of. oLl ., . of  of
du < oo || = A ells) |50 x 5y

From the classical formula expressing the principal curvatures of S in terms
of H and K (see [11], p. 212, [24], pp. 208-9):

det(1 —ellg) =1 —2¢H + %K,

it follows (by the well known differential geometry expression for area — see, e.g.,
[11], 2-8.) that:

Area(f-(U)) = %{f Zfe dudv
/(1—25H+ £?K) Haf 98| qudw
U D)

= Area(f(U)) — 2¢ | HdA + &*| KdA.
() ()
Thus, by summation over the local parameterizations composing 5,

Area(S+c) = Area(S) F QE/HdA + 52/ KdA. (4)
s S

Therefore, Area(Syc) + Area(S_.) = 2Area(S) + 2¢[(KdA, and follows
that:

—€

€ 923
Vol(Tub-(S)) = /+A7°ea(5t)dt = 2¢ Area(S) + %/ KdA,
S

whence (2.1) follows immediately.

By applying the Gauss-Bonnet Theorem for compact surfaces (see [11], p
276), one immediately gets the following corollary:



Corollary 1. Let S C R? be a compact orientable surface. Then:

Aged

3
where x(S) denotes the Euler characteristic of S.

Vol(Tub.(S)) = 2eArea(S) + x(S), (5)

Evidently, the Tube Formula can not be employed to compute the mean
curvature. Moreover, in the case of triangulated surfaces computing K by means
of the Tube Formula reduces to approximating K (p) by the angle defect at the
point p (see [9], p. 9 and Remark 1 below); i.e., by approximating K (p) by

K(p) =27 — i ¥ , where 1); denote the angles of the triangles incident with
1

p (see Figure 4) — that is, by applying a well known method, based upon the

Local Gauss-Bonnet Theorem (see [6], [21] ). Fortunately, (1) also yields a much

more useful (yet generally overlooked) formula, which we will refer to as the Half

Tube Formula:

Theorem 2. (Half Tube Formula) Let S C R? be a compact orientable sur-
face. Then

3
Vol(Tub+c(S)) = eArea(S) F 52/ HdA + % / KdA. (6)
s S

Remark 1. A similar formula is developed in [9], p. 4, for full tubes, without,
however, noticing that the term containing H vanishes. Indeed, our method
is closely related to that of [9]. However they stem from somewhat different
considerations. Note that, as already mentioned above, only the use of the half
tubes formula allows the computation of the mean curvature. Moreover, the
method we propose has the advantage of being simpler to implement than the
one proposed in [9].

3 The Algorithm

The tube formula is, in fact, a generalization of the classical Steiner-Minkowski
Theorem ([2] 12.3.5, [16] Theorems 10.1 and 10.2.) for compact, convex polyhe-
dra with non-empty interiors of dimension n > 2, which we present only in the
relevant cases, n =2 and n = 3:

Theorem 3. (Steiner-Minkowski) Let P C R™, n = 2,3 be a compact, con-
vex polyhedron and let N.(P) = {x € R"|dist(xz, P) < e}, n=2,3.

1. If n =2, then,
Area(N.(P)) = Area(P) + eLength(OP) + ne? (7)

where OP denotes the boundary of P.



2. If n =3, then,

4 3
Vol(N.(P)) = Vol(P) + cArea(8sP) + C2Length(d, P) + 7;8 ()

where O3 P denotes the boundary faces of P, 01 P denotes the boundary edges
of P and the last term contains the 0-dimensional volume contribution of
the boundary vertices of P (by convention: Vol(OogP) = | Vp | — the number
of vertices of P), and where C = C(P) is a scalar value that encapsulates
ffS H and that essentially depends on the dihedral angles of P.

To gain some insight, we start by analyzing the 2-dimensional case first. N.(P)
naturally decomposes into three components: P itself, a union of rectangles of
height € constructed upon the sides of P (see Figure 2) and the union of circular
sectors of radius ¢ (see Figure 2 (a)). The total area of the rectangles is:

eLength(e1) + ...+ eLength(e,) = eLength(OP),

where e, ..., e, denote the boundary edges of P. The angles ¢,, of the circular
sectors are given by: ¢; = 2mr—7/2—7/2—; = m—a;, where «; is the respective
internal angle of P (see Figure 2 (a) ). However, a1 + ... 4+ o, = (n — 2)m, thus
¢1+ ...+ ¢, = 27. That is, the circular sectors combine to form a disk of radius
¢ (see Figure 2 (b)).

Fig. 2. Tubular neighborhood of a convex polygon.

In the case of n = 3, N.(P) decomposes into the following four components:
P, right parallelipipeds P. of height € built upon the faces, the orthogonal prod-
ucts 7¢ of circular sectors and edges, and spherical sectors S, associated with
the vertices of P and whose union is a ball of radius ¢ (see Figure 3). Each of the



geometrical objects above gives rise to the terms of (3.2) containing the fitting
power of €.

Fig. 3. Tubular neighborhood of convex polyhedron. Note the right parallelepipeds P.
built upon the faces, the orthogonal products 7: of circular sectors and edges, and
spherical sectors S, associated with the vertices.

One immediately notices the similarity between Formulas (2.4) and (3.2),
more precisely the correspondence between the terms pertaining to H in both of
the equations. Beyond its integral expression in (2.4), due to the limiting process
possible on a smooth surface, the main difference resides in the “+” sign, sign
due to discarding the overly restrictive convexity condition.

We denote by H(p) and K (p), the mean and Gauss curvatures at the point p,
respectively. Before we proceed further we have to introduce the notion of con-
vergence “in the sense of measures”. By convergence in the “sense of measures”
we mean the following: given a patch U (i.e., several links of a certain vertex) on
the triangulated surface S, each element in U (i.e., vertices, edges, etc.) makes a
certain contribution to H(K). Even if these contributions may not individually
be correct, they do add to the correct answer on the average, when the density
of the mesh increases. It is important to note that this averaging effect is not a
local phenomenon.

It should be emphasized that while in the computation of H(p), the dihedral
angles of the edges through p, e1,...,e, (see Figure 4) are computed, this is
done only in the sense of measures, this being true for the areas involved in
expressing (in the expression of) K (p) (see [15], [9]).

That is, one should regard, for instance, Area(T;) as a weight associated
with the triangle T; and uniformly distributed among its vertices p,q,r. The
same uniform distribution is to be considered with respect to the weights nat-
urally associated with edges. Therefore, the measure, i.e., of the dihedral angle



associated with the edge ey, for instance, is to be equally distributed among the
vertices adjacent to it, i.e. p and q.

Fig. 4. The first (Ring:(p), solid) and second (Ring2(p), dashed) ring around vertex
P.

The same type of uniform distribution is to be considered when computing
the contribution of Area(T;), for example in the computation of K(p): T; will
contribute $Area(T;) to the computation of (each of) K(p), K(q), K(r) (see
Figure 4 [27]).

However, the edge e; = ¢r also contributes to H(p), since it is an element
of T;, which is adjacent to p. (This may be counterintuitive to the classical
approach of computing curvatures of curves through p, but one should remember
that these “elementary” edge-curvatures are to be viewed as measures!) Since
the boundary edge &; is common to T; and the second-ring triangle S;, it’s
contribution to each of the T; triangles is half of the associated dihedral angle.
Analogous considerations are to be applied in computing the contribution of the
boundary vertices (e.g., q), etc.

Let Ring;(p) be the #’th ring around p and denote by |e;| the length of edge
;. Then, the formula employed for computing the H(p) follows:

n—1 n—1

1 1 _
5 0 Ol Tisnymoa w)lesl + 1 3 ¢ (Th, Si)[ERl|

1

") = e Ring: o))

Il
o

1=0 7

where S; € Ringa(p) shares edge &; with T; € Ring1(p), and ¢(T;, Ti+1) denotes
the dihedral angles between adjacent triangles 7; and 754 ;.

Algorithm 1 summarizes this process:

If the user requires the mean curvature for many vertices of the model, this
algorithm can be implemented more efficiently as follows: First calculate the



Algorithm 1 Estimates the mean curvature at vertex p

RingArea < 0; > The area of the first ring around vertex p
ContribSum < 0; > The sum of the contributions of the triangles from the first
ring around vertex p

n < |Ringi(p)|; > Number of triangles in the first ring around vertex p

fori<—0ton—1do

RingArea += Area(T3);

ContribSum += o(T;, T(i11) mod n)lei| + 3¢(Ts, Si)|el;
end for

Return ContribSum .

2RingArea

contribution of each edge. For each edge, e;, that is adjacent to triangles T; and
T;11, we assign an attribute called EdgeContrib that is equal to o (T;, Tj11)le].
Then, for each triangle we assign an attribute called TriangleContrib that is
the sum of all FdgeContrib of its’ edges. Finally, we can compute the mean
curvature at vertex p using Algorithm 2.

Algorithm 2 Estimates the mean curvature at vertex p. Efficient version.

RingArea < 0; > The area of the first ring around vertex p
ContribSum <= 0; > The sum of the contributions of the triangles from the first
ring around vertex p

n < |Ringi(p)|; > Number of triangles in the first ring around vertex p

fori<— 0ton—1do
RingArea += Area(T3);
ContribSum += T;.TriangleContrib,
end for

Return ContribSum .

2RingArea

4 Tests and Examples

The algorithm described in Section 3 above was tested on a set of synthetic
models representing the tessellations of five NURB surfaces: the body and the
spout of the infamous “Utah teapot”, a hyperboloid, an ellipsoid and a torus.
All these models along with their respective analytic curvature values for each
vertex are also available in

http://www.cs.technion.ac.il/"gershon/poly_crvtr/.

The triangulations of each model were produced for a series of different res-
olutions, ranging from approximately one hundred triangles to several thousand
triangles. Such a distribution of resolutions allowed us gain more insight into
the convergence rate of the proposed algorithm and of the various comparison
algorithms.



We considered the following mean error value (over all m vertices):

where H; denotes the analytically computed value of the mean curvature from
the smooth NURBs surface S(r,t) at (r;,s;) and H; represents the value of the
mean curvature that was estimated by one of the comparison methods at the
triangular mesh vertex v; = S(r;, t;).
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Fig. 5. Average of the absolute error for the value of mean curvature for the tesselations
of the Utah teapot’s body NURB surface.
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Fig. 6. Average of the absolute error for the value of mean curvature for the tesselations
of a rotation surface of negative Gauss curvature.



We compared our algorithm’s performance with that of the following previ-
ously tested ones: Gauss-Bonnet (or angle deficit) [6,12, 23], Taubin [29], Watan-
abe [30] and the classical Parabolic Fit [17, 26].

e

0.1 \
—8-Tube
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——Watanabe
—+ Angle Deficit
—e—Parab

64 400 1024 1936 3132
Number of Polygons

Median Error

0.001

Fig. 7. Average of the absolute error for the value of mean curvature for the tesselations
of the ellipsoid.
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Fig. 8. Average of the absolute error for the value of mean curvature for the tesselations
of the Utah teapot’s body NURB surface.

It is evident from the graphs above that the Tube Formula method gives the
best results among the methods (algorithms) for computing mean curvature,
both on surfaces of negative Gauss curvature K (i.e., the hyperboloid) and on
surfaces where K takes both positive and negative values (e.g., the spout and the
torus). The results obtained when employing our method closely approach those
obtained by the best method (e.g., the Parabolic Fit) in the case of surfaces of
positive Gauss curvature of high variance (e.g., the ellipsoid).



It fails to produce very good results only for the Body. The probable reason
that lays behind this failure is that, in the “middle section” of the Body, of almost
zero Gauss curvature, the tesselation produces patches of (local) negative Gauss
curvature, thus introducing the observed error in the computation of the mean
curvature. This problem is currently under further investigation.

~&-Tube
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01 ——Watanabe
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0.001
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Fig. 9. Average of the absolute error for the value of mean curvature for the tesselations
of the torus.

5 Conclusion and Future Work

As already noted above, it is evident that the Half-Tube Formula method pro-
duces, in general, good results, more so for surfaces of negative and mixed Gauss
curvature. This is apparently due to the averaging effect of the tubes (or normal
cycles ([9], [10], [15]), which represent a generalization of Steiner’s approach on
convex polyhedra to a much larger class of geometrical objects, in particular to
smooth and piecewise-linear manifolds in any dimension) above edges adjacent
to vertices of negative curvature (see Figure 10).

Fig. 10. Normal Cycle at Negative Curvature Vertex



Considering the quality results obtained in the case of mean curvature for
most types of surfaces, and in light of Formulas (1) and (6), it is natural to next
plan to investigate the capability (versatility, utility and potential) of the Tube
and Half-Tube formulas in computing (approximating) K.

Another direction of study stems from the following facts: Both the Steiner-
Minkowski Theorem and the Tube (and Half-Tube) Formula extend not only
to arbitrary convex sets in R™ (see [2]), but also to open subsets with compact
closure with smooth boundary in any Riemannian manifold (see [16], pp. 10-11
and 243-248). The most straightforward generalization is the following theorem:

Theorem 4. (Weyl) (See [3], Theorem 6.9.9.) If X is an k-dimensional sub-
manifold of R™, then:

Lk/2] ‘
Vol(Tubs(X)) = Z (o R
i=0

where

1
= ————— | KoidVa,
“ n—k—|—2i/X 2lV2

and where Ks; are polynomials of degree i in the curvature tensor R of X, the
so-called Weyl curvatures (see [3], [7]).

In particular, we have co = vol(X )vol(B"%(0,¢)) and ¢; = & [,k dX, where
k denotes the scalar curvature (see [3], 6.9, [16], Lemma 4.2). It follows, that in
the case of special interest for us, i.e., n = 3 and k = 2, we have: Vol(Tub.(X)) =
co€ + c2e3, where k = K — the Gauss curvature of the surface X, i.e., we recover
Formula (1).

Moreover, via the normal cycle the results above also extend to piecewise
linear manifolds (piecewise linearly and isometrically) embedded in R™ (see [8],
[14], [9]). Recently these theorems were generalized to general closed sets in R™
(see [19]).

This last fact is particularly important for the purpose of our study, since it
allows us to apply the Half Tube Formula not only locally, that is by computing
the measures associated with the triangles belonging to the ring of a given vertex
p, but also to extend it to the next ring, and, potentially, to more consecutive
rings. Moreover, since the Half Tube Formula involves K also, it allows us esti-
mate K by computing over more than one ring, thus permitting the extension
of the angle deficiency method to more than one ring. However, since by (6), the
computation of K involves €2, one expects difficulties to arise, due to numerical
instability.

One further possible direction of investigation should be to answer the fol-
lowing (rather practical) question: Does the assumption regarding the uniform
distribution of the area hold also for “bad” triangulations (i.e., containing “thin”
triangles), and how much did it affect the quality of the mesh? In view of the
seminal results of [7] regarding the good approximations of curvature measures
for smooth manifolds by piecewise linear (PL) manifolds whose simplices are



“fat” (i.e., satisfy a certain non-degeneracy condition imposed upon the dihe-
dral angles in all dimensions), one is inclined to conclude that “fat” triangles
should be considered if one wants to make use of the uniform distribution of the
area assumption, in which case the original question should be replaced by the
more technical one: “What is the lower admissible boundary for the “fatness” of
the triangles if a uniform distribution is to be considered?”

A direct application of our method would be in the computation for of Will-
more (elastic) energy of triangulated surfaces, where the the Willmore W (S)
energy of be a smooth, compact surface S isometrically immersed in R? is de-
fined as:

W(S) = [S H2dA. )

Our approach represents an alternative to the one proposed in [4]. Since the
Willmore energy is a conformal invariant (see [31]), its computation is relevant
in a variety of fields and their applications, such as in conformal geometry, vari-
ational surface modeling, thin structures (see [5]) and medical imaging (see [25]).

Another immediate use of our algorithm would be to compute the integral
/. g H. Since this integral is bending invariant [1], its computation may prove to
be useful in applications involving PL isometric embeddings (see, e.g. [20]).
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