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Two major motivations for this work:

[A] The recent interest generated by G. Perelman’s seminal

work on the Ricci flow and its application in the proof of

Thurston’s Geometrization Conjecture and the application

of thus flow to Computer Graphics, etc. (mainly the work

of Gu et al.).

[B] The search for a curvature that can be applied (and

computed) to the “very non-smooth” objects (perhaps high

dimensional) of Image Processing, such as images produced

using ultrasound imaging, MRI or CT.

Also, the need to work with square (and cubical grids) – as

standard in Image Processing.
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Note that:

• Ricci curvature measures the defect of the manifold from

being locally Euclidean in various tangential directions.

• Ricci curvature represents an average of sectional curva-

tures.

• Ricci curvature behaves as the Laplacian of the metric.

• In dimension n = 2, Ricci curvature reduces to the clas-

sical Gaussian curvature.
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Fortunately, a purely theoretically work allowing such a de-

velopment exists: Robin Forman has developed a Combi-

natorial Ricci Curvature for weighted cell complexes – ob-

jects that generalize such classical and common notions of

polygonal meshes and of weighted graphs.

Moreover, it produces generalized Laplacians in any dimen-

sion, thus allowing for diffusion techniques in higher dimen-

sions.

As an extra bonus, it is singularly fitted for cubical grids.
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To generalize the notion of Ricci curvature, in a manner

that would include weighted cell complexes, one starts from

the following form of the Bochner-Weitzenböck formula for

the Riemann-Laplace operator �p :

�p = dd∗ + d∗d = ∇∗
p∇p + Curv(R) , (1)

where ∇∗
p∇p is the Bochner (or rough) Laplacian and where

Curv(R) is a complicated expression with linear coefficients

of the curvature tensor. (Here ∇p is the covariant deriva-

tive.)
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Of course, for cell-complexes one cannot expect such dif-

ferentiable operators. However, a formal differential exists.∗

Forman proved that an analogue of the Bochner-Weitzenböck

formula holds in this setting, i.e. that there exists a canon-

ical decomposition of the form:

�p = Bp + Fp (2)

where Bp is a non-negative operator and Fp is a certain

diagonal matrix. Bp and Fp are called, in analogy with

the classical Bochner-Weitzenböck formula, the combina-

torial Laplacian and combinatorial curvature function, re-

spectively.

∗in our combinatorial context (the operator) “d” being replaced by “∂”
– the boundary operator of the cellular chain complex.
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Moreover, if α = αp is a p-dimensional cell (or p-cell, for

short), then we can define the curvature functions:

Fp =< Fp(α), α >, (3)

Where < α, α >= wα – the weight of the cell α,

and

< α, β >= 0 if α 6= β.

For dimension p = 1 we obtain, by analogy with classical

case, the following definition of discrete (weighted) Ricci

curvature:

Definition 1 Let α = α1 be a 1-cell (i.e. an edge). Then

the Ricci curvature of α is defined as:

Ric(α) = F1(α). (4)
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While general weights are possible, making the combinato-

rial Ricci curvature extremely versatile, it turns out that it

is possible to restrict oneself only to so called standard ∗

weights, i.e. such that:

Definition 2 The set of weights {wα} is called a standard

set of weights iff there exist w1, w2 > 0 such that given a

p-cell αp, the following holds:

w(αp) = w1 · w
p
2

(Note that the combinatorial weights wα ≡ 1 represent a

set of standard weights, with w1 = w2 = 1.)

∗or geometric – because they are proportional to the geometric content
(s.a. length and area).
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Using standard weights we obtain the following (admittedly

horrendous!) formula for polyhedral (and in fact much more

general) complexes:

Ric(αp) = w(αp)
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where α < β means that α is a face of β, and the notation

α1 ‖ α2 signifies that the simplices α1 and α2 are parallel,

where two p dimensional cells are parallel iff they either are

common faces of a p + 1 cell, or if they have a common

p − 1 face∗, but not both simultaneously†

For example, e1, e2, e3, e4 are all the edges parallel to e0.
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∗i.e. they have a common parent or a common child
†naturally!....
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Together with the formula above, the (dual) formula for

the combinatorial Laplacian is also obtained to be:

�p(α
p
1, α

p
2) =

∑

βp+1>α
p
1,βp+1>α

p
2

ǫα1,α2,β

√

w(α
p
1)w(α

p
2)

w(βp+1)
(6)

+
∑

γp−1<α
p
1,γp−1<α

p
2

ǫα1,α2,γ
w(γp−1)

√

w(α
p
1)w(α

p
2)

,

where ǫα1,α2,β, ǫα1,α2,γ ∈ {−1,+1} depend on the relative

orientations of the cells.
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What makes this formulae palatable is the fact that only

parallel faces play a role.

While this is a problem for triangular meshes (ubiquitous

in Computer graphics, etc.) it is actually an advantage

for the square (and cubical) grids considered in Image Pro-

cessing, because of the “combinatorial clarity” regarding

parallel faces.

Baring this in mind, and using standard weights (s.t. the

weight of any vertex is w(v) = 0!) it is easy and straight-

forward to obtain the following simple formulae:
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Ric(e0) = w(e0)
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w(e0)
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However, recall that for the Laplacian there exists more

than one possible choice, depending upon the dimension p.

The simplest, and operating on cells of the same dimen-

sionality as the Discrete Ricci curvature, is �1, computed

above.

Instead of computing a Laplacian along the edge e0, one

can compute a Laplacian operating across the edge, namely

�2(c1, c2):

�2(c1, c2) =
w(e0)

√

w(c1)w(c2)
.
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Before commencing any experiments with the combinatorial

Ricci curvature in the context of images, we have to choose

a set of weights for the 2-, 1- and 0-dimensional cells of

the picture, that is for squares (pixels), their common edges

and the vertices of the tilling of the image by the pixels.

Any such choice should be

• As natural and expressive as possible for Image Process-

ing.

• The desire to employ solely standard weights.
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In the beginning, it is natural to choose:

w1 = 1 and w2 = length of a cell.∗

A somewhat less arbitrary choice for the length (i.e. basic

weight) of an edge, would be:

Length(e) = (dimension of the picture)−1,

hence that for the area (i.e. basic weight) of a pixel α

being:

Area(α) = (dimension of the picture)−2.

∗Remember also that that the weight of any vertex (0-cell) has to be
0.
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The proper weight for a cell α should, however, take into

account the gray-scale level (or height) hα of the pixel in

question, i.e.:

wα = hα · Area(α).

The natural weight for an edge e common to the pixels α

and β is:

|hα − hβ|.

Remark 3 A less “purely” combinatorial choice of cells and

weights, is also considered, by passing to the dual cell com-

plex. Convergence to the standard curvature is more easily

proved in this case. Also, common convergence of both

approaches holds.
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And now, for some experimental results...

We start with the “compulsory” Lenna, and we compare

Gaussian curvature (left) and Combinatorial Ricci curvature

(right).
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... and its Combinatorial Laplacian �1(e0):

(Recall that B1 = �1 − Ric.)
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And now, to some Medical Imaging related results:

First, an Axial Brain Scan (left) and its Combinatorial Ricci

curvature (right)
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... and a comparison of its different Laplacians: Bochner

(rough) Laplacian B1(e0) (left) and “classical” Matlab (right).
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... and some results for the challenging case of Ultrasound

Images:

A 14 month old embryo (profile) (left); its Ricci curvature

(middle) and its Bochner Laplacian (right).
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Future work

• Experiment with voxels.

• Develop and experiment with a discrete version of the

Ricci flow corresponding to the combinatorial Ricci curva-

ture.∗

• Determine, the optimal standard weights (for a given

problem).

• The Combinatorial Laplacian is closely connected (by its

very definition) to the cohomology groups – use it for com-

puting cohomology groups (and by duality, of homology

groups) of images.

∗A combinatorial flow was already developed.
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Appendix – Voxels

Ric(e0) = w(e0)













∑

c2>e0

w(e0)

w(c2)
+

∑

c0<e2

w(c0)

w(e0)







−
∑

e‖e0,e6=e0

∣

∣

∣

∣

∣

∣

∣

∑

c2>e,c2>e0

√

w(e0)w(e)

w(c2)
−

∑

c0<e,c0<e0

w(c0)
√

w(e0)w(e)

∣

∣

∣

∣

∣

∣

∣






.

e

ee

3

4
e

e

4

2

0
e

e
1

1

2

c

c

c

c

3

4

24



And, since, as we have already noted, for digital images

the vertex weights are always 0, we obtain the following

expression for Ric(e0):

Ric(e0) = w(e0)
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