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Abstract. We present new sampling theorems for surfaces and higher dimensional manifolds. The core

of the proofs resides in triangulation results for manifolds with boundary, not necessarily bounded. The

method is based upon geometric considerations that are further augmented for 2-dimensional manifolds

(i.e surfaces). In addition, we show how to apply the main results to obtain a new, geometric proof of

the classical Shannon sampling theorem, and also to image analysis.

1. Introduction

Sampling is an essential preliminary step in processing of any continuous signal by a digital computer.

Undersampling causes distortions due to aliasing of the post processed sampled data. Oversampling,

on the other hand, results in time and memory consuming computational processes which, at the very

least, slows down the analysis process. It is therefore important to have a measure which is instrumental

in determining what is the optimal sampling rate. For one-dimensional signals such a measure exists,

and, consequently, the optimal sampling rate is given by the fundamental sampling theorem of Shannon,

that yielded the foundation of information theory and led technology into the digital era. Shannon’s

theorem asserts that a signal can be perfectly reconstructed from its samples, given that the signal is

band limited within some bound on its highest frequency. Ever since the proof of Shannon’s theorem was

introduced in the late 1940’s, deducing a similar sampling theorem for higher dimensional signals has

become an essential problem related to various aspects of signal processing. This is further emphasized

by the vast interest and numerous applications of image processing and by the growing need for fast

yet accurate techniques for processing high dimensional data, such as medical and satellite images.

In this paper we present new sampling theorems for manifolds of dimensions ≥ 2. These theorems

are derived form fundamental studies in three areas of mathematics: differential topology, differential

geometry and geometric analysis. Both classical and recent results in these areas are combined to yield

a rigorous and comprehensive sampling theory for such manifolds.

We first present sampling theorems for surfaces (dimension 2) and then for higher dimensional man-

ifolds. In the case of surfaces, we account for surfaces that are at least C2, with bounded principal
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curvatures. This condition is, in a way, analogous to band limited signals in the case of one dimen-

sion (the classical Shannon sampling theorem). We then present a sampling theorem for surfaces that

are not C2, and we proceed to present sampling theorems for manifolds of dimension ≥ 3. The main

reasons for such a differentiated treatment of surfaces and of higher dimensional manifolds is that the

geometry of surfaces is much more intuitive than that of manifolds of dimension ≥ 2. Therefore, the

main ideas behind the given theorems, are more accessible in this case. Apart from this, there is also

a deeper reason to distinguish between surfaces and higher dimensional manifolds: it is rooted in the

geometrical richness of manifolds of dimensions ≥ 3, as compared with surfaces. This richness reflects

on the present work through the variety of curvature measures applicable to manifolds of dimensions

> 2. In higher dimensions we can consider scalar, sectional and Ricci curvatures, each of which with its

specific geometrical meaning and computational considerations. As a result, and due to the crucial role

curvature plays in this whole work, when setting sampling theorems for high dimensional manifolds we

first need to have a good understanding of which of the possible curvatures we would like to use.

The geometric sampling methods introduced herein are based on the existence of fat (see Section 2)

triangulations of manifolds. Recently a surge in the study of fat triangulations and manifold sampling in

computational geometry, computer graphics and their related fields has generated a considerable number

of publications (e.g. [3], [8], [19], [22], [30], [32], [37], to name a few). For instance, in [3] Voronoi filtering

is used for the construction of fat triangulations of compact, C2 surfaces embedded in R3. Note that

Voronoi cell partitioning is also employed in “classical” sampling theory (see [47]). Further, [19] used

these ideas for manifold reconstruction from point samples. In [32] a heuristic approach to the problem

of the relation between curvature and sampling density is given. Again, in these studies the manifolds

are assumed to be smooth, compact n-dimensional hyper-surfaces embedded in Rn+1.

Our results extend the class of manifolds for which fat meshes and “good” samplings exist. Both

classical and recent results in these areas are combined to yield a rigorous and comprehensive sampling

theory for such manifolds. The sampling problem is fully integrated with fundamental mathematical

concepts. The method proposed herein is developed with reference to fundamental results in differential

topology, geometry and geometric analysis, and hence inherits mathematical rigour. This yields a

rigorous and comprehensive sampling theory for manifolds. Such a study of the sampling problem, fully

integrated with a fundamental mathematical approach is given here for the first time.

The paper is organized as follows: In Section 2 we review some preliminary results relevant to the

theory. We first recall briefly some aspects of classical sampling theory. We then present the most

relevant results from differential topology that play a central role in the theoretical background of our

theory. More precisely, we focus on PL-approximation of smooth manifolds and on its counterpart

of smoothing PL-manifolds. These results are directly adopted in order to show that our proposed

reconstruction method is accurate and also to overcome the problem of non-smoothness. In Section 3
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we provide some additional background results, combining both differential geometry and the theory

of quasi-regular mappings. These results, both classical such as those of S. S. Cairns, starting from

the early 1930’s, and new, due to K. Peltonen from the 1990’s and to E. Saucan from 2000’s will be

later adopted to give the existence of sampling for manifolds. The main results regarding sampling of

manifolds are presented in Section 4. In Section 5 we show how to apply the surfaces/manifolds sampling

results to obtain a new, geometric proof of the classical Shannon sampling theorem, and also in the

analysis of images. In Section 6 we present some computational results regarding the implementation

of our sampling and reconstruction theorems in the case of analytical surfaces. In the final section

we examine some delicate aspects of our study, and discuss extensions of this work, relating both to

geometric aspects of sampling, as well as to its relationship with classical sampling theory.

2. Preliminaries

2.1. Shannon’s Theorem and Sampling Theory. We do not present here in detail the classical

Whittaker-Kotelnikov-Nyquist-Shannon theorem (Shannon’s Theorem, for short), but restrict ourselves

to bringing the following version:

Theorem 2.1. Let f ∈ L2(R), such that supp (f̂) ⊆ [−π, π], where f̂ denotes the Fourier transform of

f . Then

(2.1) f(x) =
∑

t∈Z

f(t) sinc(x− t) ,

where sinc(x) = sinπx
πx

.

The classical Shannon theorem pertains to band limited signals. Various generalizations of it were

proposed (see [37], [47], [2], [6], [1], [51], [52], amongst others).

We conclude this brief overview of Shannon’s theorem with a few remarks relevant to the sequel:

(1) Since equation (2.1) expresses f as an infinite series, it follows that obtaining a perfect recon-

struction of f by applying Shannon’s theorem requires an infinite length (duration) of a signal.

In fact, to begin with, to be band limited, a signal has to be of an infinite duration.

(2) Mathematically, Shannon’s theorem belongs to the field of interpolation (see, e.g. [6], [47]). The

main – and surprising – fact is that linear interpolation (the secant approximation, to be more

precise – see Sections 2.2, 2.3 below) basically suffices to faithfully reconstruct manifolds.

(3) The quest for reproducing kernels is natural. However, not every family of functions admits such

kernels (see [5], pp. 380-381). Moreover, surfaces (and a fortiori higher dimensional manifolds)

are geometric objects with far “wilder” smoothness properties than signals, as usually considered

(see, e.g. [27]). Therefore, a general theory of reproducing kernels for manifolds seems difficult

and remains, at this stage, yet to be developed.
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(4) Shannon’s theorem is equivalent to a variety of seemingly unrelated results in classical Mathe-

matical Analysis (see [27]). It is plausible, and indeed probable, that precisely these variations

on the given theme can shed some more light on all the aspects of a sampling theory for surfaces.

2.2. Background on PL-Topology. We first recall a few classical definitions and notations:

Definition 2.2. Let a0, . . . , am ∈ Rn. {ai}m
i=1 are said to be independent iff the vectors vi = ai−a0 , i =

1, ...,m; are linearly independent.

The set σ = a0a1 . . . am = {x =
∑
αiai |αi ≥ 0,

∑
αi = 1} is called the m-simplex spanned by

a0, . . . , am. The points a0, . . . , am are called the vertices of σ.

The numbers αi are called the barycentric coordinates of σ. The point σ̃ = 1
m+1

∑
αi is called the

barycenter of σ.

If {a0, . . . , ak} ⊆ {a0, . . . , am}, then τ = a0 . . . ak is called a face of σ, and we write τ < σ.

Definition 2.3. Let A,B ⊂ Rn. We define the join A ∗B of A and B as A ∗B = {αa+ βb | a ∈ A, b ∈
B ; α, β ≥ 0, α+ β = 1}. If A = {a}, then A ∗B is called the cone with vertex a and base B.

Definition 2.4. A collection K of simplices is called a simplicial complex if

(1) If τ < σ, then τ ∈ K.

(2) Let σ1, σ2 ∈ K and let τ = σ1 ∩ σ2. Then τ < σ1, τ < σ2.

(3) K is locally finite.

|K| =
⋃

σ ∈ K
σ is called the underlying polyhedron (or polytope) of K.

Definition 2.5. A complex K ′ is called a subdivision of K iff

(1) K ′ ⊂ K;

(2) if τ ∈ K ′, then there exists σ ∈ K such that τ ⊆ σ.

If K ′ is a subdivision of K we denote it by K ′ ⊳K.

Let K be a simplicial complex and let L ⊂ K. If L is a simplicial complex, then it is called a

subcomplex of K.

Definition 2.6. Let a ∈ |K|. Then

St(a,K) =
⋃

a∈σ
σ ∈ K

σ

is called the star of a ∈ K.

If S ⊂ K, then we define: St(S,K) =
⋃

a ∈ S
St(a,K).
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Definition 2.7. Let σ = a0a1 . . . am and let f : σ → Rp. The map f is called linear iff for any

x =
∑
αiai ∈ σ, it holds that f(x) =

∑
αif(ai).

Let K,L be complexes, and let f : |K| → |L|. Then f is called linear (relative to K and L) iff for

any σ ∈ K, τ = f(σ) ∈ L.

The map f : K → L is called piecewise linear (PL) iff there exists a subdivision K ′ of K such that

f : K ′ → L is linear.

If (i) f : K → L is a homeomorphism of |K| onto |L|, (ii) f |σ is linear and (iii) τ = f |σ ∈ L, for

any σ ∈ K, then f is called a linear homeomorphism.

Definition 2.8. A cell γ is a bounded subset of Rn defined by:

γ = {x ∈ Rn |
∑

j

αijxj ≥ βi; i = 1, . . . , p},

for some constants αi,j and βi.

The dimension m of γ is defined as min{dimΠ | γ ⊂ Π,Π being a hyperplane in Rn}.
Let γ be an m-dimensional cell. The (m−1)-cells βj of ∂γ are called its (m−1)-faces, the (m−2)-faces

of each βj are called the (m− 2)-faces of γ, etc. By convention ∅ and γ are also faces of γ.

A cell complex is defined in the same manner as a simplicial complex, more precisely, a cell complex

K is a collection of cells that satisfy conditions 1.– 3. of Definition 2.4.

Subcomplexes are also defined in analogy to the simplicial case. In particular, the q-skeleton Kq of

K, Kq = {γ | γ ∈ K, dimγ ≤ q} is a subcomplex of K.

Lemma 2.9. Let K be cell complex. Then, K has a simplicial subdivision.

Proof. See [35], Lemma 7.8. �

We next define the concept of embedding for complexes, but first we need some basic definitions:

Definition 2.10. Let K be a simplicial complex.

(1) f : |K| →Mn is Cr differentiable (relative to |K| ) iff f |σ ∈ Cr(σ), for any simplex σ ∈ K.

(2) f : |K| →Mn is non-degenerate iff rank(f |σ) = dim(σ), for any simplex σ ∈ K.

Definition 2.11. Let σ be a simplex, and let f : σ → Rn, f ∈ Cr. For a ∈ σ we define dfa : σ → Rn as

follows: dfa(x) = Df(a) · (x−a), where Df(a) denotes the formal derivative Df(a) = (∂fi/∂x
j)1≤i,j≤n ,

computed with respect to some orthogonal coordinate system contained in Π(σ), where Π(σ) is the

hyperplane determined by σ. The map dfa : σ → Rn does not depend upon the choice of this coordinate

system.

Note that dfa|σ∩τ is well defined, for any σ, τ ∈ St(a,K). Therefore, the map dfa : St(a,K) → Rn

is well-defined and continuous. It is called the differential of f , in analogy to the case of differentiable

manifolds.
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Remark 2.12. In contrast to the differential case, the tangent space Tf(p)(M
n) is a union of of poly-

hedral tangent cones. It, therefore, does not possess a natural vector space structure (see [49], p. 196).

Definition 2.13. Let K be a simplicial complex, let Mn be a Cr submanifold of RN , and let f : K →Mn

be a Cr map. Then, f is called

(1) an immersion, iff dfσ : St(σ,K) → Rn is injective for each and every σ ∈ K;

(2) an embedding, iff it is an immersion and a homeomorphism on the image f(K);

(3) a Cr-triangulation, iff it is an embedding such that f(K) = Mn.

Remark 2.14. If the class of the map f is not relevant, f will be called simply a triangulation.

Definition 2.15. Let f : K → Rn be a Cr map, and let δ : K → R∗
+ be a continuous function. Then

g : |K| → Rn is called a δ-approximation to f iff:

(i) There exists a subdivision K ′ of K such that g ∈ Cr(K ′,Rn) ;

(ii) d2

(
f(x), g(x)

)
< δ(x) , for any x ∈ |K| ;

(iii) d2

(
dfa(x), dga(x)

)
≤ δ(a) · d2(x, a) , for any a ∈ |K| and for all x ∈ St(a,K ′).

(Here d2 denotes the Euclidean distance on Rn.)

Definition 2.16. Let K ′ be a subdivision of K, U =
◦

U , and let f ∈ Cr(K,Rn), g ∈ Cr(K ′,Rn). g is

called a δ-approximation of f (on U) iff conditions (ii) and (iii) of Definition 2.6 hold for any a ∈ U .

The most natural and intuitive δ-approximation to a given mapping f is the secant map induced by

f :

Definition 2.17. Let f ∈ Cr(K) and let s be a simplex, s < σ ∈ K. Then, the linear map: Ls : s→ Rn

defined by Ls(v) = f(v), where v is a vertex of s, is called the secant map induced by f .

2.3. PL-Approximation of Smooth Manifolds. We show in this section that the apparent “naive”

secant approximation of surfaces (and higher dimensional manifolds) represents a good approximation,

both in distances and in angles, provided the secant approximation induced by a triangulation satisfies

a certain un-degeneracy condition called “fatness” (or “thickness”).

2.3.1. Fat Triangulations. We first provide the following informal, intuitive definition:

Definition 2.18. A triangle in R2 is called fat (or ϕ-fat, to be more precise) iff all its angles are larger

than a ϕ.

In other words, fat triangles are those that do not “deviate” too much from being equiangular

(regular), hence fat triangles are not too “slim”. This can be defined more formally by requiring that

the ratio of the radii of the inscribed and circumscribed circles of the triangle is bounded from bellow
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r

R

Figure 1. Thin triangle - Peltonen’s definition.

by ϕ, i.e. r
R
≥ ϕ, for some ϕ > 0, where r denotes the radius of the inscribed circle of τ (inradius) and

R denotes the radius of the circumscribed circle of τ (circumradius). (Fig. 2.1.)

One can easily check, by elementary methods, that the angle-condition and the radii condition are

equivalent. Even if, perhaps, more intuitive, the angle condition is more difficult to properly formulate

in higher dimension, therefore we opt for the following formal definition of fatness:

Definition 2.19. A k-simplex τ ⊂ Rn, 2 ≤ k ≤ n, is ϕ-fat if there exists ϕ > 0 such that the ratio

r
R

≥ ϕ. A triangulation of a submanifold of Rn, T = {σi}i∈I is ϕ-fat if all its simplices are ϕ-fat. A

triangulation T = {σi}i∈I is fat if there exists ϕ ≥ 0 such that all its simplices are ϕ-fat; for any i ∈ I.

Proposition 2.20 ([16]). There exists a constant c(k) that depends solely upon the dimension k of τ

such that

(2.2)
1

c(k)
· ϕ(τ) ≤ min

σ<τ
∡(τ, σ) ≤ c(k) · ϕ(τ) ,

and

(2.3) ϕ(τ) ≤ V olj(σ)

diamj σ
≤ c(k) · ϕ(τ) ,

where ϕ denotes the fatness of the simplex τ , ∡(τ, σ) denotes the (internal) dihedral angle of the face

σ < τ and V olj(σ); diamσ stand for the Euclidian j-volume and the diameter of σ respectively. (If

dimσ = 0, then V olj(σ) = 1, by convention.)

Condition 2.2 is just the expression of fatness as a function of dihedral angles in all dimensions, while

Condition 2.3 expresses fatness as given by “large area/diameter”. Diameter is important since fatness

is independent of scale.

Figure 2. “Slim” tetrahedra in R3
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One can gain some insight into the equivalence of all the definitions above, by analyzing the three-

dimensional examples below. (See [22] for a complete classification of “slim” triangles in dimensions 2

and 3.)

Remark 2.21. The above definition is the one introduced in [39]. We employ it, as already noted,

mainly for briefness. For other, equivalent definitions of fatness see [13], [14], [16], (based upon angles),

[35] (the most similar to the one given above – see below) and [50] (based upon area/diameter).

Remark 2.22. In practice, the “fatness” ϕ of a triangulation is predetermined by some geometric

condition, see Section 4 below.

Remark 2.23. As was already noted in the introduction, achieving a fat triangulation endowed, more-

over, with simplices of almost equal diameter (see Figure 3 below) is highly important in computer

graphics and related fields. This is obtained via a process called “mesh improvement”, akin to our “fat-

tening” technique of a given triangulation. However, real (i.e. scanned images) produce non-fat (slim)

triangulations with a high range of diameters – see Figure 4 below and, for an extreme case, Figure 12,

that illustrates the triangulation obtained from the CT scan of the human colon.

Figure 3. Michelangelo’s David model endowed with almost ideal triangulation: quasi-

equilateral triangles of approximately equal size.

2.3.2. The Main Result. While, by Proposition 2.20, we could have employed any of the equivalent

definitions of fatness, the computations in the proposition below are performed for

ϕ(σ) =
r(σ)

diam(σ)
;

(where the notations are as above).
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Figure 4. Sampling (triangulation) of an MRI image of part of cerebral cortex surface.

Note the uneven diameters and fatness of the simplices.

Proposition 2.24 ([35], Lemma 9.3). Let f : σ → Rn be of class Ck. Then, for δ, ϕ0 > 0, there exists

ε > 0, such that, for any τ < σ, such that diam(τ) < ε and such that ϕ(τ) > ϕ0, the secant map Lτ is

a δ-approximation to f |τ .

Proof We first show that (i) Fb(x) = f(b) + Df(b) · (x − b), where b denotes the barycenter of σ, is

a δ/2-approximation to f on a sufficient small neigbourhood of b. We then prove that (ii) if τ < σ

satisfies the conditions from the statement of the theorem, then Lσ is a δ/2-approximation to Fb. This

two assertions suffice to prove the theorem.

Proof of (i) Follows immediately from the definition of Df . We impose the additional requirement

||f(x) − Fb(x)||/||x − b|| < δϕ0/4 , for ||x− b|| < ε, (Here || · || denotes the Euclidean norm.)
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Before we proceed further we need the following result: Let L,F : τ → Rn be linear maps, such that

||L(x)−F (x)|| < c, for all x ∈ τ . Then, it results immediately from (i) that ||DL(x) ·u−DF (x) ·u|| ≤
c/r(τ), for all u in the plane of τ , ||u|| = 1.

Proof of (ii) Let v0, ..., vk be the vertices of τ , and let x ∈ τ, x =
∑

αivi. Then, by the linearity of

Ls and Fs it follows that Ls(x) =
∑

αiLs(vi) =
∑

αif(vi) and Fb(x) =
∑

αiFb(vi). Hence:

||Ls(x) − Fb(x)|| =
∣∣∣∣ ∑

αi
||f(x) − Fb(x)||

||x− b||
∣∣∣∣ ≤ max ||f(x) − Fb(x)|| ,

but ||f(x)−Fb(x)|| < δ/2 and ||Ls(x)−Fb(x)|| < δ/2, for all ||x−b|| < ε. Moreover, ||f(x)−Fb(x)||/||x−
b|| < δϕ0/4, for all ||x− b|| < ε, and, since ϕ0 ≤ r(τ)/diam(τ), it follows that:

||Ls(x) − Fb(x)|| < max ||vi − b||δϕ0/4 ≤ diam(τ)δϕ0/4 ≤ δ r(τ)/4 .

This concludes the proof of (ii), and, hence, of the proposition.

�

2.4. Smoothing of Manifolds. We proceed to address the problem of smoothing of manifolds, i.e.

approximating a differentiable manifold of class Cr, r ≥ 0, by manifolds of class C∞. Of special interest

is the case where r = 0. This will be used in our development of our sampling theorem, and as

a postprocessing step where, after reproducing a PL manifold out of the samples, to get a smooth

reproduced manifold. Smoothing is also useful in preprocessing, when we wish to extend the sampling

theorem to manifolds which are not necessarily smooth. Smoothing is, in this case, followed up by

sampling of the smoothed manifold, yielding a set of samples representing the non-smooth manifold as

well. (Our main reference here are [35], Chap 4, and [28].)

Question 1. What does smoothing of manifolds entail? This is much less obvious when an additional

requirement of “geometric” approximation is imposed, e.g. when a proper curvature (Gauss, mean, etc.)

convergence is also required. For the proof of this in the case of surfaces refer to [10].

2.4.1. Partition of Unity. Smoothing will be obtained by means of a C∞ smoothing convolution kernel.

Before introducing this kernel, we recall the notion of partition of unity, which represents the core of

the smoothing process:

Lemma 2.25. For every 0 < ǫ < 1 there exists a C∞ function ψ1 : R → [0, 1], such that, ψ1 ≡ 0 for

|x| ≥ 1 and ψ1 = 1 for |x| ≤ (1 − ǫ). Such a function is called partition of unity.

Let cn(ǫ) be the ǫ-cube around the origin in Rn (i.e. X ∈ Rn ; −ǫ ≤ xi ≤ ǫ , i = 1, ..., n). We can use

the above partition of unity in order to obtain a non-negative C∞-function, ψ, on Rn, such that ψ = 1

on cn(ǫ) and ψ ≡ 0 outside cn(1). Define ψ(x1, ..., xn) = ψ1(x1) · ψ1(x2) · · · ψ1(xn).

We now introduce the main theorem regarding smoothing of PL-manifolds:
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Theorem 2.26 ([35]). Let M be a Cr manifold, 0 ≤ r < ∞, and f0 : M → Rk a Cr embedding. Then,

there exists a C∞ embedding f1 : M → Rk which is a δ-approximation of f0.

The above theorem is a consequence of the following lemma concerning smoothing of maps:

Lemma 2.27 ([35]). Let U be an open subset of Rm. Let A be a compact subset of an open set V such

that V ⊂ U is compact. Let f0 : U → Rn be a Cr map, 0 ≤ r. Let δ be a positive number. Then there

exists a map f1 : U → Rn such that

(1) f1 is C∞ on A.

(2) f1 = f0 outside V .

(3) f1 is a δ-approximation of f0

(4) f1 is Cr-homotopic to f0 via a homotopy ft satisfying (2) and (3) above. i.e. f0 can be continu-

ously deformed to f1.

Proof Let W be an open set containing A such that W ⊂ V . We use partition of unity in order to

obtain the following maps,

(1) ψ : Rm → R+ so that, it is C∞, and ψ = 1 on A and ψ ≡ 0 outside W .

(2) ϕ : Rm → R be a C∞ function which is positive on int(cm(ǫ)) and vanishes outside cm(ǫ). ǫ is

some positive number yet to be defined. Further assume that
∫

Rm ϕ = 1.

A

W

U

Figure 5. Partition of unity on A.

Define g = ψ · f . Then, g : Rm → Rn and satisfies g = f on A and g ≡ 0 outside W . Inside A, g is

of the same differentiability class as f , whereas outside W it is C∞.

For x ∈ Rm, define

(2.4) h(x) =

∫

cm(ǫ)
ϕ(y)g(x + y)dy .

Choose ǫ so that
√
mǫ < d(W,Rm\V ), then h ≡ 0 outside V .
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Let

f1(x) = f0(x) · (1 − ψ(x)) + h(x).

Since ψ and h vanish outside V , conclusion 2. of the lemma is fulfilled.

Inside A we have f1(x) = h(x). Since

h =

∫

cm(ǫ)
ϕ(y)g(x + y)dy =

∫

W+cm(ǫ)
ϕ(z − x)g(z)dz =

∫

Rm

ϕ(z − x)g(z)dz;

and since ϕ is C∞, h is also C∞ inside W , and in particular on A, thus fulfilling conclusion 1.

By its definition f1 = f0 +(h−g), so we have to choose ǫ small enough so that h is a δ-approximation

to g. By the mean value theorem we have :

hi(x) = gi(x+ yi);

∂hi

∂xj
=
∂gi(x+ yij)

∂xj
;

where yi and yij are points in cm(ǫ). We only have to take care that ǫ is so small that

|gi(x) − gi(x′)| < δ;

and

| ∂g
i

∂xj
(x) − ∂gi

∂xj
(x′)| < δ;

for

|x− x′| < ǫ;

this completes part 3.

Finally, let α(t) be a monotonic C∞ function such that: α = 0 for 0 ≤ t ≤ 1�3; and α = 1 for

2�3 ≤ t ≤ 1. Define

(2.5) ft(x) = α(t)f1(x) + (1 − α(t))f0(x) .

Then, ft ≡ f0 outside V and ft is the desired Cr homotopy between f0 and f1. This completes the

proof.

�

Remark 2.28. In the proof of the isometric embedding theorem, J. Nash [36] used a modified version

of the smoothing process presented herein. Nash’s idea was to define a radially symmetric convolution

kernel ϕ, by taking its Fourier transform, ϕ̂, to be a radially symmetric partition of unity. In so doing

one can use a scaling process where for each N the smoothing operator of g is defined to be

hNg(x) =

∫

Rm

ϕ(z)g(x + z/N)dz =

∫

Rm

ϕN (z − x)g(z)dz;
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where ϕN (z) = Nmϕ(Nz). Thus we have that the Fourier transform of ϕN satisfies

ϕ̂N (ω) = ϕ̂(ω/N);

Note that this results in a higher degree of smoothing for small N (the partition of unity being taken

over a larger neighbourhood), while for large N we have less smoothing yielding a better approximation.

In this case the approximation is faithful not only to the signal and its first derivative as in the classical

approach, but also to higher order derivatives, if such exist.

3. Fat Triangulation

3.1. Theorems. In this section we review, in chronological order, existence theorems dealing with fat

triangulations on manifolds. (For detailed proofs see the original papers.)

Theorem 3.1 (Cairns, [15]). Every compact C2 Riemannian manifold admits a fat triangulation.

Remark 3.2. For a similar result, the proof of which does not generalize to open manifolds, see [13],

[14].

Theorem 3.3 (Peltonen, [39]). Every open (unbounded) C∞ Riemannian manifold admits a fat trian-

gulation.

Theorem 3.4 (Saucan, [42]). Let Mn be an n-dimensional C1 Riemannian manifold with boundary,

having a finite number of compact boundary components. Then, any fat triangulation of ∂Mn can be

extended to a fat triangulation of Mn.

Remark 3.5. The compactness condition on the boundary components in Theorem 3.4, can be replaced

by the following condition: ∂Mn is endowed with a fat triangulation T such that inf
σ ∈ T

diamσ > 0 ([42]).

In fact, Theorem 3.4 holds even without the finiteness and compactness conditions imposed on the

boundary components (see [43]).

Corollary 3.6. If Mn is as above, then it admits a fat triangulation.

Corollary 3.7. Let Mn be an n-dimensional, n ≤ 4 (resp. n ≤ 3), PL (resp. topological) connected

manifold with boundary, having a finite number of compact boundary components. Then, any fat trian-

gulation of ∂Mn can be extended to a fat triangulation of Mn.

3.2. Methods.

3.2.1. Background. Let Mn denote an n-dimensional complete Riemannian manifold, and let Mn be

isometrically embedded into Rν (“ν”-s existence is guaranteed by Nash’s Theorem (see, e.g. [39], [48]).
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Let Bν(x, r) = {y ∈ Rν | deucl < r}; ∂Bν(x, r) = Sν−1(x, r). If x ∈ Mn, let σn(x, r) = Mn ∩ Bν(x, r),

βn(x, r) = expx

(
Bn(0, r)

)
, where: expx denotes the exponential map: expx : Tx(Mn) →Mn and where

Bn(0, r) ⊂ Tx

(
Mn

)
, Bn(0, r) = {y ∈ Rn | deucl(y, 0) < r}.

Remark 3.8. Neither of the following (homeomorphisms) is guaranteed:

(1) σn(x, r) ≃ Bn(0, r)

(2) βn(x, r) ≃ Bn(0, r).

The following definitions generalize in a straightforward manner classical ones used for surfaces in

R3:

Definition 3.9. (1) Sν−1(x, r) is tangent to Mn at x ∈ Mn iff there exists Sn(x, r) ⊂ Sν−1(x, r),

s.t. Tx(Sn(x, r)) ≡ Tx(Mn).

(2) Let l ⊂ Rν be a line, then l is secant to X ⊂Mn iff | l ∩X| ≥ 2.

Definition 3.10. (1) Sν−1(x, ρ) is an osculatory sphere at x ∈Mn iff:

(a) Sν−1(x, ρ) is tangent at x;

and

(b) Bn(x, ρ) ∩Mn = ∅.
(2) Let X ⊂ Mn. The number ω = ωX = sup{ρ > 0 |Sν−1(x, ρ) osculatory at any x ∈ X} is called

the maximal osculatory radius at X.

Remark 3.11. (1) There exists an osculatory sphere at any point of Mn (see [15] ).

(2) If X is compact, then ωX > 0.

3.3. The Classical Case. In the compact case the method is to produce a point set A ⊆Mn, that is

maximal with respect to the following density condition:

(3.1) d(a1, a2) ≥ η , for all a1, a2 ∈ A ;

where

(3.2) η < ωM .

One makes use of the fact that for a compact manifold Mn we have |A| < ℵ0, to construct the finite

cell complex “cut out of M” by the ν-dimensional Dirichlet complex, whose (closed) cells are given by:

(3.3) c̄k = c̄νk = {x ∈ Rν | deucl(ak, x) ≤ deucl(ai, x), ai ∈ A , ai 6= ak},
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i.e. the (closed) cell complex {γ̄n
k }, where:

(3.4) {γ̄n
k } = γ̄k = c̄k ∩Mn

(see [15], [39] (for details)).

M
2
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Figure 6. Dirichlet (Voronoi) cells – the compact surface case.

Remark 3.12. A result equivalent to Theorem 3.1 is attempted in [3], using basically the same method

as Cairns’ original one. However, the proof given in [3] is more technical and less fitted for generalization

in higher dimensions than the original proof given in [15]. Moreover, the seminal papers of Cairns are

not referenced therein.

Remark 3.13. Voronoi cell partitioning is also employed in “classical” sampling theory (see [47]).

3.4. Open Riemannian Manifolds. In adapting Cairns’ method to the non-compact case, one has

to allow for some (obviously-required) modifications. We proceed to present below the construction

devised by Peltonen, which consists of two parts:

Part 1

Step A

Construct an exhaustive set {Ei} of Mn, generated by the pair (Ui, ηi), where:

(1) Ui is the relatively compact set Ei \ Ēi−1 and

(2) ηi is a number that controls the fatness of the simplices of the triangulation of Ei , constructed

in Part 2, such that it will not differ to much on adjacent simplices, i.e.:
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(i) The sequence (ηi)i≥1 descends to 0 ;

(ii) 2ηi ≥ ηi−1 .

The geometric feature that controls the sets Ei, Ui and the numbers ηi is the maximal connectivity

radius:

Definition 3.14. Let U ⊂ Mn, U 6= ∅, be a relatively compact set, and let T =
⋃

x∈Ū σ(x, ωU ). The

number κU = max{r |σn(x, r)isconnected for all s ≤ ωU , x ∈ T̄}, is called the maximal connectivity

radius at U, defined as follows:

xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx

U = U
_

Mn

x
ω κ

U

Figure 7. Maximal connectivity radius at U .

The maximal connectivity radius and the maximal osculatory radius are interconnected by the fol-

lowing inequality:

Lemma 3.15.

(3.5) ωU ≤
√

3

3
κU .

Proof See Lemma 3.1, [39].

�

The numbers ηi are chosen such that they satisfy the following bounds:

ηi ≤
1

4
min
i≥1

{ωŪi−1
, ωŪi

, ωŪi+1
} .

Step B

(1) Produce a maximal set A, |A| ≤ ℵ0, s.t. A ∩ Ui satisfies:

(i) a density condition, namely:

d(a, b) ≥ ηi/2 , for all i ≥ 1 ;

and

(ii) a “gluing” condition for Ui, Ui+1 , i.e. their intersection is large enough.
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Note that according to the density condition (i), the following holds:

For any i and for any x ∈ Ūi, there exists a ∈ A such that d(x, a) ≤ ηi/2 .

(2) Prove that the Dirichlet complex {γ̄i} defined by the sets Ai is a cell complex and every cell has

a finite number of faces (so that it can be triangulated in a standard manner).

Part 2

Consider first the dual complex Γ, and prove that it is a Euclidian simplicial complex with a “good”

(i.e. proper) density. Project then Γ on Mn (using the normal map). Finally, prove that the resulting

complex Γ̃ can be triangulated by fat simplices. Indeed, the fatness of any n-dimensional simplex γ ∈ Γ̃,

contained in the set Ui is given by the following bound:

(3.6)
rγ
Rγ

≥ 1

25n+1

(n+ 2)
n+1

2

(n + 1)n+1
.

Remark 3.16. In the course of Peltonen’s construction Mn is presumed to be isometrically embedded

in some RN1, where the existence of N1 is guaranteed by Nash’s Theorem (see [39], [48]).

3.5. Manifolds With Boundary of Low-Differentiability. The idea of the proof of Theorem 3.4 is

to build first two fat triangulations: T1 of a product neighbourhood N of ∂Mn in Mn and T2 of intMn

(its existence follows from Peltonen’s result), and then to “mash” the two triangulations into a new

triangulation T , while retaining their fatness. While the mashing procedure of the two triangulations is

basically the one developed in the original proof of Munkres’ theorem, the triangulation of T1 has been

modified, in order to ensure the fatness of the simplices of T1. More precisely we prove the following

Theorem (see [42]):

Theorem 3.17. Let Mn be a Cr Riemannian manifold with boundary, having a finite number of compact

boundary components. Then any fat Cr-triangulation of ∂Mn can be extended to a Cr-triangulation T
of Mn, 1 ≤ r ≤ ∞ , the restriction of which to a product neighbourhood K̃0 = ∂Mn × I0 of ∂Mn in Mn

is fat.

In the general case we employ a method for fattening triangulations developed in [16]. The core of

this methods resides in the following result:

Lemma 3.18. ([16], Lemma 6.3.) Let T1,T2 be two fat triangulations of open sets U1, U2 ⊂ Rn,

Br(0) ⊆ U1 ∩ U2, having common fatness ≥ ϕ0 and such that d1 = inf
σ1 ∈ T1

diamσ1 ≤ d2 = inf
σ2 ∈ T2

diamσ2.

Then there exist ϕ∗
0-fat triangulations T ′

1 ,T ′
2 , ϕ∗

0 = ϕ∗
0(ϕ0), of open sets V1, V2 ⊆ Br(0), such that

(1) T ′
i

∣∣
Br−8d2

(0)
= Ti

∣∣
Br−8d2

(0)
, i = 1, 2 ;

(2) T ′
1 and T ′

2 agree near their common boundary.

Moreover:
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(3) inf
σ′

1
∈ T ′

1

diamσ′1 ≤ 3d1/2, inf
σ′

2
∈ T ′

2

diamσ′2 ≤ d2 .

Remark 3.19. A more elementary, geometric approach in two and three dimensions was developed in

[41].

Remark 3.20. For the treatment of the same problem in the context of Computational Geometry, see

e.g [22], [37].

Classical smoothing results are applied to derive Corollary 3.7 (see Section 2.2.3 and [49]).

4. Sampling Theorems

4.1. Surfaces.

4.1.1. Smooth Surfaces.

Theorem 4.1. Let Σ be a connected, non-necessarily compact smooth surface (i.e. of class Ck, k ≥ 2),

with finitely many boundary components. Then, there exists a sampling scheme of Σ, with a proper

density D = D(p) = D
(

1
k(p)

)
, where k(p) = max{|k1|, |k2|}, and k1, k2 are the principal curvatures of

Σ, at the point p ∈ Σ.

Proof The existence of the sampling scheme follows immediately from Corollary 3.6, where the sampling

points are the vertices of the triangulation. The fact that the density is a function solely of k =

max{|k1|, |k2|} follows from the proof of Theorem 3.3 and from the fact that the osculatory radius

ωγ(p) at a point p of a curve γ equals 1/kγ(p), where kγ(p) is the curvature of γ at p ; hence that the

maximal osculatory radius (of Σ) at p is: ω(p) = max{|k1|, |k2|} = max{ 1
ω1
, 1

ω2
}. (Here ω1, ω2 denote

the minimal, respective maximal sectional osculatory radii at p.)

�

Remark 4.2. Since for unbounded surfaces it may well be that κ→ ∞, it follows that an infinite density

of the sampling is possible. However, for practical implementations, where such cases are excluded, we

have the following corollary:

Corollary 4.3. Let Σ,D be as above. Assume that there exists k0 > 0, such that k0 ≥ k(p), where for

all p ∈ Σ. Then there exists a sampling of Σ having uniformly bounded density.

Proof The proof is deduced immediately from Theorem 4.1 above.

�

Corollary 4.4. In the following cases there exist k0 as in Corollary 4.3 above:

(1) Σ is compact.
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Σ

∂1Σ ∂2Σ

̥℘1

℘2

Figure 8. A non-compact surface Σ, with two boundary components ∂1Σ and ∂2Σ.

Observe the cusps ℘1 and ℘2 and the funnel ̥.

.

(2) There exist H1,H2,K1,K2, such that H1 ≤ H(p) ≤ H2 and K1 ≤ K(p) ≤ K2, for any p ∈
Σ, where H,K denote the mean, respective Gauss curvature. (That is both mean and Gauss

curvatures are pinched.)

(3) The Willmore integrand W (p) = H2(p) −K(p) and K (or H) are pinched.

Proof

(1) It follows immediately from a compactness argument and from the continuity of the principal

curvature functions.

(2) Since K = k1k2, H = 1
2 (k1 + k2), the bounds for K and H imply the desired one for k.

(3) Reasoning analogous to that of (ii), applies in the case of W = 1
4(k1 − k2)

2.

This concludes the proof of the theorem.

�

Remark 4.5. Condition (iii) on W is not only compact, it has the additional advantage that the

Willmore energy
∫
ΣWdA (where dA represents the area element of Σ) is a conformal invariant of Σ.

See [45] for its importance in quasi-conformal mappings and their applications to imaging.
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4.1.2. Non-Smooth Surfaces. We begin by proposing the following definition:

Definition 4.6. Let Σ2 be a (connected) surface of class C1, and let Σ2
δ be a smooth δ-approximation

to Σ2. A sampling of Σ2
δ is called a δ-sampling of Σ2.

Theorem 4.7. Let Σ2 be a connected, non-necessarily compact surface of class C0. Then, for any δ > 0,

there exists a δ-sampling of Σ2, such that if Σ2
δ → Σ2 uniformly, and Dδ → D in the sense of measures,

where Dδ denote the densities of Σ2
δ and D is the density of the smoothing Σ̃2 of Σ2.

Proof The proof is an immediate consequence of Theorem 3.4 and its proof and the methods exposed

in Section 2.4. We adopt the sampling of some smooth δ-approximation of Σ.

�

Corollary 4.8. Let Σ2 be a C0 surface having only a finite number of points {p1, . . . , pk} at which

Σ2 fails to be smooth. Then every δ-sampling S2
δ of a smooth δ-approximation S of Σ2 is, in fact, a

sampling of Σ2, apart from ε-neighborhoods Ni of the points pi, i = 1, . . . , k.

Proof From Lemma 2.27 and Theorem 2.26 it follows that any such δ-approximation, Σδ, coincides

with Σ outside of finitely many such small neighborhoods.

Σ

Σδ

εN

Figure 9. A neighbourhood Nε such that Σ ≡ Σδ outside Nε

.

�

Remark 4.9. Even in the case where Σ2
δ ∈ C2, and curvature measures exist for Σ2 (e.g. if Σ2 is a

PL-surface), it does not follow that the curvature measures converge punctually to the curvatures of Σ2
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(see [10] and the discussion in Section 2.3.1). However, if Σ2 is compact and with empty boundary, the

desired convergence property holds ([10]).

Remark 4.10. We use the secant map as defined in Definition 2.17 in order to reproduce a PL-surface

as a δ-approximation for the sampled surface. As said in the beginning of Section 2.3 we may now use

smoothing in order to obtain a C∞ approximation.

4.2. Higher Dimensional Manifolds. Theorem 4.1 and Corollary 4.3 have straightforward general-

izations to any dimension:

Theorem 4.11. Let Σn ⊂ Rn+1, n ≥ 2 be a connected, not necessarily compact, smooth hypersurface,

with finitely many compact boundary components. Then there exists a sampling scheme of Σn, with

a proper density D = D(p) = D
(

1
k(p)

)
, where k(p) = max{|k1|, ..., |kn|}, and where k1, ..., kn are the

principal curvatures of Σn, at the point p ∈ Σn.

Corollary 4.12. Let Σn,D be as above. If there exists k0 > 0, such that k(p) ≤ k0, for all p ∈ Σn,

then there exists a sampling of Σn of finite density everywhere.

Some of the conclusions of Corollary 4.4 also generalize. In particular we have:

Corollary 4.13. If Σn is compact, then there exists a sampling of Σn having uniformly bounded density.

Remark 4.14. Obviously, Theorem 4.11 above is of little relevance for the space forms (Rn,Sn,Hn).

Indeed, as noted above, this method is relevant for manifolds considered (by the Nash embedding theorem

[36]) as submanifolds of RN , for some N large enough.

However, more geometric conditions, such as those given in Corollary 4.4 are hard to impose in higher

dimension, hence the study of such precise geometric constraints is left for further study.

The definition of δ-samplings and Theorem 4.7 and its corollary also admit immediate generalizations:

Definition 4.15. Let Σn, n ≥ 2 be a (connected) manifold of class C1, and let Σn
δ be a smooth δ-

approximation to Σn. A sampling of Σn
δ is called a δ-sampling of Σn.

Theorem 4.16. Let Σn be a connected, non-necessarily compact manifold of class C1. Then, for any

δ > 0, there exists a δ-sampling of Σn, such that if Σn
δ → Σn uniformly, and Dδ → D in the sense of

measures, where Dδ denote the densities of Σn
δ and D is the density of a smoothing Σ̃n of Σn.

Corollary 4.17. Let Σn be a C0 manifold having only a finite number of points {p1, . . . , pk} at which

Σn fails to be smooth. Then every δ-sampling Sn
δ of a smooth δ-approximation Sn of Σ is, in fact, a

sampling of Σn, apart from ε-neighborhoods Ni of the points pi, i = 1, . . . , k.
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Remark 4.18. For image processing and computer graphics purposes it would be ideal if one could

make avail of smoothing theorems for topological manifolds, and not just for those of class C1. Unfortu-

nately, such results do not hold, in general, for manifolds of any dimension (see [34]). However, in low

dimensions, the smoothness condition can be discarded. Indeed, every PL manifold of dimension n ≤ 4

admits a (unique, for n ≤ 3) smoothing (see [34], [49]), and every topological manifold of dimension

n ≤ 3 admits a PL structure (cf. [33], [49]). (We have used of some of these facts in formulating our

sampling theorem for non-smooth surfaces.)

Remark 4.19. In order to obtain a better approximation it is advantageous, in this case, to employ

Nash’s method for smoothing, cf. Remark 2.28 (see [36], [4] for details).

5. Applications to Classical Sampling Theory

5.1. 1-Dimension: The Classical Shannon Sampling Theorem. Our approach and formalism

lend themselves to the derivation of a geometric sampling theorem for 1-dimensional signals. Indeed,

one can think of the maximal absolute value of the second derivative as a sampling rate criterion. We

show that band-limited signals considered in the context of the classical Shannon-Whittaker theorem

require, indeed, a finite sampling. We first consider only smooth “intuitive” or “blackboard” signals, i.e.

functions S ∈ L2 such that their graphs are smooth (C2) planar curves (see also discussion in Section

7.1 below).

Definition 5.1. Let S = S(t) be a C2 planar curve parameterized by arc-length and let k(S) denote its

maximal absolute curvature. We will call ρ(S) = k(S)�2 the sampling rate of S.

ρ

Figure 10. Sampling of a C2 curve: the sampling rate is ρ = 1/r, where r is the minimal

radius of curvature.

We begin by giving the one-dimensional version of Theorem 4.11:

Theorem 5.2. Let S is a C2 planar curve parameterized by arc-length. Then it can be sampled in

sampling rate η(S) namely, the arc-length distance between each consecutive samples is ≤ 1�η(S). If

S satisfies the condition that ρ(S) is bounded, then the required sampling rate is finite.
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Corollary 5.3. If S(t) is a band-limited “blackboard” signal, then it necessitates a finite sampling rate

(in any finite time interval) according to η(S).

Proof By Theorem 5.2 above, the proof amounts to showing that the second derivative of band-limited

‘blackboard” signals is everywhere bounded.

Time

Amplitude(f)

y = f(t)

f ''max

Figure 11. A band-limited signal y = f(t).

A Taylor expansion of such signals is given for instance in [31]. In particular, for a band-limited

signal S(t), we have by Shannon-Whittaker:

S(t) =
∞∑

−∞

S(tn)sinc(2W (t− tn)) ,

and it is shown that its p-th derivative is given by:

Sp(t) = (2W )p
∞∑

−∞

S(tn)(
d

dt
)psinc(2W (t− tn)) .

By Marks and Hall ([31]) we have that:

(
d

dt
)psinc(t) =

∫ 1�2

−1�2
(2πif)pe2πifdf =

(−1)pp!

πtp+1
[sin(πt)cosp�2(πt) − cos(πt)sin(p−1)�2(πt)] ,

where:

cosr(t) =

[r]∑

n=0

(−1)nt2n

(2n)!
;

sinr(t) =

[r]∑

n=0

(−1)nt2n+1

(2n + 1)!
.

The above terms have the following asymptotic behavior from which the boundedness of the second

derivative (even for very large values of t), is evident.
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(
d

dt
)psinc(t) →





(−1)p�2πp(sinc(t)) ; p even

(−1)(p−1)�2πp( cos(πt)
πt

) ; p odd .

From the presentation above we conclude that a band-limited signal possesses a “geometric” sampling

of finite rate.

�

It is important to point out that a similar weaker result was recently proved by G. Meenakshisundaram

([32]). Also, yet another theorem similar to Theorem 5.2 appeared in [40].

Remark 5.4. An approximation approach was already employed for “classical” sampling theory – see

[51].

5.2. 2-Dimensions: Images. Perhaps the most direct application of the sampling theorem for surfaces

is to the field of images, via “inpainting” (see, e.g. [47], p. 280). In this approach, images are viewed

as parametrized surfaces S = (u, v, f(u, v)), where (u, v) ∈ R – a rectangle of pixels, and f(u, v) ∈ [0, 1]

represents the shade of grey associated to the pixel (u, v).

Of course, if more attributes of the image are added, such as colors, luminosity, etc., then a higher

dimensional manifold is obtained, and we may make again a recourse to the fitting sampling theorem.

In a completely analogous manner one can approach the problem of image compression (see, e.g. [47],

p. 280): here the samples represent the coarse pixel set and the surface the fine pixel set.

6. Some Computational Results

In this section we present quantitative estimates,obtained on some analytic surfaces, of the error

caused by two reproducing schemes employed in this work, namely piecewise-linear reconstruction and

Nyquist (trigonometric approximation) reconstruction. Error assessments was estimated in three ver-

sions, yielding similar results:

(1) In the first version, four points where chosen for each of the triangles: three points on the mid-

edges and one point at the triangle’s barycenter. The error was computed at these points and

the maximum over all these error values was taken.

(2) A larger number of points where chosen for each triangle but the number of triangles was

reduced. This was done by considering only triangles at which maximal curvature was obtained,

where the curvature is assessed by the normal deviation at the vertices.

(3) The control points where uniformly spread along the sampling domain. For the Nyquist approx-

imation only this method was applied.

The error term was computed using L1 norm difference between the reconstructed surface and its

analytic expression.
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Figure 12. The triangulation (upper image, left) obtained from a “naive” sampling

(upper image, right) resulting from a CT scan of part of the back-side of the human

colon (bottom left). Note the “flat” triangles and the uneven mesh of the triangulation.

This is a result of the high, concentrated curvature, as revealed in a view obtained after a

rotation of the image (bottom right). These and other images will be accessible through

an interactive applet on the website [53]. CT-data is in curtesy of Dr. Doron Fisher

from Rambam Madical Center in Haifa.

As observed in the table, the approximation yielded by the secant map (PL-reconstruction) is better

than the one obtained by Nyquist reconstruction, giving in general, an error which is 10 times lesser

than the Nyquist reconstruction.

7. Discussion

7.1. Sampling. Most important, one honestly has to ask himself the following question: “What is a

signal?”

If the answer to the question above is given in the classical context, i.e. if a signal is viewed as an

element f of L2(R), such that supp (f̂) ⊆ [−π, π], where f̂ denotes the Fourier transform of f , then our

result does not hold. Indeed, we have the following counterexample:

Counterexample 7.1. There exist band limited signals (as above) f such that:
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(a)

(c)

(b)

(d)

Figure 13. The triangulation (a) obtained from the uniform sampling (b) of the surface

S =

(
x, y,

cos
√

x2+y2

1+
√

x2+y2

)
(c) and smoothing of the triangulation (d). Note the low density

of sampling points in the region of high curvature.

Surface Secant Approx. 4-points Secant Max. Curvature Secant Uniform Nyquist Uniform

Hyperbolic Paraboloid 5.0397e−4 2.2894e−4 4.4877e−4 0.0071

Monkey Saddle 0.0012 4.4895e−4 9.1302e−4 0.0071

Sphere 0.0067 0.0045 0.0060 0.0065

Table 1. Error estimates for the secant and Nyquist reconstructions of various surfaces.

The error for the secant approximation is in general 10 times less than for Nyquist

approximation.

(i) f ∈ L2(R), f ′′ ∈ L∞(R);

but
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Figure 14. Hyperbolic Paraboloid: Top left - analytic representation, z = xy. Bottom

right – sampling according to curvature. Top left – PL reconstruction. Bottom left –

Nyquist reconstruction. To appreciate the triangulation results requires a full size display

of color images [53].

(ii) f ′′ is not bounded.

Therefore, our approach refers to a more “intuitive” or “blackboard” interpretation of signals. On the

other hand, it is more broad, in the sense that it applies to any at most countable union of piece-wise

smooth (not necessarily planar) curves, not only for graphs of function. (For a possible approach to

defining curvature at points were a curves fails to be twice differentiable, see Section 7.3.)

7.2. Images as Manifolds. While viewing images as manifolds embedded in higher dimensional Rie-

mannian manifolds (in particular in some Euclidean space) (see, e.g. [26], [29], [46], [47]) the common

approach to the problem tends to ignore the intrinsic difficulties of the embedding process. In partic-

ular, when considering isometric embeddings, one is constrained by the necessary high-dimension of

the embedding space (see [36], [24], [4]). This is even more poignant when one wishes to view images

as 2-dimensional smooth surfaces isometrically embedded in R3 (or S3), as in [11], [12]. Indeed, for

such surfaces the Nash-Kuiper-Gromov-Günther algorithm gives embedding dimension 10 for a generic

compact surface (see, e.g. [23], [25], [4]).
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Figure 15. Monkey Saddle: Top left - analytic representation, z = x(x2−3y2). Bottom

right – sampling according to curvature. Top left – PL reconstruction. Bottom left –

Nyquist reconstruction. To appreciate the triangulation results requires a full size display

of color images [53].

However, for gray scale images, i.e. for surfaces S = (x, y, g(x, y)) ⊂ R3, where the function g

represents the gray level (luminosity) of the image, one can apply easily the sampling and reconstruction

results proved in Section 4. For some first results in this direction, see Figure 16 below.

7.3. Simplex Fatness and Future Study. Since the fatness of the triangulation of intMn depends,

by Formula 3.6, only on the dimension n of the given manifold, and since by Lemma 3.18, the fatness

of the mash (i.e. common simplicial subdivision) of the triangulations of ∂Mn and intMn is a function

solely on the fatness of the given triangulation (and hence upon the dimension n), it follows that a lower

bound for the fatness of any triangulations is achieved.

However, since the bound given by Formula 3.6 is achieved via the specific construction of [39], the

following question arises naturally: Is the lower bound of Formula 3.6 the lowest possible?

The answer to the question above seems to be negative, since Peltonen’s construction depends upon

the specific isometric embedding employed.

More important, the diameters of the simplices obtained in our construction (i.e. the mesh of the

triangulation) are a function of the curvature radii, hence an extrinsic constraint, therefore again strongly
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Figure 16. The surface in R3 (upper image, right) corresponding to “Lena” (upper

image, left). The lower image, on the left, shows the PL surface obtained using the

sampling and geometric methods introduced in this paper. A rotated view (lower image,

right) of this PL reconstruction shows how close even the linear interpolation based upon

geometric sampling is to the original image.

dependent upon the specific embedding in higher dimensional Euclidean space. This fact immediately

generates the following problem: What are the precise restrictions the Nash embedding technique

imposes upon the curvature radii? The existence of such restrictions follows from the fact that, in the

Nash embedding method, the curvature of the embedding is controlled. Moreover, in the smoothing

part of the Nash technique, a star finite partition of the embedding, obtained using curvature radii of

an intermediate embedding, is considered (see [36], [4]). (For further problems related to the quality of

the obtained triangulation and its relevance to the theory of quasiregular mappings, see [43].)

We conclude with the following remarks and suggestions for further study:

We have obtained in Corollary 4.4 week intrinsic condition for the existence of fat triangulation with

mesh bounded from below. As already noted, one would like to find such non-extrinsic (i.e. curvature

restricting) conditions (perhaps coupled with fitting topological constraints) in higher dimension, as
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well. Indeed, in dimensions greater or equal three, even deciding which curvature (sectional, Ricci,

scalar) is most relevant, represents a highly non-trivial problem, that we defer for further study.

Another direction of study stems from the need, both in the classical signal-processing context and

in that of manifold sampling, for mashing and sampling methods of geometrical objects that are not

even PL, and hence no smoothing techniques can be applied for them. In this general setting, metric

curvatures, represent, in our view, the most promising tool. Indeed, research in this direction is currently

undertaken.
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