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Abstract

Mobile nodes of the future will be equiped with multiple network interfaces to take advantage of overlay networks, yet

no current mobility systems provide full support for the simultaneous use of multiple interfaces. The need for such support

arises when multiple connectivity options are available with different cost, coverage, latency and bandwidth characteristics,

and applications want their data to flow over the interface that best matches the characteristics of the data. In this paper

we introduce and analyze an architecture called Transport Layer Mobility that allows mobile nodes to not only change

their point of attachment to the Internet within a corporate domain, but also to control which network interfaces are used

for the different kinds of data leaving from and arriving at the mobile node. We implement our transport layer mobility

scheme using a split-connection proxy architecture and a new technique called TCP Splice that gives split-connection proxy

systems the same end-to-end semantics as normal TCP connections. We introduce the architecture, present its system

aspects, investigate its performance and prsent its reliability properties. The analytical aspects of the protocol, in particular

its pseudo-code, its properties and its validation are given in a related Technical Report.

1 INTRODUCTION

Current mobile nodes can choose between many types of wireless network interfaces, each with wildly different
bandwidth, error-rate, cost, and latency characteristics. Mobile nodes of the future will each carry multiple
network interfaces in order to take advantage of overlay networks [8]. Yet, current mobility support efforts do
not enable applications to fully take advantage of more than one interface at a time. While current mobility
support allows mobile nodes to move between subnets, or to change which interface they use as wireless
services become unavailable, it does not support the simultaneous use of multiple interfaces, nor does it have
the ability to specify which interface each individual type of traffic should be carried on. In this paper,
we present a flexible system that gives mobile nodes control over which interface data flows to/from them,
and an enabling technique, called TCP Splice, that preserves TCP’s end-to-end reliability and correctness
semantics while allowing connections to be redirected.

Given a diverse networking environment, application designers need a networking infrastructure that
allows them to specify how particular streams of data should be communicated between a mobile node and
a static correspondent host. Applications need to be able to specify the network interfaces over which each
data stream should be sent and received. Since data streams correspond most closely to entities in the
transport or session layers of the OSI network model, we call our architecture Transport Layer Mobility.
Greatly simplified, the architecture provides a means for redirecting one of the endpoints of an existing
transport session (e.g., a TCP connection or a series of UDP packets) to a new arbitrary address.

∗A preliminary version of this paper was preented at INFOCOM’98
†Reefedge, Inc., Fort Lee, NJ, pravin@reefedge.com
‡Carnegie Mellon University, dmaltz@cs.cmu.edu
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For an application designer, the natural way to think about the desired quality of service for the appli-
cation’s data packets is on a stream-by-stream basis. Consider the case of a video-conferencing application
which deals with video, audio, and text streams (with the text being a transcript of the video). The appli-
cation designer might want to express the notion that packets in the video stream should be sent over the
link with highest available bandwidth and not sent at all if no cheap interface is available, while the audio
packets should be sent over a low latency interface, and the transcript should be sent over the interface with
the greatest geographic coverage.

Our Transport Layer Mobility architecture is built around a proxy that is inserted into the communication
path between a mobile node and a static correspondent host. For each data stream from a mobile node to
a static correspondent host, the proxy is able to maintain one stable data stream to/from the static host,
isolating it from any mobility issues. Meanwhile, the proxy can simultaneously make and break connections
to the mobile node as needed to migrate data streams between network interfaces or subnets.

Our protocol is designed to allow roaming within an Enterprise Network. It may be possible to extend it
to handle global roaming, by designing an inter-proxy protocol, but the need for such an extension seems to
be limited at this point, since we do not expect users to keep their laptops powered while moving to remote
locations.

2 OVERVIEW

Many proxy-based architectures have been proposed to manage the interactions between resource-poor mobile
nodes and servers on static hosts [15]. The typical proxy-based architecture places an intermediate unit called
a proxy in the communication path between a mobile node and the servers with which the mobile node’s
applications converse. The proxy can then mediate the communication between server and client, and provide
services on behalf of either. As examples of possible proxy services, proxies can: provide processing resources
the client may not have; reformat information from the server to fit the mobile node, such as resizing GIF
images for small screens; or use compression to reduce the bandwidth required between the mobile node
and proxy, which is frequently a low quality link. Since the proxy is typically under the control of the same
organization that owns the mobile nodes it serves, the proxy can be configured to support the peculiarities
of its population of mobile nodes. The servers that mobile nodes access may be under the control of other
organizations, who have little incentive to change their code to support the newest mobile nodes.

The networks of many corporations and schools with wireless networks follow a similar pattern, in which
there is one wiring closet where the wired connections to the base stations of various wireless networks come
together and connect to the building’s wired networks. This interconnection point is a perfect place to put
a proxy that supports mobile nodes, as it is already on the path that packets will travel between servers and
mobile nodes. If the forwarding latency of the proxy is kept to around that of router forwarding latencies,
the proxy architecture does not even increase the latency seen by the mobile node. In the general case, the
network stack of the mobile can be thought of as actually being split between the proxy and the mobile
node. Any transport protocol can be used to exchange information between the proxy and mobile node, so
long as both the client and server see the expected end-to-end semantics from the communications session
between them.

Most proxies operate on a split connection model (shown in Figure 1), where mobile nodes desiring to
communicate with a static server first make a connection to the proxy and tell it which server they want to
communicate with. The proxy makes a second connection to the static server and then reads data from one
connection and writes it into the other, thereby allowing the client and server to communicate. Each logical
communication session between mobile node and server is split into two separate TCP connections.
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Proxies can support mobility by providing a way to switch the mobile-proxy connection while maintaining
the proxy-static connection unchanged. Imagine a mobile node starting a TCP connection while using its
wired network interface, so that the connection between the mobile node and the proxy uses the mobile
node’s wired IP address as its endpoint. If the mobile node is disconnected from its wired network, it could
potentially contact the proxy using the IP address of its radio interface and ask the proxy to subsequently
copy data from the server-proxy connection to the new mobile-proxy-via-radio connection, instead of the old
mobile-proxy-via-wire connection. In this way, the mobile node can migrate its sessions from one network
interface to the other.

The case in which a mobile node moves from one subnet to another subnet on the same interface can be
handled in the same way, so long as the mobile node can obtain an address1 for use on that subnet via a
protocol such as DHCP or stateless address autoconfiguration in IPv6 [10][11][14].

Each network interface on the mobile node has its own IP address. We can therefore control over which
interface data will travel from the static to the mobile node by choosing the IP address used by the mobile
node as its endpoint in the mobile-proxy connection. We can also control the network interface over which
data moves in the opposite direction, from mobile to the static server, by assigning the proxy several IP
addresses — it does not matter which interface on the proxy the addresses are bound to. Both BSD and
Windows define a notion of a “host route” that specifies to which network interface packets to a specific host
address should be routed. The mobile node creates a host route for each of the proxy’s addresses, such that
packets sent to that address will go out a different interface of the mobile node. The mobile node can choose
which interface that data to the proxy will flow out by picking the appropriate proxy address as the peer
address for the mobile-proxy connection. Taking the two methods together, when the mobile node chooses
its endpoint address and proxy’s endpoint address to use for the mobile-proxy connection, it chooses on a
session-by-session basis over which interfaces will data flow both to and from the mobile node.

All solutions that seek to control the interface over which data flows into the mobile node must involve
a proxy or some other network entity between the static host and the mobile node, since it is the sender of
a packet that chooses the destination address of the packet. In designs without a proxy, the mobile node
can control over which interface it sends packets out, but unless the static host is modified to include all
the mobility support features of a proxy, the mobile node cannot control which interface it will receive each
packet over. Assuming mobile nodes will typically run client applications that receive more data than they
send, it is critical to allow mobile nodes to control the inflow of packets.

Obviously, enabling mobility has its price. For example, consider the situation when the static server is
located within the same domain as the users. In order to allow user mobility, we have to require that even in
this case, the traffic will flow through the proxy, with the danger of proxy bottlenecks. The solution in this
type of configurations may be proxy enhancements, like proxy clusters connected to a high speed back plane.
Another limitation is that even when the mobile units are static and connected through the wired network,
the MSOCKS+ procedures must be performed. With the popularity of 802.11, the trend may be changing
and users may prefer wireless connections anyway. Even if not, one may consider augmented solutions when
this problem becomes critical, where manual or automatic actions are requird when switching from the static
connection through the wired network to the mobile one via the wireless network and viceversa.

A communication session composed of two TCP connections spliced together appears to the mobile and to
the static server as a single TCP connection, and so is defined in terms of the IP addresses and port numbers
of the connections’ endpoints. Thus, changing the endpoint address of an existing session effectively breaks
the session. Connecting and reconnecting two connections, as we propose in this paper, normally risks the
loss of any data in flight while the reconnection happens, which would break the end-to-end semantics of

1This address is called a co-located care-of address in Mobile IP terms.
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the logical mobile-to-server communication session. Our transport layer mobility solution, which we call
MSOCKS+, is built around a technique we call TCP Splice. TCP Splice allows the machine where two
independent TCP connections terminate to splice the two connections together, effectively forming a single
end-to-end TCP connection between the endpoints of the two original connections.

Note that although the two TCP connections appear as a single TCP connection, the protocol cannot
cope with IP layer cryptography, like IPSEC. However our solution can be used with higher layer crypto
protocols like SSL and TSL, which are more prevalent in the Internet today.

The reasons behind the need for a layer 4 protocol as opposed to enhancements to MobileIP are:

• many enterprise IT managers are reluctant to deploy MobileIP because it requires upgrades to routers and
client stacks.

• IT managers are more comfortable with a client-server style solution which minimizes changes to their
existing infrastructures.

3 MSOCKS

As shown in Figure 2, the MSOCKS+ architecture consists of three pieces: a user level MSOCKS proxy
process running on a proxy machine; an in-kernel modification on the proxy machine to provide the TCP
Splice service; and a shim MSOCKS library that runs under the application on the mobile node. No
modifications are needed in the static server, the server machine, the mobile node kernel, or the Mobile
application (though to take maximum advantage of the TLM service, the application must be programmed
to be mobility-aware, as described in Sec. 6).

In the remainder of this section, we first describe the protocol used between the MSOCKS library and the
MSOCKS proxy. We then explain our TCP Splice technique that allows TCP connections to be arbitrarily
reconnected, and describe our implementation of the MSOCKS library.

3.1 The MSOCKS+ Protocol

The MSOCKS+ protocol is built on top of the SOCKS protocol [9] for firewall traversal. Only two additions
to the SOCKS protocol are needed to support MSOCKS’s ability to redirect TCP streams to a mobile node’s
changing location.

First, we introduce the notion of connection identifier by which logical sessions between the mobile node
and the proxy are tracked. The MSOCKS proxy issues a new connection identifier every time a mobile
node makes a BIND or CONNECT request to the MSOCKS proxy asking to be connected to a correspondent
host. The connection identifier is sent to the mobile node along with the normal SOCKS reply message that
indicates the success of the request.

Second, we add the new MSOCKS RECONNECT and RESTORE requests. When the MSOCKS library
wants to change the address or network interface that a TCP connection uses to communicate with the
MSOCKS proxy, it simply opens a new connection to the proxy and sends a RECONNECT message specifying
the connection identifier of the original connection. A connection’s identifier contains the proxy port number
the library should connect to when reconnecting to the identified connection. Upon receiving a RECONNECT

message, the proxy unsplices the old mobile-to-proxy connection from the proxy-to-server connection, and
splices in the new mobile-to-proxy connection. It also sends a REPLY message on this new connection. The
server on the static correspondent host and the application on the mobile node need not be aware the
reconnection has happened.
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Another situation considered in this paper is the case when the disconnection of the old mobile-to-proxy
connection occurs because of a proxy intermitent failure. If the proxy subsequently recovers within a rea-
sonable amount of time, or an alternative proxy is found, the mobile-server connection can be reestablished.
To accomplish that, the REPLY message sent by the proxy in response to RECONNECT reflects this situation by
containing an ∞ variable. In this case, the mobile will follow up with a RESTORE message, that will allow
the proxy to reestablish the required splice parameters.

As explained below, our splicing technique allows us to perform reconnections even when there is data
in flight between the static correspondent host and the mobile node. Without care, these packets in flight
may be lost or duplicated. The MSOCKS+ reconnect protocol together with TCP Splice ensures that the
end-to-end reliable, in-sequence semantics of TCP are maintained. The reliability property is maintained
across many classes of exceptions: a) no warning that the mobile node will need to change addresses, such as
during hard hand-offs; b) repeated unsuccessful attempts to reconnect, followed by a successful reconnection;
c) proxy failure, followed by proxy recovery or proxy hot-replacement.

Figure 3 shows the packets exchanged when an MSOCKS mobile client application connects to a static
server on a correspondent host. The application’s connect() call is intercepted by the MSOCKS library
and turned into a call to Mconnect(). Mconnect first uses the mobile node’s normal TCP stack to make a
connection to the proxy, using whatever addresses are appropriate to the data the connection will carry. Over
this connection, the library sends to the proxy the server’s address and port number that the application gave
as arguments to Mconnect(), along with any authentication information the proxy requires. Our splicing
technique supports an arbitrary authentication negotiation with packets sent both from and to the proxy,
although only a single packet is shown in the figure. After authenticating the mobile node, the proxy connects
to the desired server and then splices the mobile-proxy and proxy-static connections together. When the
splice is set up, the proxy transmits a final OK message to the mobile node to synchronize the MSOCKS
library. The OK message contains the connection identifier the proxy has assigned to this session for use
should the mobile node later want to reconnect it.

Figure 4 shows the packets exchanged when an application on a mobile node wishes to accept a connection
from a server (e.g., the data connection during an FTP transfer). The application’s call to bind() is
intercepted and the code in Mbind() carried out. Mbind() connects to the proxy, which opens another
socket (labeled D in the figure) and prepares it to receive a connection from the static server. The proxy
then tells the MSOCKS library which address and port number the proxy is listening on, and the library
returns this information to the application. When Maccept() is called, it blocks waiting for a message from
the proxy notifying it of a server’s connection2. By the time the MSOCKS library receives the OK message
from the server, the mobile-proxy and proxy-static connections are spliced together so the application can
communicate with the server as normal.

The MSOCKS+ protocol for accepting connections is roughly equivalent to the SOCKS protocol, and
shares with it the drawback that it can accept single connections, but it cannot publish a port/address
pair to which many connections are made. Since most mobile nodes will be acting as clients, this is not a
significant limitation. A more complicated protocol can be used that gives the application on the mobile
node the complete Berkeley Sockets semantics, allowing it to accept multiple connections to the same port,
but we have not implemented this.

Figure 5 shows the packets exchanged when a connection between the mobile node and the proxy breaks
for some reason, except for a proxy failure. Examples are when the mobile node moves and obtains a new

2A fortuitous side effect of this approach is that nonblocking applications, which select() on the bound socket before calling

accept(), continue to work since select() indicates a socket has a pending connection by marking it as readable, which the

OK message will do as well.
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IP address, or it wishes to switch the session from one network interface to another. After the connection to
the proxy is broken, the MSOCKS library opens a new socket, labeled E in the figure, and connects to the
proxy using it. The MSOCKS library transmits a RECONNECT message to the proxy giving the connection
identifier of the old connection to the server, along with a ReadPntrS variable, telling the proxy how many
bytes of data the application has read from all previous connections, and a WritePntrM variable, telling
the proxy how many bytes of data the application has written to the connection3. The proxy then splices
the new connection to the proxy-server connection in place of the old mobile-proxy connection and closes
the old connection. Once the splice is setup, the proxy sends a REPLY message to the MSOCKS library,
along with variables ReadAmountS and WriteAmountM , that direct the MSOCKS library how to complete
the splice at the mobile node’s end. If the REPLY message arrives at the Mobile before the latter moves
again, the splice is completed, while the Mobile Application and the server at the static node are completely
unaware the switch has happened. The proxy resumes data transmission to the mobile after sending the
REPLY, the mobile resumes transmission of data afer receiving the REPLY. The ReadPntrS , WritePntrM ,
ReadAmountS and WriteAmountM variables are explained in detail in Sec. 3.2.3.

If the above exchange of messages is interrupted by another move of the mobile, we say that the previous
reconnection is incomplete and the above procedure is reinitialized. In this case extra care is necessary
because the proxy may have sent data on the first connection before it learns that the Mobile has moved
again. The exact portion of this data must be appropriately salvaged so as to preserve the end-to-end
reliability semantics. More details about the procedure appears in Sec. 3.3.

If on the other hand the connection is broken due to a proxy intermitent failure, that causes the proxy
to lose its reference point, then upon recovery the proxy cannot send any meaningful values of the variables
ReadAmountS and WriteAmountM . The REPLY message will contain infinite values for these variables,
that signal to the MSOCKS library in the mobile node that a recovery procedure is required. The Mobile
responds with a RECOVER message that contains the connection reference points. The details are given in
Sec. 3.4.

3.2 TCP Splice

The goal of a TCP Splice is to make it appear to the endpoints of two separate TCP connections that
those two connections are, in fact, one. From the point-of-view of the endpoints, it should appear that
they are directly connected by a single TCP connection with all the end-to-end properties of a normal TCP
connection. The insight of the scenario that must be corrected by the TCP Splice is simple: data can be
lost in non-Splice split connection proxy schemes because the proxy acknowledges the receipt of data to the
static server node before receiving an acknowledgment (ACK) from the mobile node. Data which is ACK’d
to the server but lost in transmission to the mobile node or mired in the kernel socket buffer of a broken
connection, is lost forever. Similarly, the proxy acknowledges data to the mobile before receiving an ACK
from the static server.

We implement the splice by altering all the packets received on one connection, including the acknowl-
edgments, before sending them on the second connection, so the packets appear to belong to the latter.
Since the alterations are a simple mapping function and require no storage, they can be done quickly in the
kernel. Since the TCP Splice code itself does not generate acknowledgments, TCP end-to-end semantics are
preserved between the two endpoints. Only after one end of the end-to-end connection receives data and
transmits an ACK can the other end possibly receive an ACK, since the proxy only relays the ACKs.

3The subscript S indicates that the variable belongs to the Static-Mobile data flow direction, whereas a subscript M indicates

variables belonging to the data flow in the opposite direction, from Mobile to Static.
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3.2.1 TCP Background

Before describing TCP Splice, some background on TCP is required (see [13] for more detailed information).
Figure 6 depicts a normal TCP connection with data in flight between endpoints. Each normal TCP
connection is point-to-point and terminates at a TCP socket which is named by an address and a port
number. A TCP connection is uniquely identified by the names of the two sockets at its endpoints. For each
TCP socket, the normal TCP state machine maintains the following three counters:

• SndNext: The sequence number of the next data byte to be sent.

• FirstUna: The sequence number of the first unacknowledged data byte (equivalent to the sequence number
of the greatest in-sequence ACK received).

• RcvNext: The sequence number of the next byte of data the socket expects to receive (equivalent to one
more than the greatest consecutive sequence number received so far).

Using these counters, TCP assigns each byte of data sent over the connection a sequence number, so
TCP can detect and recover from data loss, reordering, or duplication.

These counters define a sequence space associated with the socket. Data bytes with sequence numbers
greater than or equal to SndNext have not yet been sent. Data bytes with sequence numbers less than
RcvNext have been received by the TCP stack, but perhaps not yet read by the application. We say that
data sent with sequence number N is acknowledged when the sender of the data receives an acknowledgment
for it, namely when FirstUna > N . Denote by A and B respectively the sender and receiver of some
data that was sent with sequence number N . While the data is in flight or lost, holds RcvNext(B) ≤ N .
Whenever the ACK is in flight or lost, holds FirstUna(A) ≤ N < RcvNext(B).

3.2.2 Mapping Sequence Spaces and Moving Packets

Consider first the data flow in the direction from the Static Server to the Mobile. Variables associated to
this data flow contain subscript S. The proxy has two connections to splice together, one from Static and
one to Mobile. Then the first data byte the proxy expects to receive from Static that will be forwarded on
this connection to Mobile must be transmitted on the connection to the Mobile with the sequence number
that Mobile next expects to receive from the proxy. The sequence number of the byte the proxy expects to
receive from Static that is transmitted first on the current connection to Mobile is denoted by MapStaticS.
The initial sequence number on the current connection to Mobile will be denoted byMapMobileS. Together,
the pair <MapStaticS, MapMobileS > define a mapping between the sequence number spaces of the spliced
connections from Static to Mobile. In particular, the datum with sequence number N on the Static-to-proxy
connection maps to sequence number N − MapStaticS +MapMobileS on the proxy-to-Mobile connection.

We use similar notations, MapMobileM , MapStaticM for the initial sequence numbers for the Mobile-
to-Static direction. The datum with sequence number N on the Mobile-to-proxy connection maps to
N − MapMobileM +MapStaticM on the proxy-to-Static connection.

As each TCP segment is received at a spliced socket on the proxy, the segment’s IP headers are altered
to address the segment to the socket at the other end of the spliced connection. The segment’s TCP headers
are altered so the segment will be intelligible to the end system when it arrives — the segment will look like
a continuation of the normal TCP connection that the end system first started with the proxy. To alter a
segment for forwarding, the proxy needs only the state from the two sockets located on it (labeled C and D
in the figures). In the discussion below, all variables referred to are those kept by the proxy. Processing a
segment requires three steps: altering the IP and TCP headers, and checking for connection closing.

7



Alter IP header The following steps are used to alter the IP header:

• Change source and destination address to that of outgoing connection.

• Remove IP options from incoming packet.

• Update IP header checksum.

Alter TCP header The following steps are used to alter the TCP header:

• Change source and destination port numbers to match the outgoing connection.

• Map sequence number from incoming sequence space to outgoing space for Static to Mobile connection:
N ⇒ N − MapStaticS +MapMobileS

• Map ACK number for Static to Mobile connection: ack.N ⇒ ack.N − MapMobileS +MapStaticS

• Map sequence number from incoming sequence number to outgoing space for Mobile to Static connection:
N ⇒ N − MapMobileM +MapStaticM

• Map ACK number for Mobile to Static connection: ack.N ⇒ ack.N − MapStaticM +MapMobileM

• Update TCP header checksum.

The TCP and IP headers are updated incrementally, saving the time required to recompute them, while
also preserving the checksum’s error detection ability. TCP represents the urgent pointer as an offset from
the segment’s sequence number; it is not changed during the mapping procedure. In the Static-Mobile
direction, a special check must be made to ensure that a segment being mapped does not contain data with
sequence numbers less than splice base point MapStaticS. If such a segment is received, the data up to
MapStaticS is chopped out of the segment and an appropriate ACK is sent to the Static.

Connection Teardown As TCP segments are passed through the splice, they are examined for indications
that the end systems are closing their connections. When the end systems finalize their connection, the TCP
Splice code tears down the splice between the two sockets and frees the sockets on the proxy:

• If each side sends a FIN and ACKs the other side’s FIN, then tear down the splice because the end systems
have closed.

• If either side sends a reset (RST), tear down the splice.

3.2.3 Selecting the Base points

During the reconnect operation, the proxy must unsplice the connection between sockets A-C and D-B
and splice in the connection between sockets E-F (see Figure 5). The base points for the splice must be
carefully chosen to prevent any overlaps or gaps forming in the sequence space of the logical session between
the Mobile and the Static server. There are three cases to be concerned with: two covering the data flow
from Static to Mobile, and one covering the data flow from Mobile to Static.
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Splicing the Static to Mobile Flow When data arrives at the TCP socket in the Mobile library, it is
acknowledged to the proxy and placed in the buffers to be read by the Application. When a Mobile-proxy
connection fails, the basepoint of the new connection is established by the proxy, depending on the relative
situation between the acknowledged bytes and the bytes read by the Application.

In addition to the physical sequence numbers on each of the spliced connections, we define a Virtual
sequence number, that corresponds to the absolute sequence space of the transmitted bytes on the end-to-end
connection. We point out that virtual sequence numbers are not carried in messages. The first transmitted
byte on the end-to-end connection has virtual sequence number 0. Subsequent bytes have consecutively
increasing virtual sequence numbers, irespective of the proxy-to-Mobile connection they are sent over. The
proxy knows the mapping from the Virtual to the physical sequence numbers by remembering the parameter
irsS , the Initial physical receive sequence number on the connection from the Static server.

We introduce a pointer ReadPntrS at the Mobile library, which keeps track of how much of the sequence
space has actually been read by the application. ReadPntrS is initialized to 0 when the end-to-end connection
is established and is incremented every time a byte is read by the Mobile application from a TCP socket
buffer. Thus ReadPntrS represents one plus the Virtual sequence number of the last byte that has been
read by the Mobile application. Another pointer is SndUnaS, at the proxy, which is initialized to 0 when the
end-to-end connection is establshed and is increased according to the number of bytes acknowledged every
time an ACK traverses the proxy from the Mobile to the Static. The variable SndUnaS is one plus the
Virtual sequence number of the last ack forwaded by the proxy from the Mobile to the Static. The proxy is
sure that the mobile node has received at least all the data up to (but not including) SndUnaS , since it has
seen a cumulative ACK from the mobile node for that data. If the Mobile-proxy connection fails, the proxy
finds out the value of ReadPntrS when it receives the RECONNECT message ot the new connection. It then
can compare it with the value of SndUnaS.

First consider the case when acks are sent by the MSOCKS library to the proxy faster than the Mobile
application reads the data, namely SndUnaS > ReadPntrS . Then SndUnaS−ReadPntrS bytes of data or
more are present in the socket buffers at the Mobile. There can be more than SndUnaS−ReadPntrS bytes
because new bytes may have been received after the Mobile has sent the RECONNECT. Since an ACK has been
sent for the data up to SndUnaS, the proxy must assume that the static node may have received this ACK
and so will never retransmit the data. The MSOCKS library must therefore drain the ReadAmountS =
SndUnaS−ReadPntrS bytes out of the old socket at the Mobile before freeing it and must offer those data
to the application when the latter next reads from its MSOCKS socket. The value of ReadAmountS is sent
by the proxy to the Mobile in the REPLY message. The base point for the new connection is now set such
that the first byte sent by the proxy on the new connection to the mobile is the byte whose Virtual sequence
number is SndUnaS. The variable MapStaticS, which denotes the physical sequence number of the byte
the proxy receives from Static that corresponds to the first byte sent on the new connection to Mobile, is
therefore set to SndUnaS + irsS . If the proxy has received bytes whose virtual sequence number is beyond
SndUnaS, and thus RcvNextS(D) > SndUnaS + irsS , these bytes are retransmitted by the Static if they
were lost during the hand-off.

The second case is when data is read faster than it is acknowledged to the server, namely SndUnaS <ReadPntrS.
To avoid duplicating data, we chooseMapStaticS to correspond to the ReadPntrS pointer, namelyMapStaticS =
ReadPntrS + irsS . The next byte of data the application has not read will then be the first byte of data to
be read from the new socket after the MSOCKS library receives the REPLY message. In this case the library
does not need to drain any previous data, thus ReadAmountS = 0. Any data the application has already
read that is retransmitted by the server will fall before the MapStaticS point and will be chopped off and
dropped by the proxy.
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Splicing the Mobile to Static Flow In order to establish the basepoint for the data flowing from Mobile
to Static, we must consider the data the Mobile application has written that the proxy has not yet seen
acknowledged by the Static. When a Mobile-proxy connection fails, this data is present in the old socket
but it is a gap in the sequence space of the new socket , the socket that will be responsible for retransmitting
the data once the new connection is spliced in. Since some of the data in the gap may have been lost in
flight, the mobile node must rewrite the data into the new connection. In order to be able to do this, the
Mobile application must keep in a buffer all data for which the socket has not seen an acknowledgement yet
and in a variable . The number of bytes written so far by the application library into the TCP sockets is kept
in a variable WritePntrM . The rewritten data, covers the gap left by the previous connection. In the case
in which all the data in the hole has safely made it to Static, the next ACK from Static will acknowledge
all the rewritten data. After the MSOCKS library has written data into the new socket to cover the gap,
new application data can be sent via the new connection as normal. The proxy is able to calculate how
many bytes of data the MSOCKS library must rewrite into the new connection upon receiving the pointer
WritePntrM in the RECONNECT message. The amount is WriteAmountM = WritePntrM − SndUnaM ,
where SndUnaM is a variable kept by the Proxy and denotes the number of acks that have traversed the
Proxy. The value of WriteAmountM is sent by the proxy to the Mobile in the REPLY message. The base
point for the new connection is now set such that the first byte received by the proxy on the new connection
from the mobile is the byte whose Virtual sequence number is SndUnaM . The variableMapStaticM , which
denotes the physical sequence number of the byte the proxy sends to Static that corresponds to the first
byte received on the new connection to Mobile, is therefore set to SndUnaM + issM .

3.2.4 Urgent Data

TCP defines a notion of urgent data [13] that is typically received either inline or out-of-band by the
user-level application. The MSOCKS proxy must handle connections with out-of-band urgent data slightly
different from those with inline urgent data, since there is the potential for pending out-of-band data to be
overwritten by newly arriving out-of-band data before the MSOCKS library can include the pending data
in the ReadPntrS pointer. Since the MSOCKS proxy sees all out-of-band data as it flows through, it is able
to correct the ReadPntrS value reported by the MSOCKS library to reflect all the data that has traversed
the connection.

3.3 Incomplete Reconnections

If the Mobile MSOCKS library does not receive the REPLY on a new connection within a preassigned time,
it times out and tries to establish a new connection. On the other hand, the proxy starts sending normal
data after sending the REPLY (see Fig. 5), so that data may arrive and be acknowledged on a proxy-Mobile
connection on which the library has timed out. We refer to those connections as incomplete reconnections.
RECONNECT messages sent on consecutive incomplete reconnections carry the same value of ReadPntrS , but
the REPLY messages may carry different values of ReadAmountS, since acknowledged data at the proxy
increases SndUnaS . When the MSOCKS library finally receives a REPLY before timing out, it will drain
the required bytes from the sockets of the previously timed-out reconnections. The calculation of the correct
number of bytes that needs to be drained from each of the incomplete reconnections is illustrated in the
following example.

Denote the byte with virtual sequence number n by b[n]. Suppose that the MSOCKS library receives
data on connection A-C in Fig.5 and times out after having received bytes b[0] and b[1]. Thus, the value of
ReadPntrS upon timing out, denoted by R̄, is 2. We also assume that the library times out on connections
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E-F and G-H (the latter not shown in the Figure) before receiving any message on those connections.
Finally, the RECONNECT message on the subsequent connection I-J succeeds and the Mobile receives the
REPLY message and the bytes following it. In this example, the library sends RECONNECT(2) to the Proxy
on sockes E,G and I. Suppose that at the times when these messages are received, SndUnaS = 3, 5 and 9
respectively. The Proxy will send the difference between SndUnaS and R̄ in the REPLY messages, namely it
sends REPLY(1),REPLY(3) and REPLY(7) respectively. The first byte sent after REPLY will be b[3], b[5] and
b[9] respectively. Since on connections E-F and G-H, the MSOCKS library times out before receiving the
REPLY message, the contents of these messages waits in the buffers (we denote them by init). When the
library receives the REPLY(7) message on socket I, it proceeds as follows: it reads all bytes from the buffer
of socket A, in our example b[2], b[3], b[4] and remembers that b[5] is the next byte it should read; since
init[E] = 1, it knows that the first byte on E-F is b[R̄ + 1] = b[3] and thus it discards the first 2 bytes on
E-F, reads the rest and remembers that the next byte it should read is b[8]; since init[G] = 3, it knows
that the first byte on G-H is b[R̄+ 3] = b[5] and thus it discards the first 3 bytes on G-H; since the REPLY
received on I-J contains 7, it reads only one byte from G-H, this is byte b[8], discards the rest and continues
reading from connection I-J. The first byte on I-J is b[9] and from now on connection I-J is the current
connection. Note that the REPLY messages contain only the difference between R̄ and SndUnaS. From these
the library is able to figure out exactly how many bytes it should read from each connection.

3.4 Intermittent Proxy Failures

Failure of the proxy results in loss of state, in particular SndUnaS, SndUnaM , irsS and issM . In order
to allow recovery, we keep a backup copy of the initial connection mapping variables irsS and issM in the
Mobile. These values are communicated by the proxy to the Mobile as soon as the end-to-end Static-Mobile
connection is established. The MSOCKS library learns that the Proxy has lost synchronization from the
REPLY message, because after failure and recovery, the Proxy responds to RECONNECT with REPLY(∞) . In
this case, the MSOCKS library reads all bytes in its buffers and responds with a RESTORE message. The
latter contains the irsS and issM parameters, as well as the new values of ReadPntrS and WritePntrM ,
which allow the Proxy to resume transmission and receipt on the new connection.

3.5 The MSOCKS Library

The MSOCKS library sits between the application and the kernel on the mobile node. Its task is to provide
an interface to the application identical to that of the Berkeley Sockets API, while internally using the normal
TCP stack of the kernel to provide mobility functions. We call the sockets exported by the MSOCKS library
Msockets. The MSOCKS library works as a shim library. It intercepts calls made by the application to
networking functions such as connect(), send(), recv(), and getsockopt(), and replaces those calls with code
from the MSOCKS library.

There are numerous ways to insert a shim library between an application and a kernel; the best method
depends on factors such as the ability to recompile the application, and OS support for shared libraries. On
Windows platforms, we are implementing the MSOCKS library as a DLL that fits between the application
and the WinSock DLL. On our BSD OS implementation, we are looking at using the shared library support,
although we currently recompile the application.

In our BSD implementation, each Msocket is an integer, identical to how normal BSD sockets are rep-
resented to applications. The integer is the index of an entry in a table kept by the MSOCKS library — a
kind of user level file descriptor table. The entry, in turn, contains all the MSOCKS data associated with
that socket and its connection. Underlying each Msocket in our implementation is a real socket, and we
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chose Msocket table entries such that the Msocket file descriptor is the same as the underlying, real file
descriptor. This allows applications to use Msocket descriptors in the same way as all other file and socket
and descriptors.

The basic operation of the library was already discussed indirectly in the Section 3.1. We will now
describe how the MSOCKS library maintains or uses the ReadPntrS, WritePntrM , ReadAmountS , and
WriteAmountM variables.

As explained above, the proxy must know howmany bytes of data the application has read from the server-
to-client flow in order to properly choose the mapping basepoint for a respliced connection. To maintain this
ReadPntr variable, the MSOCKS library must intercept all the calls that read from the Msocket, make the
appropriate call to the underlying real socket, and update the counter with the number of bytes transfered.
There is no data copying overhead, as the library does not make a pass over the data transfered.

If, while resplicing, the proxy finds that the application has been reading data more slowly than it has
been arriving, the MSOCKS library will have to salvage the unread data from the old connection’s socket
before closing the old socket. This is the case described above when SndUnaS > ReadPntrS . The proxy
calculates how many bytes of data are left in the old socket as ReadAmountS = SndUnaS − ReadPntrS

and sends the MSOCKS library the ReadAmountS counter as part of the OK message for the RECONNECT.
While an Msocket’s ReadAmountS is greater than 0, the MSOCKS library directs all read calls to the old
socket. When it drops to 0, read calls are directed to the new socket.

The final major task of the MSOCKS library concerns the WritePntrM and WriteAmountM counters
and the gap described above that can form when resplicing the data flow from client to server. In order
for the proxy to calculate the size of the gap, the MSOCKS library must count the number of bytes the
application has sent into its Msocket so it can provide the proxy with the count as the WritePntrM field in
RECONNECT messages. The proxy calculates the size of the gap and returns the value as the WriteAmountM

field in the REPLY message. In order to cover the gap, the MSOCKS library must then write into the new
socket the last WriteAmountM bytes that were sent by the application. This implies that the MSOCKS
library must keep a copy of all data sent by the application into an Msocket, as well as writing it into the
Msocket’s underlying real socket. We use a circular buffer to store the data, and the buffer size is set as the
minimum of the maximum TCP window size and the underlying socket buffer size. Luckily, most mobile
nodes receive significantly more data than they send, so the data copying requirement imposed is minimal
in practice.

By intercepting the setsockopt() call, the MSOCKS library can determine whether the application is
receiving urgent data inline or out-of-band and can notify the proxy as appropriate.

4 FORMALIZATION and RELIBILITY

Reliable transport protocols make three guarantees with respect to the data they carry: that data will be
delivered eventually, that the data will be delivered in the order it was sent, and that exactly the data that
was sent will be delivered without omission or duplication. The first property is referred to (see [16],[17]) as
the Delivery property, the combination of the other two as the FIFO property. All such reliable services
are built around two basic elements: a numbering scheme by which each unit of data carried by the service
is assigned a sequence number, and an acknowledgement scheme by which the data receiver tells the sender
which pieces of data were correctly received. Thus another essential property is that data for which an
acknowledgement has been received at the sender has indeed been received correctly by the receiver. This
property is referred to as the Confirm property.

Formally, the definition of reliability of a connection [16],[17]as appropriate to our system is:
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a) FIFO :

• Bytes that are read by the Mobile Application are read in order, with no gaps or duplicates.
• Bytes that are read by the Static are read in order, with no gaps or duplicates.

b) Confirm :

• A byte for which acknowledgement is received at the Static node has been placed in a MSOCKS library
buffer.

• A byte for which acknowledgement has been received at the MSOCKS library has been received at the
Static.

c) Delivery : Suppose that after a split connection is established and after an arbitrary finite number of
failures of the proxy and/or of the proxy-Mobile session, the proxy and the session are up for a sufficiently
long time. Suppose also that the timeout and the communication delays are such that REPLY is eventually
received before the MSOCKS library times out. Then

• all bytes introduced by the Static node into the split connection are delivered in finite time to the
MSOCKS library and are acknowledged in finite time at the Static node.

• all bytes introduced by the MSOCKS library into the split connection are delivered in finite time to
the Static and are acknowledged in finite time at the MSOCKS library.

The pseudo-code of the protocol is given in [18]. Its main property is given in Theorem 1 below, whose
proof appears in [18].

Theorem 1
The split connection is reliable, namely it satisfies the FIFO, Confirm and Delivery properties.

5 PERFORMANCE

All proxy architectures cause a concentration of traffic at the proxy, which raises scalability concerns. If
each mobile node needed its own proxy to serve it, the transport layer mobility architecture would not be
practical. Testbed evaluation shows that because the forwarding operation at the proxy is so cheap for spliced
connections, the primary limitation on how many mobile nodes a proxy can handle is the link bandwidth in
and out of the proxy.

To discover how many simultaneous connections an MSOCKS proxy can support, we ran both a Mobile
library and a Static server program on the same machine as the MSOCKS proxy. By using the loopback
interface to carry the traffic from Mobile to proxy and from proxy to Static, we avoided limitations on
throughput resulting from a physical link and maximally stressed the proxy. The test machine was a 200
MHz Pentium Pro with 256KB of cache running BSDI BSD/OS. Figure 7 shows the total throughput
achieved by the proxy as the number of connections through it was increased. Considering that fast wireless
technologies support 1-3Mbps, we believe this data shows that the MSOCKS proxy is scalable.

In addition to supporting many connections, an ideal MSOCKS proxy would add minimal latency to the
path of packets traveling to or from mobile nodes. Table 1 compares the latency seen by packets in a TCP
connection routed via IP forwarding through our test machine with the latency seen by packets in a TCP
connection spliced at our test machine. Latency measurements were made by configuring the test machine
as a router between two Ethernet interfaces. The tcpdump program was used to record the time at which
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Table 1: Summary of forwarding latencies created by TCP Splice and IP routing

mean (msecs) median (msecs)
IP forwarding 0.4038 0.0960

TCP Splice forwarding 0.4444 0.1120

each packet was received by an interface and the time at which that packet was written into the IF QUEUE

of the outgoing interface. While our test machine is not a commercial-strength backbone router, the rough
equality of the forwarding latencies shows that inserting a TCP Splice between two connections does not
create burdensome latency overhead. Note that tcpdump is a tool for sniffing packets and does not carry out
any processing at the TCP layer. It intercepts packets at the device driver layer and timestamps arrival and
departure of each packet. Nonetheless, the tcpdump tool does add some noise in the measurements reported
in Table 1, but that noise is insignificant because even at full line speed the CPU is not the bottleneck in our
system. In any case, the same noise is added in both observations (IP forwarding Vs TCP splice forwarding).

Another issue of concern is how quickly MSOCKS+ will be able to reconnect TCP connections after the
decision to reroute a connection has been made. The time taken by the proxy to resplice two connections
is insignificant. The greatest latency in reconnection results from the time required to establish the new
TCP connection and transmit the RECONNECT message, which in turn depends critically on the roundtrip
time (RTT) of the particular network technology being switched to. A protocol level analysis shows the
greatest rate at which a mobile node can reasonably reconnect TCP sessions is limited to once per 2.5 round
trip times: 1.5 RTT for the connection establishment, and 0.5 RTT for transmission of the RECONNECT OK

message, and 0.5 RTT for the data.

6 DISCUSSION

We have been deliberately vague in describing the mechanism applications use to set and change the policies
between mobile node and proxy, such as which network interfaces are used for which traffic. We see trans-
port layer mobility as a generic mechanism that can be used along side others in a complete connectivity
management solution for mobile nodes.

For example, there is a natural fit between the Odyssey project at CMU [4] and our transport layer
mobility architecture. Odyssey is a system of wardens, one per data type, overseen by a viceroy that
negotiates with user level applications to determine resource usage policies. Each warden is responsible
for the control of all streams of some data type (e.g., movies, files, audio) entering or leaving the mobile
node, and based on policy passed down from the viceroy, it determines fidelity levels for the data. Odyssey
implicitly assumes that data servers will be able to alter the fidelity of the data they transmit based on signals
from wardens on the mobile node. The transport layer mobility architecture enhances Odyssey wardens by
allowing them control over which interface their data is sent over. Additionally, since few or no servers today
are capable of negotiating data fidelity levels with clients, the TLM proxy provides an ideal place to put the
transcoding services mobile nodes need to interoperate with unmodified servers.

At a philosophical level, mobility support systems can be tuned to support either local mobility or global
mobility. Transport Layer Mobility is tuned to support local mobility, as we feel many mobile computer
users, such as office workers, will not want to keep their connections up and valid during long moves. They
may move often inside their buildings or between home and work, but they will shutdown their machines
before leaving on a trip. While inside their buildings, the machine may move between a desk with a wired
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network connection, meeting rooms with diffuse IR constrained to the room, and all the while never leaving
the range of a building-wide radio network. Given this environment, we focused on a design that allows
individual data streams to be rerouted, rather than rerouting packets.

Mobile IP [3][7] is concerned with global mobility, that is, maintaining a mobile node’s connections by
rerouting packets to it, regardless of where in the world the it happens to wander. As currently defined,
Mobile IP largely assumes that there is only one way to reach a mobile node, and that all packets sent to the
mobile node have equal priority. Since Mobile IP is a network layer function, it does not distinguish between
the different types of data present in the packets it carries, and it has no way to handle them differently.
Mobile IP can not support handling each transport session differently without violating the network stack
layering.

Additionally, Mobile IP traffic can not currently cross corporate firewalls, as the protocol is firewall
unaware, which limits the movement options of company mobile nodes to networks inside the corporate
firewall. Since our mobility proxy functions can be integrated with other proxies, such as firewalls, MSOCKS
mobile nodes can move outside their corporate firewall while retaining communication with both internal and
external correspondents. MSOCKS+ by itself, however, does not solve the problem of traversing multiple
firewalls.

Many researchers have focused on the TCP address matching function as the root of TCP’s mobility
problems. Several have proposed schemes which identify TCP connections by a unique identifier not based
on the endpoint addresses [6][12], similar to the way our MSOCKS proxy assigns connections identifiers.
These unique-identifier schemes typically require significant modifications to the correspondent hosts, which
make the schemes hard to deploy. Furthermore, schemes based solely around connection identifiers are
extremely insecure, in that any host overhearing the connection identifier can “capture” that connection by
issuing a forged reconnect message. Since MSOCKS+ is built on top of the SOCKS firewall authentication
system, it is already as secure as SOCKS itself.

Some unique-identifier schemes, like [6], require modifying the transport layer header so each packet
carries the connection identifier. In MSOCKS+, packets are demultiplexed based on port number at the
proxy, and connection identifiers are used only when reconnecting TCP connections. Since all connection
identifiers used by a proxy are issued by that proxy, there is no problem maintaining identifier uniqueness.
The Mobile Socket Layer design [12] describes a virtual port that performs the same functions of byte counting
as the Msocket in our MSOCKS library. However, the Mobile Socket Layer is based on a unique-identifier
scheme, where MSOCKS+ is based on TCP Splice and so is compatible with unmodified correspondent
hosts.

The use of the MSOCKS shim library to support mobility on mobile nodes without requiring any mobile
node kernel changes is not one of the major contributions of this paper. However, it dovetails well with TCP
Splice and the overall Transport Layer Mobility architecture to support mobility on systems like Microsoft
Windows95 where the code for the transport protocols (like TCP) comes from a third-party and can not be
modified. Even the WinSock2 specification, which defines a Service Provider Interface [5] hook point above
the transport protocol, does not provide sufficient access to easily implement mobility.

Bakre and Badrinath [1] proposed using a split TCP connection architecture both for mobility and
for improving TCP’s performance over wireless links, though their system significantly violates the normal
end-to-end semantics of TCP. Their mobile support router (roughly equivalent to our proxy) acknowledges
data to the server before it has been received by the mobile node, which could cause serious data integrity
problems in the case of failed hand-offs. To the best of our knowledge, TCP Splice is the first technique
that enables split TCP connection architectures while maintaining end-to-end TCP semantics. We see the
issues of transport layer mobility and TCP’s wireless performance as largely orthogonal. MSOCKS+ and
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TCP Splice concentrate on providing mobility with correct end-to-end semantics. Systems like Snoop TCP
[2] could be used underneath TCP Splice to improve the wireless performance.

7 CONCLUSIONS

Providing mobility support at the transport layer has both strategic and technical benefits. Strategicaly,
adding mobility support to the transport layer allows us to add mobility support to applications running on
operating systems, like Windows 98, where we do not have access to the network source code but can can
intercept data above the transport layer. Technically, adding mobility support at the transport layer allows
us to provide applications with a qualitatively different kind of control over their sessions: they can specify
which interfaces are used for each type of traffic they exchange. The architecture allows mobile nodes to
specify the both the network interface that packets in a session should be sent out on, and the interface that
packets for the session should be received on.

Additionally, we have shown how our TCP Splice technique can be used to implement MSOCKS+ while
preserving TCP’s end-to-end reliability and semantics between a mobile node and a Static correspondent
host, something no other split connection protocol does. These properties are stated precisely and proved
in an associate Technical Report [18]. Finally, given the low cost of forwarding packets between two spliced
connections, TCP Splice enables simple and scalable proxy services, like MSOCKS+.
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Figure 1: A common network topology showing the location of a proxy between the mobile node and the
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Figure 2: The MSOCKS+ architecture. Parts shown in gray are where MSOCKS alterations are made to
the standard parts of proxy based client/server system.
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