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1. Introduction and First Remarks

1.1. Introduction. In [19] we have proved a sampling theorem for differen-
tiable manifolds and applied it in the context image processing ([18], [19]).
The gist of our constructive proof is the existence of so called fat triangu-
lations (see [21]). The density of the vertices of the triangulation (i.e. of
the sampling) is given by the inverse of the maximal principal curvature.
Moreover we have showed that our sampling scheme coincides with the one
provided by classical Shannon theorem, at least for the large class of (band-
limited) signals that are also C2 curves. In this geometric approach, the role
of the role of the Nyquist rate is played by the radius of curvature.

It is the goal of this paper to further investigate the extent and power of
this analogy and of the geometric approach in general. We begin by making
a few observations regarding the extent of our results, i.e. of finding the
largest space of signals on which our results may be applied effectively.

Next, we establish the proper analogies of the basic notions in classical
sampling and coding theory of the Gaussian channel. In doing this, we hope
to construct a “dictionary” of classical and geometric sampling notions, in
the tradition of Shannon’s seminal paper [16].

In the following section we focus on classical band-limited signals and
we determine the connection between such signals and curves of curvature
bounded from above.

Finally, in the last section, we extend our investigation to (a class of) in-
finitely dimensional manifolds. Such manifolds, and the need for a sampling
theory for this class of geometrical objects naturally arise, for instance, in
the context of continuous variations and deformations (e.g video) of classical
signals, perceived as infinite series (of trigonometric functions).

1.2. General geometric signals. We begin our investigation by noting
that, by the Paley-Wiener(?) Theorem, any band limited signal is of class
C∞. We have already shown in [18] that our geometric sampling method
applies not only to band limited signals but also to more general “blackboard
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signals”, i.e. L2 functions who’s graphs are smooth C2 curves (not necessarily
planar). (We shall further investigate the connections between band limited
signals and functions of bounded second derivative in Section 3.) In fact,
the geometric sampling approach can be extended to a far larger class of
manifolds. Indeed, every piecewise linear (PL) manifold of dimension n ≤ 4
admits a (unique, for n ≤ 3) smoothing (see e.g. [22]), and every topological
manifold of dimension n ≤ 3 admits a PL structure (cf., e.g., [22]). In
particular, for curves (and surfaces) one can first consider a smoothing of
class ≥ C2 (so that curvature can be defined properly), which can be then
sampled with sampling rate given by the maximal curvature radius. Since
the given manifold and its smoothing are arbitrarily close (see [14]) one
obtains the desired sampling result. (This very scheme is developed and
applied for gray-scale images in [18].)

Now, while numerical schemes for practical computation of smoothing
exist, they are not also necessarily computationally desirable. For practi-
cal applications, one can circumvent this problem and avoid smoothing by
applying such numerical schemes as provided by the finite element method
([20]). However, both for the sake of mathematical correctness and for be-
ing able to tackle more general applications, one would like to consider more
general curvature measures (see, e.g. [23]) and avoid smoothing altogether
(see [20] for the full details of this approach and Section 2 below, for a brief
discussion of this topic in a slightly different context).

1.3. Pulse code modulation for images. Passingly, we note that our
sampling result offers, as a direct application, a new PCM (pulse code
modulation) method for images (that is, considered as such, and not as
1-dimensional signals). This has as an intrinsic advantage the fact that the
sampling points are associated to relevant geometric features (via curvature)
and are not chosen randomly via the Nyquist rate. Moreover, such a sam-
pling is adaptive and, indeed, compressive (see discussion above), with the
obvious consequent technological benefits.

2. Sampling and Codes

2.1. Packings, Coverings and Lattice codes. Recall that in classical
signal processing, W = η/2, where W is the frequency of the signal and η
represents the Nyquist rate. This admits an immediate (and rather trivial)
generalization to periodic signals, or, in geometric terms, for signals over a
lattice: Λ = {λi}. In this case, one can even interpret the sides of the lattice
as the various coordinates in a multi-dimensional (warped) time (see, e.g.
[21], [11]). Note that such signals can be viewed as distributions on the n-
dimensional torus Tn = Rn/Zn. In this interpretation, the (n-dimensional!)
period is the fundamental cell λ of the lattice. Two scalars are naturally
associated with this cell: its diameter diam(λ) (or, alternatively, the length
of the longest edge) and its volume Vol(λ). Either of them can be used as
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a measure of the n-dimensional period. However, they are both interrelated
into one geometric feature, the so called fatness:

Definition 2.1. Let γ = γk be an k-dimensional cell. The fatness (or
aspect-ratio) of γ is defined as:

ϕ(γ) = min
λ

Vol(λ)
diaml(λ)

,

where the minimum is taken over all the l-dimensional faces of γ, 0 ≤ k. (If
dimλ = 0, then Vol(λ) = 1, by convention.)

This definition of fatness is equivalent (see [15]) to the following one:

Definition 2.2. A k-dimensional cell γ ⊂ Rn, 2 ≤ k ≤ n, is ϕ-fat if there
exists ϕ > 0 such that the ratio r

R ≥ ϕ; where r denotes the radius of the
inscribed sphere of γ and R denotes the radius of the circumscribed sphere
of γ. A cell-complex Γ = {γi}i∈I is fat if there exists ϕ ≥ 0 such that all its
cells are ϕ-fat.

Recall that the in- and circumradius are relevant(important) in lattice
problems: given a lattice Λ with (dual) Voronoi cell Π (of volume 1), one
has to minimize the inradius to solve the packing problem, and to minimize
the circumradius for solving the covering problem (see [4]). Note that Λ
and Π are simultaneously fat. It follows that fat cell-complexes (and, in
particular, fat triangulations) represent a (mini-max) optimization for both
the packing and the covering problem. Moreover, since fat triangulations
are essential for the sampling theorem for manifolds, it appears that there
exists an intrinsic relation between the sampling problem for manifolds and
the covering and packing problems.

2.2. Average Power, Rate of code and Channel Capacity. Note that
in the context of lattices (with fundamental cell) λ it is natural to extend
the classical definitions of average power in the signal:

P =
1
T

∫ T

0
f2(t)dt ,

and the rate of the code:
R =

1
T

log2 N ,

(where N represents the number of code points) in the following manner:

P =
1

Vol(Λ)

∫

λ
f2(t)dt =

1
Vol(N1λ)

∫

λ
f2(t)dt ,

and
R =

1
Vol(Λ)

log2 N =
1

N1Vol(λ)
log2 N,

respectively, N1 being the number of cells.
Similarly, one can adapt the classical definition of the channel capacity:
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C = lim
T→∞

R = lim
T→∞

log2 N

T
,

as:

C = lim
T→∞

log2 N

Vol(Λ)
= lim

T→∞
1

N1Vol(λ)
log2 N.

Since the numbers N and N1 are related by N1 = α(N), where α is the
growth function of the manifold, the expression of C becomes:

C = lim
T→∞

1
Vol(λ)

log2 N

α(N)
.

It follows immediately that C = ∞ for non-compact Euclidean and Hy-
perbolic manifolds, and C = 0 for their Elliptic counterparts. Unfortunately,
no such immediate estimates can be readily produced for manifolds of vari-
able curvature.

Note that by putting 1/T = Vol(M), the definitions above apply for any
sampling scheme of any manifold of finite volume, not just for lattices. In
this case N and N1 represent the number of vertices, respective simplices,
of the triangulation.

The interpretation of frequency considered above does not extend, how-
ever, to general geometric signals. For a proper generalization we have to
look into the geometric analogue of W : By [19], Theorem 5.2 on curves, i.e.
1-dimensional (geometric) signals, W equals the curvature rate k/2, were k
represents the maximal absolute curvature of the curve. This, and the sam-
pling Theorem 4.11. of [19] naturally conducts us to the following definition
of T for general geometric signals:

Definition 2.3. Let M = Mn be an n-dimensional manifold n ≥ 2. W =
WM = 1/kM , where kM = max ki and ki, i = 1, . . . , n are the principal
curvatures of M .

or kM /2 ?!?!
Classically, the energy f the signal f is taken to be as his L2 norm:

E = E(f) =
∫ ∞

−∞
f2(t)dt =

1
2W

+∞∑
−∞

f2
( k

2W

)
.

One would like, of course, to find proper generalizations of the notion
of energy for more general (geometric) signals. In view of the discussion
above, it is clear that a first step it is to replace 2W by its proper general-
ization. However, when considering more general function spaces of specific
relevance (s.a. bounded variation (BV), bounded oscillation (BO), bounded
mean oscillation (BMO)), one should consider energies befitting the specific
norm of the space under consideration. Of course, this discussion is also
valid with regard to the best way to define average power P , and rate R, of
a geometric signal.

We can now look into the first definition of code efficiency: the (nominal)
coding gain of a code over another:
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ncd(C1, C2) = 10 lg
µ1

E1
µ2

E2

,

where µ is the square of the minimal square distance between coding
points. For geometric codes of bounded curvature (hence compact ones),
the expression for µ is particularly simple: µ = 1/min k (k denoting again
principal curvature).

2.3. The Channel Codding Problem. It is only natural to attack the
problem of the Gaussian white noise channel in the context of “geometric
signals”, i.e. manifolds. Recall that in the classical context, a received
signal is represented by a vector X = F + Y , where F = (f1, . . . , fN ) is
the transmitted signal, and Y = (y1, . . . , yn) represents the noise, whose
components yi are independent Gaussian random variables, of mean 0 and
average power (mean) σ2. The main, classical result for the Gaussian channel
is the following:

Theorem 2.4 (Shannon’s Second Theorem, [16]). For any rate R not ex-
ceeding the capacity C0:

C0 =
1
T

log2

(
1 +

P

σ2

)
,

there exists T sufficiently large, such that there exists a code of rate R and
average power ≤ P , and such that the probability of a decoding error is
arbitrarily small. Conversely, it is not possible to obtain arbitrarily small
errors for rates R > C0.

Here Shannon gives ≤ C0
and Sloane < !...?...In the case of geometric signals, F is given by the sampling (code) points

on the manifolds and, since the mean equals 0, the nosy transmitted signal
F + Y lies in the tube Tubσ(M). Recall that Tubε(S) =

⋃
p∈S Ip,εp , where

Ip,σp is the open symmetric interval through p, in the direction of unit normal
of M at p, of length 2σp, where εp is chosen to be small enough such that
Ip,εp ∩ Iq,εq = ∅, for any p, q ∈ S such that ||p− q|| > ξ ∈ R+.

While not evident, the existence of tubular neighborhoods is assured both
locally, for any regular, orientable manifold, and globally for regular, com-
pact, orientable manifold (see, [7]). In addition, the regularity of the man-
ifolds Tub−σ (M), Tub+

σ (M), Tub−σ (M) ∪ Tub+
σ (M) = ∂Tubσ(M) is at least

as high as that of M : If M is convex, then Tub−σ (M), Tub+
σ (M) are piece-

wise C1,1 manifolds (i.e., they admit parameterizations with continuous and
bounded derivatives), for all ε > 0. Also, if M is a smooth enough manifold
with a boundary (that is, at least piecewise C2), then Tub−σ (M), Tub+

σ (M)
are piecewise C2 manifolds, for all small enough σ (see [6]).

In the geometric setting, σ can be taken, of course, to be the maximal
Euclidean deviation. However, a better deviation measure is, at least for
compact manifolds, the Haussdorf Distance (between M and Tub−σ (M),
Tub+

σ (M)):
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Definition 2.5. Let (X, d) be a metric space and let A,B ⊆ (X, d). The
Hausdorff distance between A and B is defined as:

dH(A,B) = max{sup
a∈A

d(a, B), sup
b∈B

d(b, A)} .

For non-compact manifolds one has to consider the more general Gromov-
Hausdorff distance (see, e.g., [1]).

Since, by the remarks above, for σ small enough, both the distance be-
tween M and Tub−σ+(M), Tub+σ+(M) and the deviations of their curva-
ture measures are arbitrarily small, we can state a first “soft” geometric
version of Shannon’s Theorem for the Gaussian channel. While a perfect
analogy is not available(possible), we can nevertheless formulate the follow-
ing theorem:

Theorem 2.6 (Shannon’s Second Theorem, qualitative version). Let Mn

be a smooth geometric signal (manifold) and let σ be small enough, such that
Tubσ(M) is a submanifold of Rn+1. Then, given any nosy signal M + Y ,
such that the average noise power σY is at most σ, there exists a sampling
of M + Y with probability of decoding error arbitrarily small.

Remark 2.7. For geometric codes, the analogue of the capacity is C0 =
C0(k, σ, r), where r represents the differentiability class of M .

Remark 2.8. For compact manifolds, the existence of tube Tubσ+(M) is, as
we have already remarked, assured globally. Hence it follows that the sam-
pling scheme is also global and necessitates at O(N) points (N = NM ). How-
ever, for non-compact manifolds (in particular non-band limited geometric
signals), the existence of Tubσ+(M) is guaranteed only locally. Therefore
“glueing ”of the patches is needed, operation which requires the insertion of
additional vertices (i.e. sampling points), their number being a function of
the dimension of M . hence, in this case, NM+Y = O(Nn

M ).

It is important to remark that, again, this result is not restricted to
smooth manifolds, but rather extends to much more general signals: In-
deed, for any compact set M ∈ Rn, the (n− 1)-dimensional sets Tub−σ (M),
Tub+

σ (M), are Lipschitz manifolds for almost any ε (see [8] ). Moreover,
the generalized curvatures measures of Tub−σ (M), Tub+

σ (M) are arbitrarily
close to the curvature of M , for small enough σ ([3], [8]). It follows that the
generalization above befits not only the case of the Gaussian noise, but to
more general types of noise, as well (see, [16], [9], [10]).

The full details of a quantitative version, including the general case, are
laborious and warrant a separate discussion (see [20]).

3. Band-limited signals and bounded curvature

Given the geometric sampling algorithm one is naturally conducted to
pose the following question: “Are band-limited function of bounded curva-
ture?” The answer to this question is both “Yes” and “No”.

On the positive side, we can state the following proposition:
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Proposition 3.1. Let f ∈ L2(R) be a band-limited function. Than f ′′ ∈
L∞(R).

Proof. Since f is band-limited we have suppf̂ ⊂ [−B,B]. Since f ∈ L2(R)
it is clear that f̂ ∈ L2([−B, B]). The interval [−B,B] is bounded and this
implies f̂ ∈ L1([−B, B]).

The mapping properties of the Fourier transform now shows that f ∈
L∞(R). This just shows that band-limited functions are bounded.

The second derivative of a band-limited function is also band-limited (be-
cause f̂ ′′(w) = (−2πiw)2f̂(w)). Hence, f ′′ ∈ L∞(R). ¤

On the other hand, the second derivative of a band-limited function can
be arbitrarily large just because λf is again band-limited for every λ > 0.
This shows, that the maximal frequency of a function does not imply a
bound on the second derivative of the function.

The classical formula (see, e.g. [5]) for the curvature of the function f is
given by:

κf (x) =
f ′′(x)

(1 + f ′(x)2)
3
2

,

while the scaling gλ(x) = λf(x), has curvature

κgλ
(x) =

λf ′′(x)

(1 + λ2f ′(x)2)
3
2

λ→∞−→
{

0 , f ′(x) 6= 0
∞ , f ′(x) = 0

.

In other words, the curvature goes to infinity at the maximum points of f
and to 0 everywhere else.

However, one can give bounds on the derivatives of f :

Proposition 3.2. For f with suppf̂ ⊂ [−B, B] we have the following esti-
mates on the derivative of f :

(3.1) |f (n)(x)| ≤ (2πB)n‖f̂‖L1 .

If we assume f̂ ∈ L∞ (which implies f̂ ∈ Lp for every p) we have

(3.2) |f (n)(x)| ≤ 2(2π)nBn+1

n + 1
‖f̂‖L∞ ≤ 2(2π)nBn+1

n + 1
‖f‖L1

(while the second inequality only holds if f ∈ L1, of course). Another esti-
mate is

(3.3) |f (n)(x)| ≤
(

2(2πB)pn+1

pn + 1

)1/p

‖f̂‖Lq

where 1
p + 1

q = 1.

Proof. All inequalities base of the formula

|f (n)(x)| = |
∫

(−2πiω)nf̂(ω)dω| ≤
∫ B

−B
|2πω|n|f̂(ω)|dω.
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The equation (3.1) follows from

sup
ω∈[−B,B]

|2πω|n = (2πB)n

equation (3.2) from
∫ B

−B
|2πω|n|f̂(ω)|dω ≤ ‖f̂‖L∞

∫ B

−B
|2πω|ndω

and the fact that ‖f̂‖L∞ ≤ ‖f‖L1 . Finally equation (3.3) follows by applying
Hölders inequality:

∫ B

−B
|2πω|n|f̂(ω)|dω ≤

(∫ B

−B
|2πω|pndω

)1/p

‖f̂‖q.

¤

4. Geometric Sampling of Infinitely Dimensional Signals

Since in the classical context band-limited signals are viewed as elements
f of L2(R), such that supp (f̂) ⊆ [−π, π], where f̂ denotes the Fourier trans-
form of f , one would is conducted naturally to the following question: can
one extend the sampling theorem proven in [18] to infinitely dimensional
manifolds? Using an example developed in [12], we show not only that this
question is far from naive, but rather that the answer is positive and that
our geometric sampling method translates directly in to the context of infin-
itely dimensional manifolds, at least for a class of functions that naturally
arise in the the context of signal and image processing. However, since the
full proofs required in the example below are rather technical, we refer for
them to the original paper [12], and limit ourselves here solely to a brief
presentation

Consider the following spaces:

C∞
1 =

{
e ∈ C∞(R)

∣∣ e(x + 1) = e(x)
}

C∞
+ =

{
e ∈ C∞(R)

∣∣ e(x + 1) = e(x),
∫ 1

0
e2 = 1

}

M ⊂ C∞
+ ,M =

{
λ0 = 0 |λ0 first eigenvalue ofQ

}
,

where Q denotes the Hill operator: Q = −D2 + q , q(x + 1) = q(x).
Then M is a smooth, co-dimension one hyper-surface in C∞

1 .
Moreover, exactly like in the finite-dimensional case, for any 2-dimensional

section determined by unit tangent vectors to M at q, one can define (and
compute) the maximal principal curvature (of the section).

Moreover, since a normal to M at q is (of course) also defined, one can
use the same method as in the finitely dimensional case to find a sampling
of M .

It follows that a sampling scheme identical to that developed for the
finitely dimensional case can be applied for the manifold M , as well. Un-
fortunately, no uniform sampling is possible for the entire manifold: the
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maximal curvature associated to function approximating “saw-tooth” func-
tions can be made as large as desired (see [12]).

Of course, one would like to extend these considerations, in a systematic
manner, to general infinitely-dimensional manifolds (e.g. l2 and Hilbert cube
manifolds). However, even if the appropriate geometric differential notions
are defined and computed, the fundamental problem of constructing fat
triangulations for infinitely dimensional manifolds still has to be solved. On
the positive side is the fact that triangulations of such manifolds exist (see
[2]). However, even finding a notion analogous to that of fatness in the
∞-dimensional case represents a challenge.

Remark 4.1. For a different path towards a differential geometry of (some)
infinitely dimensional spaces see e.g. [13].
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