
83-860-01
Algorithms in Ad-Hoc and Sensor Networks

Prof. Adrian Segall
Adrian.Segall@biu.ac.il

The seminar will consist of several introductory lectures on two topics:

Distributed Network Protocols (material: Slides and Lecture Notes)

Ad-Hoc Protocols (material: Slides)

During these first weeks, students will select papers from a list, present
them in the following weeks and submit a written summary of the
presented paper(at most two pages).

October 21, 2012 1 / 1



Distributed Network Protocols
Prof. Adrian Segall

Department of Electrical Engineering
Technion, Israel Institute of Technology

segall at ee.technion.ac.il
and

Department of Computer Engineering
Bar Ilan University

Adrian.Segall at biu.ac.il

October 21, 2012 2 / 1



General ”Classical” Network
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Link Model

The Link may be in one of two states at each DLC:

Connected
Initialization

Only in Connected it can receive and send data frames. When entering Initialization, it resets
counters and discards any unacknowledged data frames.
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DLC protocol that ensures data reliability
Definition: A bit-oriented DLC procedure is said to ensure data reliability if it satisfies the
following properties:

Follow-up: If a DLC enters Initialization Mode at some time when the other DLC is in Connected
state, then the latter will also enter Initialization Mode in finite time.

Crossing: If a DLC enters Initialization Mode at some time t1, there is a time t after t1 but
before the DLC next enters Connected State, such that the other DLC is also in
Initialization Mode and no packet accepted by the sender DLC at either end before
time t can be delivered to the corresponding data sink after time t.

Deadlock-Free: There exists a value T1 such that if (a) both DLC’s are in Initialization Mode at
some time t and (b) during the interval of length T1 after t there are no channel
errors and (c) the delay for all frames (queueing+propagation) is bounded, then at
time t + T1 both DLC’s are in Connected State. The DLC’s stay in Connected State
if there are no media failures afterwards.

FIFO: Suppose that a DLC delivers to its data sink a packet that has been accepted at time
t by the other DLC from the corresponding data source. Then all data packets
accepted by the other DLC since it last entered Connected Mode until time t, have
been delivered to the data sink without errors, in order, with no gaps or duplicates.

Confirm: Whenever a DLC is in Connected State, all packets accepted from its data source
since it last entered the Connected State, and considered acknowledged, have been
delivered to the corresponding data sink.

Delivery: Suppose that a DLC enters Connected State and stays there forever afterwards. Then
all packets produced by that DLC’s data source and accepted by the DLC after it
entered Connected state are considered acknowledged within finite time.
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Discussion:

Follow-up: the need for this property is obvious. In particular it disallows the situation where one
DLC stays forever in Connected state and the other is in Initialization Mode.

Crossing relaxes and formalizes the usual notion of a correct global initial state where both
DLC’s are in Connected State with sequence number 0 and the channel is empty of
frames. The generalization takes into consideration the case when one DLC enters
Connected State and starts sending frames before the other enters Connected State,
so that strictly speaking there is no instant when the system is in a correct global
initial state. In this situation we still think of the DLC procedure as reliable, provided
it satisfies the property indicated above under Crossing.

Deadlock-Free says that if the channel works properly, the DLC’s are not deadlocked in
Initialization Mode.

FIFO states that the sequence of packets delivered to the data sink is a prefix of the
sequence received from the data source.

Confirm states that packets that are considered acknowledged by the source DLC have indeed
been delivered to the data sink.

Delivery ensures that the DLC procedure is not the cause for non-delivery of data. It does not
allow the possibility that the media is operational and is not declared failed by the
failure detection mechanism, but the DLC procedure is stagnated in a situation where
packets are not delivered or not considered acknowledged.
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Discussion - cont’d
Delivery and Confirm ensure that under the conditions stated in the Delivery property, all
packets are delivered to the data sink in finite time.
FIFO and Confirm ensure proper delivery of packets corresponding to frames that are
considered acknowledged . At any instant there are (W − 1) packets that have been accepted
from the data source but are not yet acknowledged. Such packets may or may not be delivered
to the data sink (if the DLC enters Initialization Mode), but the FIFO property says that
whatever is delivered to the sink, is delivered in sequence, whether it is considered
acknowledged or not.
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Network protocols: The Fixed Topology Model
a) Each link is bidirectional; the link connecting node i with node j considered in the

direction from i to j is denoted (i , j).

b) All messages are control messages of the DNP. We observe that those messages are
considered as data packets by the DLC’s on the links.

c) Associated with each link, there is a Data-Link Control protocol that ensures Data
Reliability. Since links and nodes do not fail in this model, Data Reliability means
FIFO, Confirm and Delivery.

d) All messages received at a node i are stamped with the identification of the link from
which they came and then transferred into a common queue; each node uses one
processor for the purpose of the algorithm; the processor extracts the control message
at the head of the queue (at that time we say that the node receives the message),
proceeds to process it and discards the message when processing is completed; actions
triggered by receipt of a message are atomic, namely no other operation related to the
protocol is performed by the processor while a message is being processed;
consequently we may relate all processing that takes place in response to the receipt
of a control message to the instant this processing is completed and regard the
processing as if it takes zero time.
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e) Each node has an identification; before the protocol starts, each node knows the
identity of all nodes that are potentially in the network; except when otherwise stated,
it knows nothing about the topology of the network and in particular about what
nodes actually belong to the network. We denote by 1, 2, ..., |V | the nodes that are
potentially in the network and by 1, 2, ..., |V | the nodes actually belonging to the
network. We denote by |E | the number of bidirectional links in the network and by
|E | the number of links potentially in the network.

f) Each node knows its adjacent links, and possibly the identity of its neighbors. The
latter can be normally provided by the DLC Link Initialization at the time when the
link is brought up. The collection of all neighbors of node i will be denoted by Gi .

g) In some cases, the protocol may be started by only one node and in some others by
several nodes asynchronously. This will be stated explicitly in the description of each
protocol. A node starts the algorithm by receiving a special message START from
the outside world; a standing assumption is that, once a node has entered the
algorithm, it cannot receive START.

h) (don’t postpone) The message delay on a given link is measured from the time when
the message is accepted by the DLC until it is delivered by the DLC at the other end
to the Network Protocol. The message delays on a given link are assumed to be
strictly positive and may be time varying, with the restriction that always a message
sent at a later time on a given link arrives at a later time.
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algorithm, it cannot receive START.

h) (don’t postpone) The message delay on a given link is measured from the time when
the message is accepted by the DLC until it is delivered by the DLC at the other end
to the Network Protocol. The message delays on a given link are assumed to be
strictly positive and may be time varying, with the restriction that always a message
sent at a later time on a given link arrives at a later time.
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The Variable Topology Model
a’),c’) Associated with each link there is a Data-Link protocol that ensures Data reliability,

i.e. Follow-up, Deadlock-Free, Crossing, FIFO, Confirm and Delivery.

e’) A link is considered to belong to the network, i.e. to be in the set E if both its ends
are in Connected state for this link. Therefore (i , l) ∈ E if and only if both i ∈ Gl and
l ∈ Gi .

i) When a node comes up, it first performs the actions required by the Network Protocol
and then proceeds to perform the Link Initialization Protocol for each of its links.
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Basic Protocols - Propagation of Information
Protocol PI1

Messages

MSG (info) - message carrying the information info to be propagated

Variables

Gi - set of neighbors of i
mi - shows whether node i has already entered the protocol (values 0,1).

Initialization

if i receives a MSG , then

- just before receiving the first MSG , holds mi = 0

Algorithm for node i

A1 receive MSG (info) from l ∈ Gi ∪ {nil}
A2 { if (mi = 0) phase1();

}
B1 phase1()
B2 { mi ← 1;
B3 accept(info);
B4 for (k ∈ Gi ) send MSG (info) to k ;

}

October 21, 2012 11 / 1



Properties of PI1
Theorem

Suppose that in Protocol PI1, node s ∈ V receives START. Recall that START is defined as the
event when s receives MSG from nil . Then:

a) All nodes i ∈ V will accept the information in finite time and exactly once.

b) During the execution of the protocol, exactly one MSG is sent on each link in each
direction.

c) The propagation of information is the fastest possible, in the sense that no other
protocol can bring the information to any node i faster than PI1.

d) Define a string of messages as a sequence of messages ( of some other protocol ),
such that each message except the first one is sent by a node i to some neighbor at or
after the time when the previous message in the sequence was received by i from
some neighbor. Then no string of messages can overtake PI1, i.e. if the originator of
the string sends the first message in the string after it has entered PI1, then all
messages in the string are received after the respective nodes have entered the PI1.

Note: Observe that properties c) and d) are similar, but not identical. Property c) says that no
node can gain in terms of speed if PI1 is replaced by another protocol. Property d) says that if
both PI1 and another protocol that generates strings of messages operate in the network, then
no string of the other protocol can overtake PI1.
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PI2
In PI2, we save some messages by having i not sending a message to pi .

Protocol PI2

Messages

MSG (info) - message carrying the information info to be propagated

Variables

Gi - set of neighbors of i
mi - shows whether node i has already entered the protocol (values 0,1).
pi - neighbor from which the first MSG is received

Initialization

if i receives a MSG , then

- just before receiving the first MSG , holds mi = 0

Algorithm for node i

A1 receive MSG (info) from l ∈ Gi ∪ {nil}
A2 { if (mi = 0) phase1();

}
B1 phase1()
B2 { mi ← 1;
B3 pi ← l ;
B4 accept(info);
B5 for (k ∈ Gi − {pi}) send MSG(info) to k ;

}
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Properties of PI2
Theorem

Suppose that in Protocol PI2, a node s ∈ V receives START. Then:

a) all nodes i ∈ V will accept the information in finite time and exactly once; after this
happens, the links {(i , pi ) , ∀i ∈ V } will form a directed spanning tree rooted at s; in
addition, for all i holds t(phase1()i ) > t(phase1()pi ).

b) During the execution of the protocol, exactly one MSG is sent on each link of the
type 6= (i , pi ) , in each direction. On links of the type (i , pi ), a MSG is sent only in
the direction from pi to i .

c) The propagation of information is the fastest possible.
d) No string of messages can overtake PI2.
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PI3
Sometimes we want to return the network to its initial state.

Protocol PI3

Messages

MSG (info) - message carrying the information info to be propagated

Variables

Gi - set of neighbors of i
mi - shows whether node i is in the protocol (values 0,1).

ei (l) - number of MSG ’s sent to neighbor l - number of MSG ’s received from it, for all
l ∈ Gi

Initialization

if i receives a MSG , then

- just before receiving the first MSG , holds mi = 0 and ei (l) = 0 for all l ∈ Gi

- after receiving the first MSG and until mi returns next to 0, node i discards and
disregards messages not sent in the present instance of the protocol
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Algorithm for node i

A1 receives MSG (info) from l ∈ Gi ∪ {nil}
A2 { if (mi = 0) {
A3 phase1();

}
A4 ei (l)← ei (l)− 1;
A5 if (ei (k) = 0 ∀k ∈ Gi ) phase2();

}
B1 phase1() /* similar to PI1 */
B2 { mi ← 1;
B3 accept(info);
B4 for (k ∈ Gi ){
B5 send MSG (info) to k ;
B6 ei (k)← ei (k) + 1;

}
}

C1 phase2()
C2 { mi ← 0;

}

Note: recall that if MSG is received from nil , the lines containing ei (l) are disregarded.
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Properties of PI3
Theorem

Suppose that in Protocol PI3, node s ∈ V receives START. Then:

a) All nodes i ∈ V will accept the information in finite time and exactly once.
b) During the execution of the protocol, exactly one MSG is sent on each link in each

direction.
c) The propagation of information is the fastest possible.
d) No string of messages can overtake PI3.
e) Every node i ∈ V executes phase2()i in finite time and after this time it receives no

more MSG’s.
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Initial Conditions (Go to Animations.pptx)

Why not simply use the ”synchronous” Initial Conditions that most papers
use: There is an initial time t0 when:

all nodes have mi = 0 and
there are no messages in the network

Answer: Too strong, these conditions do not hold when we’ll need to use
these Basic Protocols as a basis for more complicated ones (see Slide 31).
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Propagation of Information with Feedback (PIF)

Go to Animation.pptx
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PIF1
Protocol PIF1

Messages

MSG (info) - message carrying the information info to be propagated

Variables

Gi - set of neighbors of i
mi - shows if node i has already entered the protocol (values 0,1).

ei (l) - number of MSG ’s sent to l - number of MSG ’s received from l , for all l ∈ Gi

pi - neighbor from which the first MSG is received

Initialization

if i receives a MSG , then

- just before receiving the first MSG , holds mi = 0 and ei (k) = 0 for all k ∈ Gi

- after receiving the first MSG , node i discards and disregards messages not sent in the
present instance of the protocol

Note: By definition, a condition on an empty set is always true. For instance, in <A5> below, if
Gi − {pi} = ∅, then the condition holds and i should perform phase2().
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Algorithm for node i

A1 receives MSG (info) from l ∈ Gi ∪ {nil}
A2 { if (mi = 0) {
A3 phase1();

}
A4 ei (l)← ei (l)− 1;
A5 if (ei (k) = 0 ∀k ∈ Gi − {pi}) phase2();

}
B1 phase1() /* similar to PI2 */
B2 { mi ← 1;
B3 pi ← l ;
B4 accept(info);
B5 for (k ∈ Gi − {pi}){
B6 send MSG (info) to k;
B7 ei (k)← ei (k) + 1;

}
}

C1 phase2()
C2 { send MSG (info) to pi
C3 ei (pi )← ei (pi ) + 1;

}

Note: recall that for a node i that receives MSG from nil , the parameter pi becomes nil , the lines
containing ei (l) are disregarded and when eventually node i performs <C1> it sends MSG to no
one.
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Properties of PIF1
Theorem

Suppose that in Protocol PI3, node s ∈ V receives START. Then:

a) All nodes i ∈ V will accept the information in finite time and exactly once.
b) During the execution of the protocol, exactly one MSG is sent on each link in each

direction.
c) The propagation of information is the fastest possible.
d) No string of messages can overtake PI3.
e) Every node i ∈ V executes phase2()i in finite time and after this time it receives no

more MSG’s.
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Connectivity Test Protocols
The purpose of this class of DNP’s is to allow each node to learn what nodes are connected to it,
i.e. nodes that are in V .

Protocol CT1

Messages

MSG j - control messages with identity j

Variables

Gi - set of neighbors of node i
mi - shows whether i has already entered the algorithm (values 0,1 )
c ji - designates knowledge at i about connectivity to j (values 0,1), for all j ∈ V

Initialization

if a node receives at least one MSG ,

- just before the time it receives the first one holds mi = 0
- after receiving the first MSG , node i discards and disregards messages not sent in the

present instance of the protocol

October 21, 2012 23 / 1



Algorithm for node i

A1 receives MSG j from l ∈ Gi ∪ {nil}
A2 { if (mi = 0){
A3 mi ← 1; /* enter protocol */
A4 initialize();
A5 phase1i ();

}
A6 if (c ji = 0) phase1j();

}
B1 phase1j()

B2 { c ji ← 1;
B3 for (k ∈ Gi ) send MSG j to k ;

}
C1 initialize()

C2 { for (k ∈ V ) cki ← 0;
}
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Properties of CT1
Theorem

Suppose that at least one node in V receives START. Then for every i ∈ V , the variables c ji will
become 1 in finite time for all j ∈ V and will remain 0 forever for all j 6∈ V .

Theorem

With protocol CT1, there is no way for node j to know for sure what nodes are disconnected from
it or in other words, there is no way for j to know when the algorithm is completed, except for the
case when V ≡ V .
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CT2
The protocol is started and entered by nodes in the same way as in CT1, except that when it enters
the protocol, every node j triggers a PIF1j with its identity j instead of a PI1j as in CT1. It is
shown in the Theorem below that at the time it completes its own PIF1, a node j has complete
knowledge about the identities of nodes in V and those that are not in V . Consequently, the
termination property holds for Protocol CT2.

Protocol CT2

Messages

MSG j - control messages with identity j sent by i

Variables

Gi - set of neighbors of node i
mi - indicates whether i has entered the protocol (values 0,1)
c ji - designates knowledge at i about connectivity to j (values 0,1) for all j ∈ V

pji - neighbor from which MSG j has been received first, for all j 6= i .

e ji (l) - number of MSG j sent to l - number of MSG j received from l , for all l ∈ Gi

Initialization

if a node receives at least one MSG , then

- just before the time it receives the first one, holds mi = 0
- after receiving the first MSG , node i discards and disregards messages not sent in the

present instance of the protocol
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knowledge about the identities of nodes in V and those that are not in V . Consequently, the
termination property holds for Protocol CT2.

Protocol CT2

Messages

MSG j - control messages with identity j sent by i

Variables

Gi - set of neighbors of node i
mi - indicates whether i has entered the protocol (values 0,1)
c ji - designates knowledge at i about connectivity to j (values 0,1) for all j ∈ V

pji - neighbor from which MSG j has been received first, for all j 6= i .

e ji (l) - number of MSG j sent to l - number of MSG j received from l , for all l ∈ Gi

Initialization

if a node receives at least one MSG , then

- just before the time it receives the first one, holds mi = 0
- after receiving the first MSG , node i discards and disregards messages not sent in the

present instance of the protocol
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Algorithm for node i

A1 receives MSG j from l ∈ Gi ∪ {nil}
A2 { if (mi = 0){
A3 mi ← 1; /* enter protocol */
A4 initialize();
A5 phase1i ();

}
A6 if (c ji = 0) phase1j();

A7 e ji (l)← e ji (l)− 1

A8 if (e ji (k) = 0 ∀k ∈ Gi − {pji }) phase2j();
}

B1 phase1j() /* same as PIF1 */

B2 { c ji ← 1;

B3 if (i 6= j) pji ← l else pji ← nil ;

B4 for (k ∈ Gi − {pji }){
B5 send MSG j to k;

B6 e ji (k)← e ji (k) + 1;
}

}
C1 phase2j() /* same as PIF1 */

C2 { send MSG j to pji
C3 e ji (p

j
i )← e ji (p

j
i ) + 1;

}
D1 initialize()

D2 { for (j ∈ V ){
D3 c ji ← 0;

D4 for (k ∈ Gi ) e ji (k)← 0;
}

}
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Properties of CT2
Theorem

Suppose that at least one node in V receives START. Then:

a) at every node i ∈ V , the variables c ji will become 1 in finite time for all j ∈ V and will
remain 0 forever for all j 6∈ V .

b) every i ∈ V will perform phase2()ii in finite time and exactly once, and when this

happens, it will have c ji = 1 for all j ∈ V and c ji = 0 for all j 6∈ V . In other words, it
will positively know at that time what nodes are connected.
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CT3
The protocol is the same as CT1, except that for every node j , PI1j propagates also the neighbors
of j . Nodes will know when the neighbors of all nodes have been accounted for.

Protocol CT3

Messages

MSG j(Λ) - control messages with identity j and Λ = Gj

Variables

Gi - set of neighbors of node i
mi - shows whether i has already entered the algorithm (values 0,1 )
c ji - designates knowledge at i about connectivity to j (values 0,1,2), for all j ∈ V

= 0 when i knows nothing about j
= 1 while i knows j only as a neighbor of another node
= 2 while i knows j directly (i.e. MSG j(Λ) has been received)

Initialization

if a node receives at least one MSG , then

- just before the time it receives the first one holds mi = 0
- after receiving the first MSG , node i discards and disregards messages not sent in the

present instance of the protocol
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Algorithm for node i

A1 receives MSG j(Λ) from l ∈ Gi ∪ {nil}
A2 { if (mi = 0){
A3 mi ← 1; /* enter protocol */
A4 initialize();
A5 phase1i (Gi );

}
A6 if (c ji 6= 2) phase1j(Λ);

A7 if (c ji = 0 or 2, ∀j ∈ V ) connectivity known;
}

B1 phase1j(Λ)

B2 { c ji ← 2;
B3 for (k ∈ Λ) cki ← max(cki , 1);
B4 for (k ∈ Gi ) send MSG j(Λ) to k ;

}
C1 initialize()

C2 { for (j ′ ∈ V ) c j
′

i ← 0;
}
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Properties of CT3
Theorem

Suppose that at least one node in V receives START. Then:

a) for every i ∈ V , the variables c ji will become 2 in finite time for all j ∈ V and will
remain 0 forever for all j 6∈ V .

b every i ∈ V will perform <A7>i in finite time, and when this happens for the first
time, it will have c ji = 2 for all j ∈ V and c ji = 0 for all j 6∈ V . In other words, it will
positively know at that time what nodes are connected.
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Extending CT to changing topologies - sequence
numbers - ECT3
The CT Protocols require specific initial conditions and therefore their extension to handle
topological changes must include re-initialization after every such change. This can be implemented
by restarting a new cycle of the protocol after every topological event. In order to distinguish
between messages and node states belonging to different cycles, we employ global sequence
numbers.

Protocol ECT3

Messages

MSG j(R,Λ) - control messages with identity j and Λ = list Gj of neighbors of j

Variables

Gi - set of neighbors of node i
c ji - designates knowledge at i about connectivity to j (values 0,1,2), for all j ∈ V

= 0 when i knows nothing about j
= 1 while i knows j only as a neighbor of another node
= 2 while i knows j directly (i.e. MSG j(Λ) has been received)

Ri - highest sequence number known to i (values: 0,1, . . . );
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Algorithm for node i

A1 node i becomes operational
A2 { Ri ← 0;

}
B1 link (i , l) enters Connected state or Initialization Mode
B2 { update Gi ;
B3 Ri ← Ri + 1; /* enter protocol, replaces mi ← 1 */
B4 initialize();
B5 phase1i (Gi );

}
C1 receives MSG j(R,Λ) from l ∈ Gi

C2 { if (R ≥ Ri ){
C3 if (R > Ri ){
C4 Ri ← R; /* enter protocol, replaces mi ← 1*/
C5 initialize();
C6 phase1i (Gi );

}
C7 if (c ji 6= 2) phase1j(Λ);

C8 if (c ji = 0 or 2, ∀j ∈ V ) connectivity known;
}

}
D1 phase1j(Λ)

D2 { c ji ← 2;
D3 for (k ∈ Λ) cki ← max(cki , 1);
D4 for (k ∈ Gi ) send MSG j(Ri ,Λ) to k ;

}
E1 initialize()

E2 { for (j ∈ V ) c ji ← 0;
}

Note that <B3> and <C4> here correspond to <A3> in CT3.
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Properties of ECT3
Theorem

Consider an arbitrary finite sequence of topological events with arbitrary timing and location and let
(E ,V ) denote a connected subnetwork in the final topology within each at least one node has
entered the protocol. Then there is a finite time after the sequence is completed after which no
messages travel in (V ,E ) and all nodes i ∈ V will have the same cycle number Ri , with cki = 2 for
all k ∈ V and with cki = 0 for all k 6∈ V .
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Proof.

Consider the topology of the network after all topological changes cease. Consider in this topology
a given connected subnetwork (V ,E ). From <B3>, each topological event adjacent to a node
i ∈ V increments the cycle counter Ri at node i . Let {in} be the collection of nodes in V that
register change of status of an adjacent link, and let {tn} be the corresponding collection of times
when the status change is registered. Since there is a finite number of topological events, the
collections {in}, {tn} are finite. Let R = max{Rin(tn+)} over all n. Then:

R is the highest cycle number ever known in network (V ,E )
The cycle with number R is started by (one or more) nodes i ∈ {in} ∈ V that increment their
Ri to R as a result of a topological event. These nodes can be considered as if they receive
START in CT3 and, indeed, the network covered by the cycle with number R registers no
more topological events, since no counter number Ri is ever increased to (R + 1).
The initial conditions of CT3 hold for the R cycle as follows:

I A node i is considered as having mi = 0 or mi = 1, depending if with Ri < R or Ri = R .
I Since Ri is nondecreasing, the first MSG (R) that arrives at a node i finds Ri < R, i.e. mi = 0.
I After Ri ← R, a node disregards all messages with sequence number less than R, so that the

condition that nodes receive only messages of the present protocol is also satisfied

Moreover, from the Follow-up property of DLC follows that in the final topology, l ∈ Gi if and
only if i ∈ Gl , so that the assumption of bi-directionality holds in the final topology.

Consequently, the evolution of the cycle with sequence number R is the same as in protocol CT3 on
(V ,E ), completing the proof.
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Initial Conditions
Here we can see for the first time the reason for requiring asynchronous Initial Conditions in the
Fixed Topology algorithms as opposed to synchronous ones: ”there is a time t0 when all mi = 0
and there are no messages on the links”. One can attempt to find such a time t0 for example the
time when the first message with Ri = R is received by any node in (V ,E ). However, there is no
guarantee that at that time there are no messages on the links. Some links may even have
messages with Ri = R.
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