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Abstract:
In this paper we propose a smoothing method for non
smooth signals, which control the geometry of a sampled
signal. The signal is considered as a geometric object and
the smoothing is done using a smoothing kernel function
that controls the curvature of the obtained smooth signal
in a close neighborhood of a metric curvature measure of
the original signal.

1. Introduction

In [11], [12], a sampling scheme for signals that posses
Riemannian geometric structure was introduced.It turns
out that a variety of signals fall in this setting while gray
scale images is just one such example. Rather then some
Nyquist rate, the sampling scheme presented in [11], [12],
is based on geometric characteristics of the sampled sig-
nals. Being precise, the following sampling theorem was
proved.

Theorem 1 Let Σn, n ≥ 2 be a connected, not neces-
sarily compact, smooth manifold, with finitely many com-
pact boundary components. Then there exists a sam-
pling scheme of Σn, with a proper density D = D(p) =
D

(
1

k(p)

)
, where k(p) = max{|k1|, ..., |k2n|}, and where

k1, ..., k2n are the principal (normal) curvatures of Σn, at
the point p ∈ Σn.

While the assumed Riemannian structure relies on the as-
sumption that the signal satisfies C2 smoothness criteria,
the authors presented in [11], an extended version of The-
orem 1 also for non smooth geometric signals, where the
proposed strategy uses smoothing of the original signal.
The following theorem was proved.

Theorem 2 Let Σ be a connected, non-necessarily com-
pact surface of class C0. Then, for any δ > 0, there exists
a δ-sampling of Σ, such that if Σδ → Σ, then Dδ → D,
whereDδ andD denote the densities of Σδ and Σ, respec-
tively.

In the above Theorem 2 Σδ is a smoothing of Σ obtained
by a convolution of Σ with a partition of unity kernel.
Such a kernel being very common for manifolds smooth-
ing indeed guarantees that the resultant manifold is as
smooth as we wish however, in this process we do not have
any control on the curvature of the obtained manifold.
Some natural question raise in this context,

1. To what extent can we smooth the original signal, us-
ing such a reproducing kernel while assuming a pre-
defined bounds on the curvature of the resultant man-
ifold?

2. Can the reproducing kernel be made local, namely,
can we have different kernel characteristics for differ-
ent areas along the sampled signals, while being able
to glue the smoothed signal along common bound-
aries?

3. In what way if at any, we can give affirmative answers
to 1 and 2 that are adaptive to the signal? Meaning,
how can we have good prior estimates for the desired
curvature bounds?

This paper aims at answering the above questions. Note
that answering question 1 is analogous to smoothen a sig-
nal to have a predefined frequency band-pass, using a
band-pass filter as commonly done in signal processing
for decades. Answering 1, 2, 3 is equivalent to the use of
filter banks with different band-pass characteristics. In all,
giving affirmative answers to all above questions give rise
to an adaptive non uniform sampling scheme for a variety
of signals.
We will focus along the paper on signals that are do not ad-
mit a Riemannian structure but rather have a more general
geometric structure of the so called Alexandrov spaces.
We will term such signals as geometric-signals.

2. Preliminaries

In this section we will give some basic preliminary defini-
tions and notations.

2.1 Alexandrov spaces
Definition 3 (Alexandrov - Toponogov) [ [9]] A com-
plete metric space X , satisfies the triangle comparison
condition w.r.t κ ∈ R if for every geodesic triangle
∆pqr ∈ X , there exists a comparison triangle, i.e. a tri-
angle, ∆p′q′r′ ∈M2

κ, such that

pq = p′q′; qr = q′r′; rp = r′p′

so that, for every point s ∈ pr we have that

dX(s, q) > dM2
κ
(s′, q′)



where s′ ∈ p′r′ such that

ps = p′s′; sr = s′r′

WhereM2
κ is a complete simply connected surface of con-

stant curvature κ.

Figure 1: Comparison triangle.

Definition 4 A complete metric space X , is an Alexan-
drov space of curvature > κ iff

1. For all x, y,∈ X there exists a length minimizing
curve γ joining x and y such that,

L(γ) = dX(x, y);

where L denotes the arc length of curves in X and
dX stands for the metric given on X . γ is called a
minimal geodesic.

2. X satisfies the triangle comparison condition for κ.

3.
dimHX < ∞;

dimH = Hausdorff dimension.

Remark 5 In a similar way, while reversing the direction
of inequalities, one can define Alexandrov space of curva-
ture < κ. For instance, in the comparison triangle condi-
tion, we will demand,

dX(s, q) < dM2
κ
(s′, q′)

Definition 6 (Gromov) If X is an Alexandrov space of
curvature < κ and κ ≤ 0 then X is called CAT (κ)-
space. CAT = Cartan-Alexandrov-Toponogov.

2.1.1 Examples:
1. Every complete Riemannian manifold of bounded

sectional curvature.

2. The boundary of convex set in Rn is an Alexandrov
space of curvature ≥ 0.

3. If Xi is a sequence of n-dimensional Alexandrov
spaces of curv. ≥ κ then their Gromov-Hausdorff
limit, if exists, is an Alexandrov space of curv. ≥ κ
and dimension ≤ n.

If the limit of the above sequence is of dimension < n
we say the sequence collapses.

If X is an Alexandrov space then there exists a self-adjoint
operator ∆, called the Laplacian defined on L2(X) so
that,

∫

X

< ∇u,∇v > dHn =
∫

X

v∇udHn

where Hn is the nth Hausdorff measure of X , u ∈
D(∆), v ∈ W1,2(X).

Theorem 7 ( [6]) 1. If X is compact then the spectrum
of ∆ is discrete.

2. There exists a continuous heat kernel ht(x, y) on X
so that,

e−t∆u(x) =
∫

X

ht(x, y)u(y)dHn(y)

2.2 Approximations of manifolds
Let M be a complete Riemannian manifold of bounded
sectional curvature. Let p ∈ M be some point and let
φi be some C∞ kernel function supported on some εi-
neighborhood of p. For example one can take φ to be
partition of unity, heat kernel and others. Let Mi be the
manifold obtained by convolution,

Mi =
∫

M

φi ∗Mdµ;

Note that Mi is smooth in a δi neighborhood of p even if
M fails to be smooth at p. Well known results (see for
instance, [7]) in differential topology assert that,

εi → 0 ⇒ Mj → M ;

where convergence of manifolds is considered in the
Gromov-Hausdorff topology. While the above result con-
cerns the convergence on a topological level, in order to
have curvature control we have to account for geometric
convergence as well. This is guaranteed from the stud-
ies in [3], [4] and [10]. In [3], [4] it is proved that
similar convergence to the above also exist for Betti num-
bers which are generalizations of Euler characteristic to
all dimensions and are related to curvature through higher
dimensional of Gauss-Bonnet type theorems [2]. In [10]
the question of proper gluing of approximations in adja-
cent neighborhoods is addressed. It is shown that one can
obtain geometric convergence in different neighborhoods
V, U of the points p, q resp. so that, on the common bound-
ary ∂V ∩ ∂U the approximations coincide. In addition, if
we write the heat operator on a manifold, N , as

e−t∆N f(x),

where f ∈ L2(N ) and t > 0, x ∈ N , and ∆N , de-
notes the Laplace-Beltrami operator associated with N ,
then there is a smooth kernel function KN , such that,

e−t∆N f(x) =
∫

N
KN (t, x, y)f(y)dy;

In [3] convergence of the heat kernel is also achieved,

e−t∆Mi → e−t∆M



3. Smoothing geometric signals with curva-
ture control

In this section we present the results concerning questions
1, 2 and 3 posed in the introduction. These results give us
the ability to smoothen a geometric signal while having an
adaptive control on obtained curvatures.

Definition 8 We say that a signal is a geometric signal
iff it admits a structure of an Alexandrov space for some
κ ∈ R.

Let Σ be a geometric signal of sectional curvature
bounded from below (above). Let p ∈ Σ be a point, and
U(p) ⊂ Σ some compact neighborhood of p. Let

κ = lim sup K

such that U(p) is an Alexandrov space of curvature > K.

3.1 Approximations of geometric signals
Theorem 9 ( [1]) Given a point p on Σ, there exists
smooth local kernel φi as above, yielding a sequence of
manifolds Mi, smooth inside an εi neighborhoods of p,
such that

1.
Mi =

∫

Σ

φi ∗ Σdµ → Σ,

as ε → 0.

2. If we further assume that while the Riemannian man-
ifolds Mi converge to Σ, no collapse occurs i.e. the
Hausdorff dimension of Σ is the same as of Mi, then,
the sectional curvature Ki(p) of Mi at p satisfies,

lim
ε→0

Ki(p) = κ;

The theorem above answers both questions 1 and 2. We
can control the curvature of the obtained smooth signals
in an adaptive way by making it converge to the lim sup
of Alexandrov curvature of the signal Σ.

3.2 Gluing
By arguments similar to those in [10] we have,

Theorem 10 ( [1]) Let the above smooth approximations
of Σ be given in neighborhoods of two points p, q.
Then they coincide as well as their sectional curvatures
Ki,Vi ,Ki,Ui on the common boundary, if non empty.

4. Sampling of geometric signals

We propose the following scheme for sampling of a geo-
metric signals.

1. Consider the signal as an Alexandrov space. This re-
quires the representation of the signal as a tame met-
ric space in a meaningful manner.

2. Assess the appropriate Alexandrov curvature bound.
This can be done by the use of discrete metric curva-
ture measures.

3. Smooth the signal while controlling the curvature of
the smoothed signal to suitably approximate the esti-
mated curvature.

4. Sample the smoothed signal according to Theorem 1

4.1 Special case - images
It is common to regard images as surfaces embedded in
some Rn. For gray scale images R3 is considered while
for color images it is usual to take R5. Figure 2 shows im-
age re-sampled according to the geometric sampling pro-
posed in Theorem1. In this example no smoothing was
applied prior to sampling and artifacts of this can be seen
in the reconstructed image. “Flat areas” of the image have
20 times reduced sampling resolution with respect to the
original resolution.

Figure 2: Geometric sampling of a gray scale image. Top
to bottom - original Lena; Lena resampled. The white
dots are the new sampling points. One can see the sparse-
ness w.r.t the original; Lena reconstructed. Reconstruction
using linear interpolation over the sampling points. No
smoothing was done.

In order to estimate the curvature of an image as an
Alexandrov space we can take the set of discrete curvature
measures proposed in [5] where such measures are sug-
gested for very general cell-complexes. It is shown in [5]



that the one-dimensional curvature measure resembles the
Ricci curvature of a cell-complex which, in the case of im-
ages (since they are 2-dimensional manifolds) coincides
with the Gaussian curvature. Figure 3 shows the combi-
natorial Ricci (= Gauss) curvature of the image in Figure
2, see [13] for details about the adoption of the curvature
measures introduced in [5] to images.

Figure 3: Discrete Ricci curvature of Lena. Apart from
giving an assessment for the curvature of the image as an
Alexandrov space, it also serves as an excellent edge de-
tector as itself.

5. Further study

Current and future studies of geometric sampling of im-
ages and signals, focus on two aspects. First we wish to
modify the smoothing process introduced herein so it will
be done in the Fourier domain rather than the spatial do-
main. Namely, we wish to smooth the Fourier transform
of the signal while considering curvature in the Fourier
plane. This is inspired by the Nash embedding Theorem
[8] while the Fourier transform of a manifold is smoothen
prior to its embedding thus achieving a higher degree of
smoothness with respect to smoothing in the spatial do-
main.
Another direction of study is devoted to the development
of a geometric theory of sparse representations and geo-
metric compress sensing.
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