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Abstract. We give a complete characterization of all Kleinian groups
G, acting on hyperbolic space Hn, that admit non-constant G-automorphic
quasimeromorphic mappings, for any n ≥ 2. We also address the re-
lated problem of existence of qm-mappings on manifolds and prove the
existence of such mappings on manifolds with boundary, of low differ-
entiability class.

1. Introduction

It is classical that every Riemann surface carries non-constant meromor-
phic functions, implying that every Fuchsian group G has non-constant G-
automorphic meromorphic functions. In higher dimensions n ≥ 3 the only
locally conformal mappings are restrictions of Möbius transformations, and
since they are injective, an extension of the classical existence theorem re-
quires to look at quasimeromorphic mappings.

The question whether quasimeromorphic mappings (qm) exist for any
n ≥ 3 was originally posed by Martio and Srebro in [MS1]; subsequently in
[MS2] they proved the existence of the above mentioned mappings in the
case of finite co-volume groups, i.e. groups such that V olhyp(Hn/G) < ∞.
(Here V olhyp denotes hyperbolic volume.) Also, it was later proved by Tukia
([Tu]) that the existence of non-constant quasimeromorphic mappings (or
qm-maps, in short) is assured in the case when G acts torsionfree on the
hyperbolic n-space Hn. Moreover, since for torsionfree Kleinian groups G,
Hn/G is a analytic manifold, the next natural question to ask is whether
there exist qm-maps f : Mn → R̂n; where Mn is an orientable n-manifold.
A partial affirmative answer to this question is due to Peltonen (see [Pe]);
more precisely, she proved the existence of qm-maps in the case when Mn

is a connected, orientable C∞-Riemannian manifold.
In contrast with the above results it was proved by Srebro ([Sr]) that,

for any n ≥ 3, there exists a Kleinian group G acting on Hn such that
there exists no non-constant, G-automorphic function f : Hn → Rn. More
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precisely, if G (as above) contains elliptics of unbounded orders with non-
degenerate fixed set, then G admits no non-constant G-automorphic qm-
mappings.

To obtain a complete answer to the existence problem we consider the case
when the orders of all elliptics with non-degenerate fixed set are bounded,
and show that such groups do carry non-constant qm automorphic map-
pings, in any dimension n ≥ 3. This result, in conjunction with Srebro’s
non-existence theorem, gives a complete characterization of those Kleinian
group which admit non-constant G-automorphic quasimeromorphic map-
pings.

Since the classical methods employed in proving the existence in the case
n = 2 do not apply in higher dimensions, other methods are needed. Fol-
lowing other researchers, we shall employ the classical “Alexander trick”
(see [Al]). According to the Alexander method, first one constructs a chess-
board triangulation (Euclidian or hyperbolic) of Hn, i.e. a triangulation
whose simplices satisfy the condition that every (n − 2)-face is incident to
an even number of n-simplices. Then one alternately maps the simplices of
the triangulation onto the interior and the exterior of the standard simplex
in Rn using quasiconformal (qc) maps. If the dilatations of the qc-maps
constructed above are uniformly bounded, then the resulting map will be
quasimeromorphic.

If the simplices are uniformly fat (see Definition 2.7 below), than the
restrictions of the mapping to the simplices can be made quasiregular (qr),
yielding a quasiconformal mapping. (See [Tu] , [MS2]).

Another natural direction of study stems from Tukia’s and Peltonen’s
Theorems: since they proved the existence of quasimeromorphic mappings
for complete (analytic) hyperbolic manifolds and C∞ complete Riemannian
manifolds, respectively, we want to prove the existence of quasimeromorphic
mappings for manifolds with boundary, and when the regularity condition
is relaxed. To this end we extend a classical theorem of Munkres regarding
the existence of triangulation of manifolds with boundary, to the case of fat
triangulations (see Theorem 3.4).

As a corollary to Theorem 3.4, our method yields another proof of the ex-
istence of automorphic quasimeromorphic mappings for groups with torsion,
in the classical case n = 3.

The remainder of this paper is structured as follows: in Section 2 we
present the necessary background on quasimeromorphic mappings, Kleinian
groups, elliptic transformations and fat triangulations, in Section 3 we present
our main results and in Section 4 we sketch the main steps of the proofs (de-
tails being provided in our papers [S1], [S2], [S3]).



THE EXISTENCE OF AUTOMORPHIC QUASIMEROMORPHIC MAPPINGS 3

2. Background

Following Gromov ([Gro]), we consider the following definition of quasireg-
ularity, which befits the best our geometric setting. Other, more general and
analytic definitions can be found, e.g. in [Ric] , [V].

Definition 2.1. Let Mn, Nn be oriented, Reimannian n-manifolds.
(1) f : Mn → Nn is called quasiregular iff

(a) f is locally Lipschitz (and thus differentiable a.e.);
and
(b) 0 < |f ′(x)|n ≤ KJf (x) ; ∀x ∈ Mn.
where f ′(x) denotes the formal derivative of f at x, |f ′(x)| = sup

|h| = 1
|f ′(x)h|,

and where Jf (x) = detf ′(x);
(2) quasiconformal iff f : D → f(D) is a quasiregular homeomorphism;
(3) quasimeromorphic iff f : D → R̂n, R̂n = Rn

⋃ {∞} is quasiregu-
lar, where the condition of quasiregularity at f−1(∞) is checked by
conjugation with auxiliary Möbius transformations.

The smallest number K that satisfies (4.1) is called the outer dilatation of f .

Remark 2.2. These notions represent natural generalizations of conformal,
analytic and meromorphic functions, respectively.

Recall that a group G of homeomorphisms acts properly discontinuously
on a locally compact topological space X iff the following conditions hold for
any g ∈ Gx , x ∈ X: (a) the stabilizer Gx = {g ∈ G | g(x) = x} of x is finite;
and (b) there exists a neighbourhood Vx of x, such that (b1) g(Vx)∩ Vx = ∅,
for any g ∈ G \Gx ; and (b2) g(Vx) ∩ Vx = Vx .

Definition 2.3. A discontinuous group of orientation-preserving isometries
of Hn is called a Kleinian group.

It is well known that a discontinuous group is discrete (see [Ms]).

Definition 2.4. Let f : Hn → R̂n, and let G be a Kleinian group acting
upon Hn. The function f is called G-automorphic iff:

(2.1) f(g(x)) = f(x) ; for any x ∈ Hn and for all g ∈ G ;

Recall also the definition of elliptic transformations:

Definition 2.5. A Möbius transformation f :Hn → Hn, f 6= Id is called
elliptic iff f has a fixed point in Hn.

If G is a discrete Möbius group and if f ∈ G, f 6= Id is an elliptic
transformation, then there exists m ≥ 2 such that fm = Id. The smallest
m satisfying this condition is called the order of f , and it is denoted by
ord(f). In the 3-dimensional case the fixed point set of f i.e. Fix(f) = {x ∈
H3|f(x) = x}, is a hyperbolic line and will be denoted by A(f) – the axis of
f. In dimension n ≥ 4 the fixed set (or axis of f ) of an elliptic transformation
is a k-dimensional hyperbolic plane, 0 ≤ k ≤ n − 2 . An axis A is called
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degenerate iff dimA = 0. In dimensions higher than n = 3, different elliptics
may have fixed sets of different dimensions.

Remark 2.6. If G is a discrete group, G is countable and so are the sets
{fi}i≥1 of elliptic transformations and the set {Cj} of connected components
of Fix(G) =

{
x ∈ Hn | exists g ∈ G \ {Id}, s.t. g(x) = x

}
. Moreover, by the

discreteness of G, the sets A = {Ai}i≥0 = {A(fi)}i≥0 – and hence S = {Cj}
– have no accumulation points in Hn.

We conclude this section with the definition of fat triangulations:

Definition 2.7. A k-simplex τ ⊂ Rn (or Hn); 2 ≤ k ≤ n is f-fat if there
exists f ≥ 0 such that the ratio r

R ≥ f ; where r denotes the radius of the
inscribed sphere of τ (inradius) and R denotes the radius of the circum-
scribed sphere of τ (circumradius). A triangulation of a submanifold of Rn

(or Hn) T = {σi}i∈I is f-fat if all its simplices are f -fat. A triangulation
T = {σi}i∈I is fat if there exists f ≥ 0 such that all its simplices σi are f-fat.

Remark 2.8. There exists a constant c(k) that depends solely upon the
dimension k of τ such that

(2.2)
1

c(k)
· ϕ(τ) ≤ min

σ<τ
](τ, σ) ≤ c(k) · ϕ(τ) ,

and

(2.3) ϕ(τ) ≤ V olj(σ)
diamj σ

≤ c(k) · ϕ(τ) ;

where ](τ, σ) denotes the (internal) dihedral angle of σ < τ and V olj(σ) and
diamσ stand for the Euclidean j-volume and the diameter of σ respectively.
(If dim σ = 0, then V olj(σ) = 1, by convention.)

Remark 2.9. The definition above is the one introduced in [Pe] and we
employ it mainly for briefness. For other, equivalent definitions of fatness,
see [Ca1], [Ca2], [CMS], [Mun], [Tu].

Remark 2.10. Fat triangles are precisely those for which the individual sim-
plices considered in the Alexander method may each be mapped onto a
standard n-simplex, by a L-bilipschitz map, followed by a homotety, with a
fixed L.

3. Results

3.1. The Existence of Automorphic Quasimeromorphic Mappings.
The following existence theorem, that represents a generalization of previous
results of Tukia ([Tu]) and Martio and Srebro ([MS2]), is the main result in
this topic (for details see [S1] and [S2]):

Theorem 3.1. Let G be a Kleinian group with torsion acting upon Hn, n ≥
3. If the elliptic elements (i.e. torsion elements) of G have uniformly
bounded orders, then there exists a non constant G-automorphic quasimero-
morphic mapping f : Hn → R̂n.
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Remark 3.2. Given any finitely generated Kleinian group acting on H3 the
number of conjugacy classes of elliptic elements is finite (see [FM] and, for
an alternative proof, [S4]). Therefore, for such groups, the orders of the
elliptics are bounded and Theorem 3.1 holds. It follows that any finitely
generated group G acting upon H3 admits G-automorphic quasimeromor-
phic mappings. Note that the result above is not true for Kleinian groups
acting upon Hn, n ≥ 4 (for counterexamples, see [FM], [KP1] and [H]).

Note that by Remark 3.2 we have the following corollary:

Corollary 3.3. Let G be a finitely generated Kleinian group acting upon H3.
Then there exists a non constant G-automorphic qm-mapping f : H3 → R̂3.

3.2. The Existence of Fat Triangulations and the Existence of Quasimero-
morphic Mappings on Manifolds. The main results we shall prove in
this topic are listed below. For details see [S2]. The following theorem
represents a generalization of a classical result of Munkres (see [Mun]):

Theorem 3.4. Let Mn be an n-dimensional C∞ Riemannian manifold with
boundary, having a finite number of compact boundary components. Then
any uniformly fat triangulation of ∂Mn can be extended to a fat triangulation
of Mn.

Remark 3.5. We prove that the Theorem above also holds when the com-
pactness condition of the boundary components is replaced by the condition
that ∂Mn is endowed with a fat triangulation T such that inf

σ ∈ T
diamσ > 0.

From Theorem 3.4 above, and from Peltonen’s Theorem, it follows imme-
diately that the following holds:

Corollary 3.6. Let Mn be as above. Then Mn admits a fat triangulation.

Since every PL manifold of dimension n ≤ 4 admits a (unique, for n ≤
3) smoothing (see [Mun1], [Mun], [Th]), and every topological manifold of
dimension n ≤ 3 admits a PL structure (cf. [Moi], [Th]), we obtain from
our results the following corollary:

Corollary 3.7. Let Mn be an n-dimensional, n ≤ 4 (resp. n ≤ 3), PL
(resp. topological) connected manifold with boundary, having a finite number
of compact boundary components. Then any fat triangulation of ∂Mn can
be extended to a fat triangulation of Mn.

By applying Alexander’s Trick to Theorem 3.4, we obtain the following
Theorem of quasimeromorphic mappings, which represents a generalization
of Peltonen’s Theorem (see [Pe]):

Theorem 3.8. Let Mn be a connected, oriented C1 Riemannian manifold
without boundary or having a finite number of compact boundary compo-
nents. Then there exists a non-constant quasimeromorphic mapping f :
Mn → R̂n.
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Applying again Alexander’s Trick we obtain the following result:

Corollary 3.9. Let Mn be a connected, oriented n-dimensional manifold
(n ≥ 2), without boundary or having a finite number of compact bound-
ary components. Then in the following cases there exists a non-constant
quasimeromorphic mapping f : Mn → R̂n:

(1) Mn is of class Cr , 1 ≤ r ≤ ∞ , n ≥ 2;
(2) Mn is a PL manifold and n ≤ 4;
(3) Mn is a topological manifold and n ≤ 3.

4. Proofs and Methods

4.1. The Existence of Automorphic Quasimeromorphic Mappings.
The idea of the proof of Theorem 3.1 is, in a nutshell, as follows: Based upon
the geometry of the elliptic transformations construct a fat triangulation T1

of N∗
e , where N∗

e is a certain closed neighbourhood of the singular set of
Hn/ G. Since Mp =

(
Hn \ Fix(G)

)
/G, is an orientable analytic manifold,

we can apply Peltonen’s result to gain a triangulation T2 of Mp. Therefore,
if the triangulations T1 and T2 are chosen properly, each of them will induce
a triangulation of N∗

e \N∗
e
′, for a certain N∗

e
′ ( N∗

e .
“Mash” T1 and T2 (in N∗

e \N∗
e
′) i.e. ensure that the given triangulations

intersect into a new triangulation T0 (see [Mun], Theorem 10.4). Modify T0

to receive a new fat triangulation T of Hn/G.
In the presence of degenerate components Ak = A(fk) of the fixed set

of G, where the transformations fk may have arbitrarily large orders, a
modification of this construction is needed .

Apply Alexander’s trick to receive a quasimeromorphic mapping f :Hn/G →
R̂n. The lift f̃ of f to Hn represents the required G-automorphic quasimero-
morphic mapping.

The proof of the case n = 3 is treated separately in [S1] for several reasons:
it develops and uses a technique for meshing distinct fat triangulations while
preserving fatness, technique that employs mainly elementary tools. This
technique is relevant in Computational Geometry and Mathematical Biology
(see [S5]).

In the general case we employ a method for fattening triangulations de-
veloped in [CMS], Lemma 6.3.

4.2. The Existence of Fat Triangulations and the Existence of Quasimero-
morphic Mappings on Manifolds. The idea of the proof of Theorem 3.4
is first to build two fat triangulations: T1 of a product neighbourhood N of
∂Mn in Mn and T2 of int Mn, and then to “mash” the two triangulations
into a new triangulation T , while retaining their fatness. While the mash-
ing procedure of the two triangulations is basically that developed in the
original proof of Munkres’ theorem, the triangulation of T1 was modified, in
order to ensure the fatness of the simplices of T1, more precisely we prove
the following Theorem (see [S3]):
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Theorem 4.1. Let Mn be a Cr Riemannian manifold with boundary, hav-
ing a finite number of compact boundary components. Then any fat Cr-
triangulation of ∂Mn can be extended to a Cr-triangulation T of Mn, 1 ≤
r ≤ ∞ , the restriction of which to a product neighbourhood K̃0 = ∂Mn× I0

of ∂Mn in Mn is fat.

The existence of T2 follows from Peltonen’s result. The fattening tech-
nique employed here is, again, that of [CMS]. In the proof of Theorem 3.8
we again use Alexander’s Trick.
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