
Distributed Network Protocols

Lecture Notes1

Prof. Adrian Segall

Department of Electrical Engineering

Technion, Israel Institute of Technology

segall at ee.technion.ac.il

and

Department of Computer Engineering

Bar Ilan University

Adrian.Segall at biu.ac.il

March 13, 2013

1Thanks are due to Lior Shabtay for producing and solving many of the problems



March 13, 2013

c©Adrian Segall 2



Contents

1 Introduction 7

2 DATA-LINK CONTROL PROTOCOLS 9

2.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 The Alternating Bit Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Sliding-Window DLC Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Link Initialization Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 The HDLC LI Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.2 Link Initialization Procedures that Ensure Synchronization . . . . . . . . . . . . . . . 34

2.4.3 Unbalanced LI Procedures that Ensure Synchronization . . . . . . . . . . . . . . . . 34

2.4.4 A Function-Assigning LI-Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.5 A Balanced LI Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 PI-TYPE NETWORK PROTOCOLS 47

3.1 The Fixed Topology Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 The Variable Topology Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Basic Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Propagation of Information (PI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.2 Propagation of Information with Feedback (PIF) . . . . . . . . . . . . . . . . . . . . 56

3.4 Repeated Propagations of Information (RPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Multi-Initiator Propagation of Information (MPI) - Reset Protocols . . . . . . . . . . . . . . 70

3.6 Multi-Initiator Propagation of Information-Topological changes (EMPIF) . . . . . . . . . . . 82

3.7 Generalized PIF (GPIF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.7.1 Distributed Snapshots (DS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.7.2 The Echo Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.7.3 Termination Detection for Diffusing Computations (TDDC) . . . . . . . . . . . . . . 98

3.7.4 Termination Detection for Diffusing Computations - Version 2 . . . . . . . . . . . . . 100

3.7.5 Synchronizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4 CONNECTIVITY TEST PROTOCOLS 105

4.1 Protocol CT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2 Protocol CT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3 Protocol CT3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4 Protocol CT4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3



March 13, 2013

4.5 Protocol CT5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.6 Extending CT to changing topologies - sequence numbers (ECT) . . . . . . . . . . . . . . . . 115

5 TOPOLOGY and PARAMETER BROADCAST 119

5.1 Broadcasting topology and parameters (TPB) . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2 Fixed Topology, changing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3 Topology and Parameter Broadcast - Topological Changes (ETPB) . . . . . . . . . . . . . . 125

5.4 Topology and Parameter Broadcast with node-associated sequence numbers - Topological

Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.5 SPTA - Topology Broadcast without sequence numbers - Topological Changes . . . . . . . . 129

6 DISTRIBUTED DEPTH-FIRST-SEARCH PROTOCOLS 131

7 MINIMUM-WEIGHT SPANNING TREE PROTOCOLS 137

8 MINIMUM-HOP-PATH PROTOCOLS 143

8.1 Protocol MH1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.2 Extending MH1 to changing topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.3 Another Version (MH2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.4 The Fixed Topology Distributed Bellman-Ford Minimum Hop Protocol (MH3) . . . . . . . . 154

8.5 The Changing Topology Distributed Bellman-Ford Minimum-Hop Protocol (EMH3) . . . . . 157

9 PATH-UPDATING PROTOCOLS 161

9.1 Protocol PU1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

9.2 Protocol Path-Updating Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

9.3 The Fixed-Topology Arbitrary-Weight Distributed Bellman-Ford Protocol (PU2) . . . . . . . 167

9.4 The Changing-Topology Bellman-Ford Arbitrary Weight Protocol (EPU2) . . . . . . . . . . 170

9.5 Loop Reducing Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

9.5.1 The split-horizon and the predecessor protocols . . . . . . . . . . . . . . . . . . . . . 173

9.5.2 Proof of convergence of the split-horizon and predecessor protocols . . . . . . . . . . 175

9.6 The Distributed Dijkstra Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

9.6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

9.6.2 The Centralized Dijkstra Algorithm (CDA) . . . . . . . . . . . . . . . . . . . . . . . . 180

9.6.3 The Distributed Dijkstra Protocol (DDP) . . . . . . . . . . . . . . . . . . . . . . . . . 182

10 CONNECTION MANAGEMENT 189

10.1 Low speed networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

10.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

10.1.2 The basic model and the protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

10.1.3 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

10.1.4 Main Properties of the Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

10.1.5 The Path Determination Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

c©Adrian Segall 4



Sec. 0.0

Preface
This report contains Lecture Notes for the Distributed Network Protocols course that I have taught

at the Technion some time ago. The course is at the senior-undergraduate / first-year-graduate level. Its

pre-requisite is an introductory course in Computer Networking.

Most of the presented material is in reasonable form, but some parts are still in preliminary stages. This

is the case in particular with the Minimum Spanning tree and the Session Management chapters. I will

periodically update my website home page with updated versions.
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Introduction
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Chapter 2

DATA-LINK CONTROL

PROTOCOLS

Data Link Control (DLC) Protocols are protocols that use error detection and retransmission mechanisms

to protect data sent over a noisy communication media from transmission errors. The media can be any

lower layer transmission facility, like one link or a sequence of links, a local area network (LAN) using an

arbitrary medium access control (MAC) mechanism, a logical connection or a Virtual Channel in an ATM

network. The main role of the DLC protocol is to accept data at one end of the media and ensure its delivery

at the other end in the same order as accepted, without losses or duplicates. As long as the media does not

fail, all data should be delivered at the receiving end in finite time. If data accepted by a DLC protocol

cannot be transmitted because of media failure, appropriate notification should be submitted to the higher

layers. DLC protocols which guarantee these properties are said to provide data reliability. As demonstrated

in later chapters, higher level protocols normally rely on the fact that the DLC provides data reliability on

each of the links of the network.

The most commonly used DLC Protocols are the bit-oriented DLC Protocols such as HDLC [ISO81],

[SDL80], [IBM70], ADCCP [Car82], LAP-B (Link Access Protocol - Balanced) used in X.25 [Sta92] or LAPD

(Link Access Protocol - D-channel) defined in CCITT recommendation I.441/Q.921 for ISDN [Sta92]. In

these protocols there are three situations that may result in undetected transmission errors: i) undetected

frame errors, ii) improper operation of the DLC Protocol, iii) incorrect initialization of the DLC Protocol.

There is no way to ensure that undetected transmission errors will never occur under any circumstances.

There is always the possibility that a logically correct program will execute improperly due to hardware

or system errors. Moreover, any error detection scheme has an inherent probability of undetected errors.

Consequently, all the work on reliable DLC Protocols is directed towards minimizing the probability of

undetected transmission errors.

The issue of detecting frame errors has received great attention in the literature and powerful cyclic

redundancy coding (CRC) schemes are currently used to minimize the probability of undetected frame

errors. This subject is not addressed in the present work.

The issue of proper operation of the DLC Protocol after initialization is addressed in Sections 2.2 and

2.3. We provide a rigorous definition of the concepts of data reliability and synchronization at initialization

and prove that sliding-window DLC-protocols ensure data reliability, provided that they are synchronized

at initialization and all frame errors are detected. The issue of correct initialization of the DLC Protocol is

addressed in Section 2.4.

9
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2.1 The Model

The configuration of two DLC processes connected by a transmission media is given in Figure 2.1. Data

source is a generic name for some device, process or higher layer that produces data strings which have

to be transmitted over a communication media to a data sink. We shall assume that the data strings are

packetized and shall refer to them as packets. Furthermore, we assume that the packets are queued in a

buffer at the data source and that they are transferred in order to the DLC process at times dictated by the

DLC Protocol. At the other end, the packets are delivered by the DLC process to the data sink at times

dictated by the DLC Protocol.

Figure 2.1: The Model

A bit-oriented Data Link Control Protocol is a pair of processes, one at each station, that operate

together using some type of acknowledgement and retransmission scheme to ensure data reliability over an

error-prone transmission media. A DLC process accepts packets from the data source, transforms them into

information frames by appending any necessary control, sequencing, framing and error detection information

and transfers them to the lower layer. In addition, it receives incoming frames from the lower layer, checks

them for correctness, converts them back into packets, and, if the DLC protocol dictates so, passes them on

to the data sink.

The DLC processes are served by a point-to-point FIFO-preserving communication media between two

communicating stations. Frames delivered by one DLC to the media may be lost, may arrive at the other

end in error (e.g., because of transmission noise), or may arrive correctly after some finite but unknown

delay. We assume that all errors are detected by the DLC and the frames received in error are discarded.

FIFO-preserving media means that nondisrupted frames arrive in the same order as sent and a frame cannot

be in the media if frames sent at a later time have arrived already. We do not require that a bound on the

transmission delay is known a priori. Finally, we assume that when the transmission media is operational,

the probability that a unit is lost or received in error is strictly less than 1. Examples of FIFO-preserving

media are one communication link or a sequence of links, a local area network (LAN) using an arbitrary

medium access control (MAC) mechanism, a logical connection or a Virtual Channel in an ATM network,

for which lower layer protocols or the physical properties ensure FIFO. A TCP connection in the Internet

operates over a non-FIFO-preserving media, since the IP layer allows packets of a TCP connection to be

sent on different routes.

The protocol used by DLC processes to transmit data reliably over the error-prone transmission media

c©Adrian Segall 10
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are referred to as the DLC Protocol. Each such protocol is composed of two stages: Initialization stage

and Connected stage. The purpose of the Initialization stage is to synchronize the two DLC processes and

clean the channel of old information, while in the Connected stage the processes exchange information data.

Whenever a node comes up, the DLC process enters Initialization stage. Normally, one also considers a

third stage, the Disconnection stage. However, if the later comes as result of a disconnection request and

the connection is never reestablished, that stage is irrelevant for our purposes. If Disconnection comes as a

result of a failure and the connection must be reestablished, the Disconnection stage is incorporated in the

Initialization stage of the reestablished connection.

c©Adrian Segall 11
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2.2 The Alternating Bit Protocol

Check if changes are needed

The simplest DLC protocol is the Alternating Bit Protocol suggested in [BSW69]. For purposes of

illustration, we shall describe it here in an environment when there are no failures and assume that the two

processes are synchronized at some initial time when the system is devoid of any old frames. The basic

model assumptions are:

a) There are no failures in the system.

b) The probability of error or loss of a transmission unit in the media is strictly less than 1.

c) There is an initial time when the two DLC’s are synchronized, i.e. the variables VS and VR defined below

are VS = VR = 0.

d) At initial time there are no frames in the system.

The DLC processes A and B hold binary variables VS and VR respectively, whose values at initialization

are assumed to be VS = VR = 0. The DLC processes fetch packets from their local data source, at times

dictated by the protocol, and transform them into frames by attaching to each a bit, called the alternating

bit . The bits carried by frames sent by DLC A and B will be denoted by NS and NR respectively. The

corresponding frames will be denoted by ANS and BNR. A frame that arrives correctly from DLC A to DLC

B and carries bit NS will be denoted by ANS . Such a frame may be delivered by DLC B to the local data

sink or may be discarded, as dictated by the protocol. DLC B discards any frame received in error from A.

This event at DLC B will be denoted by Ae. Similarly, BNR and Be will denote respectively the receipt of

a correct frame carrying bit NR and the receipt of an error-corrupted frame. In addition, both DLC A and

DLC B contain timers that expire periodically.

The Alternating Bit Protocol is specified in Table 2.1 and summarized in Fig. 2.2. The notation T/A

next to a state transition denotes the fact that T is the trigger for that transition and A is the action to

be taken after transition. The triggers will generally be the receipt of particular frames or a timeout. The

alternating Bit Protocol starts with VS = VR = 0 and DLC A accepting the first packet from the source. It

attaches to it NS = 0 and sends it to the other side. If this frame arrives correctly, DLC B fetches the first

packet from its data source, assigns 1 to it and sends it over. If it does not, DLC B sends a dummy frame

B0, which, upon arrival, correctly or not, forces retransmission of A0. The activity at A is as follows: when

it receives BNR with NR 6= VS, it considers the last sent frame acknowledged, flips VS, fetches a new packet

from the local data source assigns to it the new VS and sends it over. In addition, it delivers the received

BNR, after deletion of the NR bit, to the local data sink. One can prove that the dummy frame is never

delivered to the local data sink. If it receives BNR with NR = VS or Be ( a B frame with error) or the timer

expires, it resends AVS . The activity at B is similar, except that NS = VR signifies acknowledgement of the

last frame, while NS 6= VR (as well as an error in the received frame or the expiration of the timer) triggers

retransmission of BVR. The alternating bit sent by B has a double meaning: the bit attached to the data

frame sent by B to A, as well as the bit that B expects to see in the next correctly received frame from A.

Similarly, the bit sent by A to B has a double meaning: the appropriate bit for data from A to B, as well

as an acknowledgement for having correctly received the data frame with this bit from B. For example, the

bit 1 in the first A1 sent by A to B indicates that this frame contains the second packet fetched by DLC

A from its source, and also that A has received correctly B1. Note that the algorithms of A and B are not

symmetric and the meaning of the bit is different. The bit NR, sent by B to A is the next expected bit from

A, whereas the next expected bit from B is not NS, but its 2-complement NS.

c©Adrian Segall 12
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Algorithm for A

Initialization (VS = 0)
A0 ← first packet accepted from data source;
send A0;
start timer;

A1 receive BNR or Be or timer expires
A2 { if (received BNR) {
A3 if (NR 6= VS) {
A4 deliver payload of BNR to local sink; /*BNR is not dummy*/
A5 VS ← VS;
A6 AVS ← next packet accepted from local source;

}
A7 else discard received packet;

}
A8 send ANS with NS = VS;
A9 reset timer;

}

Algorithm for B

Initialization ( VR = 0 )
B0 ← dummy frame
start timer

B1 receive ANS or Ae or timeout
B2 { if (received ANS) {
B3 if (NS = VR) {
B4 deliver payload of ANS to local sink;
B5 VR← VR;
B6 BVR ← next packet accepted from local source;

}
B7 else discard received frame;

}
B8 send BNR with NR = VR;
B9 reset timer;

}

Table 2.1: The Alternating Bit Protocol

c©Adrian Segall 13
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Figure 2.2: The Alternating Bit Protocol
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Reliability of a DLC protocol will be fully defined in Sec. 2.3, but in the context of no media failures, it

consists of the following properties. We say that a packet is considered acknowledged when it is replaced in

the sending buffer by a new packet, i.e. in <A6> or in <B6> in the algorithm1.

(1) FIFO: Packets are delivered to the data sink in the same order as received by the DLC from the

corresponding data source with no gaps or duplicates.

(2) Confirm: All considered acknowledged packets have been delivered to the corresponding data sink.

(3) Delivery: All packets produced by the data source are considered acknowledged within finite time.

Note that Delivery and Confirm imply that all packets produced by the data source are delivered to the

data sink in finite time. Reliability of the Alternating Bit Protocol has been investigated extensively and

has been proved by many methods []-[]. We shall provide here the proof in a descriptional manner.

Theorem 2.1 The Alternating Bit Protocol ensures data reliability.

Proof:

Proof of FIFO and Confirm

We shall concentrate here on the proof for data flowing from the data source at A to the data sink at B.

Afterwards we shall indicate how a similar proof can be applied for data flowing in the opposite direction.

Packets fetched by DLC A from the local data source will be numbered for identification purposes by

consecutive increasing numbers P (0), P (1), P (2), P (3), . . . , where P (0) is the first packet fetched at

initialization. Recall that at initialization VS = 0, the first packet P (0) is assigned bit NS = 0 and VS

is flipped whenever a new packet is fetched from the data source. Therefore the bit assigned to P (I) is I

mod 2.

When a frame BNR is received by A with NR 6= VS, we shall say that the received frame is labeled active.

The packet that is considered acknowledged (and is replaced in the local buffer) when an active frame is

received, will be referred to as correlated with the active frame. The FIFO and Confirm properties can now

be restated as follows:

Lemma 2.2 Suppose a frame BNR arrives at A and is labeled active. At the time when the frame was

sent by B, all packets up to and including the correlated packet and only those, have been delivered to the

data sink in order, with no duplicates and no gaps.

Proof:

Notes i) and ii) below follow directly from the algorithms and will be used in the proof:

i) No frame containing packets prior to and including P (I − 1) can be sent by DLC A after having fetched

packet P (I) from the local data source; consequently no such frame can be received by B after any frame

containing P (I).

ii) No frame containing packets following and including P (I + 1) can be sent by A before the time when

the frame containing packet P (I) is replaced in the local buffer.

In order to describe the sequence of events that may occur between the two DLC’s, we will use a timing

diagram with two parallel time axes (one for each DLC) as shown for example in Figure 2.3. An arrow

drawn from one axis to the other represents a frame sent by one station and received by the other. Each

arrow is labeled with the corresponding message type. Now consider Figure 2.3 where NR1, NR2 denote

1The notation < · > indicates the appropriate line in the Algorithms.
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the bits attached to two consecutive active acks. From the algorithm, NR2 = NR1 and let t1, t3 and t2, t4

denote the respective arrival and departure times. Let P (I), P (I+ 1) be the packets correlated with the two

consecutive active acks. The variable VS at time t1− has the value I mod 2 and hence NR1 = I mod 2.

The induction step consists of showing that, if all packets up to and including P (I) and only those have

been delivered in order, with no duplicates and no gaps until time t2, the same is true for all packets up to

and including P (I + 1) until time t4. This amounts to proving that during [t2, t4], the only packet delivered

to the sink at B is P (I + 1) and only once. Consider the interval of time from t2 to t4. First note that, since

P (I + 1) is replaced in the buffer at time t3, ii) above implies that no frame containing packets following

and including P (I + 2) can arrive at B during the interval [t2, t4]. Also, i) above, says that after any frame

containing P (I) arrives at B, no frame containing P (I−1) or preceding packets can arrive at B. Since by the

induction assumption, some frame containing P (I) has arrived at B before t2, no frame containing P (I − 1)

and preceding packets can arrive at B during [t2, t4]. Hence in the considered interval, the only frame with

NS = NR1 that can arrive is the one containing P (I+1). Applying ii) again, if the frame containing P (I+1)

arrives, no frame containing P (I) and preceding packets can arrive at B afterwards. The conclusion is that

the only frame with bit NS = NR1 that can arrive at B during the interval [t2, t4] is the one containing

P (I + 1) and if it arrives, no frame with NS = NR1 can arrive afterwards. Since VR at time t2 is NR1 and

at time t4 is NR2 = NR1, the variable VR is flipped in [t2, t4] and in view of the above it is flipped exactly

once. This event can occur only when P (I + 1) is delivered to the data sink at B, completing the induction

step.

Figure 2.3: Diagram for proof of Lemma

It remains to prove the initial step of the induction. Since at initialization there are no frames in the

system, the first received active frame is sent after that time, at time t′ say, and let NR′ be its assigned bit.

Since upon receipt of the first active frame VS = 0, holds NR′ = 1. By ii) above, only the frame containing

P (0) can be received by DLC B before NR′ is sent. Finally the same argument as before shows that P (0)

c©Adrian Segall 16
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has been indeed accepted and only once, completing the induction for the direction from A to B. qed

The induction step for the flow of data from B to A is identical to the one for the other direction with

R and S, as well as = and 6=, interchanged. The difference is only in the initialization part, since receipt of

the first A0 at B does not necessarily signal that the dummy frame B0 was received at A. Consequently, the

initialization step is for PB(1), the first frame fetched from the data source2.

Proof of Delivery

Suppose that packet P (I) is the first packet that is never considered acknowledged. This means that

P (I) is never replaced in the sending buffer at DLC A. From Lemma 2.2 follows that when packet P (I) is

fetched from the data source, all packets up to and including P (I − 1) have already been delivered to the

data sink. Therefore DLC B will not change VR until packet P (I) is correctly received. Since there is a timer

at A, the frame containing P (I) will be sent an infinite number of times. We have assumed that the loss or

error probability of a frame is strictly less than 1, hence the frame will eventually arrive correctly, causing

P (I) to be delivered to the data sink at B. At that time, VR is changed to (I + 1) mod 2. DLC B also

has a timer and will send BNR with NR = (I + 1) mod 2 an infinite number of times. Again, one of these

ACK’s will arrive correctly at the source DLC, causing P (I) to be considered acknowledged, contradicting

the assumption. This completes the proof of the Theorem. qed

Problems

Problem 2.2.1 Prove that the comment in <A4> is correct namely that if (NR 6= VS), then the received

frame cannot be the dummy frame.

Problem 2.2.2 Suppose that assumption c) on page 12 is changed to VS = 0, VR = 1, at initial time. Will

the Alternating Bit protocol still work? Prove reliability or give counterexample.

Problem 2.2.3 Suppose assumption d) on page 12 does not hold at initial time. Does reliability of the

Alternating Bit protocol still hold? Prove or give counterexample.

Problem 2.2.4 Consider the Acknowledge Bit Protocol as given in Table 2.2. It is a symmetric protocol,

except for the initialization steps.

a) Explain the name of the protocol.

b) Show that this protocol is reliable if fewer than two successive errors occur (in opposite directions).

c) Give an example of an unreliable execution of the protocol.

Problem 2.2.5 In a new version of the Alternating Bit Protocol, DLC B runs the same algorithm as DLC

A (Table 2.1), with B and A interchanged, NR and NS interchanged and VR and VS interchanged. Only

the initialization step for B stays the same as in Table 2.1 ( to prevent both DLC’s from sending the first

frame ). check

Is this procedure reliable? Prove or give counterexample.

Problem 2.2.6 State the induction step for DLC B in Lemma 2.2.

Problem 2.2.7 Consider an Alternating Bit Protocol that uses an extra bit for verification (e.g. one bit is

alternated for every new packet fetched from the local source, while a second bit is turned on whenever a

frame is received error-free). Thus the frame header contains two bits instead of one.

a) Specify this protocol formally.

2See Problems 2.2.5, 2.2.6.
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Algorithm for A

Initialization (VS = 1)
{ A1 ← first packet accepted from data source;

send A1;
}

A1 receive BNR or Be or timeout
A2 { if (received BNR) {
A3 VS ← 1;
A4 if (NR = 1) {
A5 if (BNR not dummy) deliver it to local sink (after deleting NR);
A6 discard AVS ;
A7 AVS ← next packet accepted from local source;

}
A8 else discard received frame;

}
A9 else VS ← 0;
A10 send ANS with NS = VS; reset timer;

}

Algorithm for B

Initialization (VR = 0)
B0 ← dummy frame;

C1 receive ANS or Ae or timeout
C2 { if (received ANS) {
C3 VR← 1;
C4 if (NS = 1) {
C5 deliver ANS local sink (after deleting NS);
C6 discard BVR;
C7 BVR ← next packet accepted from local source;

}
C8 else discard received frame;

}
C9 else VR← 0; problem here???
C10 send BNR with NR = VR; reset timer;

}

Table 2.2: The Acknowledge Bit Protocol
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b) What are the advantages and disadvantages of this protocol compared with the Alternating Bit Protocol?

Problem 2.2.8 Assume that the communication media never fails. Is it possible to design a reliable

alternating-bit protocol (or any other data-link protocol that ensures reliability) without using timeouts?

If Yes, write the protocol code. If Not, explain why.

Problem 2.2.9 Change the alternating bit protocol, so the code for A and B will be exactly the same.

Hint: use a randomized initialization algorithm.

Problem 2.2.10 What happens in the Alternating Bit Protocol when only one of the sides needs to send

data? How can this problem be fixed? Write a version of the protocol that fixes this problem (you may use

one more bit for every packet).

Problem 2.2.11 In the definition of Fig. 2.2 it is specified that the action is taken after transition. What

happens if it is taken before transition?
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2.3 Sliding-Window DLC Procedures

The Alternating Bit Protocol is an extremely simple protocol. It uses one bit in each direction with a

dual purpose: i) the assigned bit for the data frame and ii) acknowledgement for the data flowing in the

other direction. One main disadvantage of that protocol stems from the fact that the flows of data in both

directions are interdependent. Another disadvantage is poor utilization of the media, since only one frame

can be outstanding at any given time. The solution to the first disadvantage is to separate the two flows, by

using one bit for the sequence number and another bit for acknowledgments. This is the original Alternating

Bit protocol, proposed by Lynch [Lyn68]. For the data flow from A to B, we would define two variables

VSA and VRB at DLC A and DLC B respectively. The first is the bit assigned to the current packet at

A, the other is the bit expected by B in the next frame. For the data flowing in the other direction, there

would be separate variables VSB and VRA, with the corresponding meaning. A data frame from A to B

would carry sequence number NSA = VSA. An acknowledgement frame from A to B ( for a data frame

from B to A ) would carry NRA = VRA. This is in contradistinction with the model of [BSW69], described

in Sec.2.2, where always holds VSA ≡ VRA. Here we separate the two. Since acknowledgement frames are

normally short and the overhead for such frames is large, it is customary to piggyback, whenever possible,

the acknowledgement from A to B ( for data frames from B to A) on data frames flowing from A to B.

However the two protocols are still independent and the data rates in both directions can be different. In

particular, if there is need to send an ack and there is no data frame going in that direction, the protocol

normally does allow special ack frames.

The solution to the disadvantage of poor media utilization is to use more than one bit for sequence

numbers. The protocol where the two directions work independently can easily be generalized to multiple-

bit sequence numbers. The protocols described in this section represent exactly this generalization. Another

generalization included in this section is that the media is allowed to fail and recover, whereas in order

to simplify the presentation, in Sec.2.2 we have assumed that the two nodes are synchronized externally at

initial time and the media stays up forever afterwards. We define a general class of DLC procedures to which

we shall refer as sliding-window DLC procedures. As the protocols for the two data flows are independent,

our description will focus on the interaction required between the two DLC’s to transmit data from station

A to station B. To facilitate our discussion, the DLC at station A will be referred to as the sender DLC and

the DLC at station B will be referred to as the receiver DLC. Except for some minor notational differences,

all known bit-oriented DLC procedures (e.g., HDLC, SDLC, LAP-B, LAPD) are members of the class of

sliding-window DLC procedures.

In a sliding-window DLC procedure, the sender DLC maintains a send counter number, denoted3 by VS,

and the receiver DLC maintains a receive counter number, denoted by VR. The range of VS and VR is

between 0 and W − 1, where W is some fixed integer. The quantity (W − 1) is called the window size; the

Alternating Bit protocol uses W = 2 and the HDLC protocol uses W = 8 or W = 128. Initialization of the

counter numbers is performed by the Link Initialization Procedure and will be discussed later. For now it

suffices to say that the relation VS = VR must hold at initialization.

The sliding-window DLC protocol is specified in Table 2.3 and is described in the following paragraphs.

Once the send counter number is initialized, the sender DLC is allowed to accept (W − 1) packets from the

data source. These packets are assigned consecutive sequence numbers from VS to (VS + W − 2) mod W .

The sender DLC transforms each accepted packet into an information frame by appending a control header

containing the assigned sequence number NS. An information frame is stored by the sender DLC from the

3To avoid confusion, we point out that the quantity VS here is different from V (S) of HDLC [ISO81]. However, for our

purpose it is more convenient to use this notation.
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time the corresponding packet is accepted until it is considered acknowledged, at which time it is discarded.

When a frame with sequence number NS = VR is received correctly at the receiver DLC, it is delivered,

without the control header, to the data sink as a packet and VR is incremented mod W . Frames received

in error or with sequence number NS 6= VR are discarded and no action is taken. The receiver DLC also

has some mechanism to periodically send an information ACK frame containing acknowledgement number

NR = VR to the sender DLC. Whenever an information ACK frame with acknowledgement number NR 6= VS

arrives at the sender DLC, the variable VS is repeatedly incremented mod W , until it reaches NR. In

addition, when VS is incremented from value K to (K + 1) mod W , the stored frame that carries sequence

number K is considered acknowledged and discarded. Then a new packet is accepted from the data source

and is assigned sequence number (K−1) mod W . Observe that at any time, the sender DLC stores (W −1)

frames, with sequence numbers from VS to (VS +W − 2) mod W . We do not specify here the times when

the sender DLC is allowed to send its stored frames or when the receiver DLC sends the acknowledgement.

However, the sender DLC is required to periodically send out the information frame with sequence number

NS = VS. Similarly, the receiver DLC is required to send out periodically an acknowledgement. The timers

at the sender and receiver DLC’s implement this requirement.

Algorithm for sender DLC (DLC at A)

A1 upon entering Connected mode
A2 { VS ← 0;
A3 A0 −AW−2 ← first (W − 1) packets accepted from data source;
A4 send A0 and afterwards A1, . . . , AW−2;
A5 start timer;

}
A6 upon receiving ACKNR or ACKe or timeout
A7 { if (received ACKNR) {
A8 while (VS 6= NR) {
A9 discard AVS and consider it acknowledged;
A10 VS ← (VS + 1) mod W ;
A11 A(VS−2) mod W ← next packet accepted from local source;

}
}

A12 send ANS with NS = VS and afterwards
with NS = (VS + 1) mod W, . . . , (VS +W − 2) mod W ;

A13 reset timer;
}

Algorithm for receiver DLC

B1 upon entering Connected mode
B2 { VR← 0;

}
B3 upon receiving ANS
B4 { if (NS = VR) {
B5 deliver payload of ANS to local sink ;
B6 VR← (VR+ 1) mod W ;

}
B7 else discard received frame;

}
B8 periodically, send ACKVR;

Table 2.3: The sliding-window DLC Protocol
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We now note that different sliding-window DLC implementations employ various additional optimization

techniques to achieve efficient link utilization. One example that was mentioned before is to append the

ACK frame to information frames being sent in the opposite direction. Other examples include using NACK

frames (selective reject), and/or checkpointing, and saving information frames with NS 6= VR for later use.

Although important from the performance point of view, these techniques will not be discussed here.

In addition to the normal operation described above, DLC procedures must include mechanisms for

detecting media failures, mechanisms for detecting media recoveries and an initialization protocol that will

allow the resumption of normal operation. The most common failure detection mechanisms are to declare the

media as failed if frames are not acknowledged after a given number of transmissions or after a predetermined

time and if frames do not arrive from the other side for a certain period. Whenever a DLC detects a failure,

it declares any unacknowledged information frames as possibly lost and forwards appropriate notification

to the higher layers. It then invokes an initialization protocol that first probes the channel periodically for

detection of media recovery and then synchronizes the system for resumption of normal operation. When

the initialization protocol terminates, the DLC resumes normal operation. We shall say that a DLC is in

Connected State when it performs normal operation and that it is in Initialization Mode otherwise (i.e.,

when it is executing the initialization procedure). The basic model assumptions are:

a) The communication media can be either operational or failed. While operational, the probability of frame

error or loss in the media is strictly less than 1. While failed, no frames traverse it.

b) The communication media works with a FIFO discipline. Error-free frames arrive at a DLC in the same

order as sent by the other DLC. A frame cannot be in the media if frames sent after it have already arrived.

c) At each node there is a failure detection mechanism with the property that if the communication media is

failed for sufficiently long time, the mechanism detects the failure in finite time (not necessarily the same

instant at both nodes). Note that the failure detection mechanism is allowed to be wrong in one sense:

the media may be operational, but bad enough to make the failure detection mechanism declare the media

failed. In particular, it may happen that the mechanism at one node will detect failure, but the one at the

other node will not.

d) If a DLC is in Connected state and a failure is detected or if the Link Initialization protocol dictates so,

the DLC enters Initialization Mode. At that time, it clears its buffer of any stored frames, declares any

unacknowledged information frames as possibly lost and forwards appropriate notification to the higher

layers.

e) A DLC in Initialization Mode discards any received information frames or information ACK’s and does not

accept packets from its source.

One comment is in place here regarding part of the assumption d) above. One may think that another

possibility would have been to keep unacknowledged information frames in the DLC buffer until the media

comes up again and continue operation afterwards as if nothing has happened. This cannot be done however.

One should realize that the frames normally contain information of higher layers, for example a session that

happens to use the considered media. If a link of the session fails, one cannot freeze an entire session to

wait for the media to recover. The normal procedure is to either kill the session and possibly restart it

afterwards or to reroute the session on a different path and require a higher layer protocol to take care of

the non-disruptive path change. In any case, if and when the link under consideration comes up again, the

information in the old frames is meaningless.

We next discuss the notion of reliability of a DLC procedure. DLC protocols must ensure that the

DLC layer provides sufficient reliability properties to the higher layer to ensure their proper operation. The
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question is what set of properties can be considered as providing a ”sufficient set”. An attempt to define

such a set has been made in [BS88], but as shown presently, it turned out that the original statement of the

definition of a reliable DLC procedure is not sufficient.

The following definition formalizes the notion of reliability for a DLC procedure.

Definition: A bit-oriented DLC procedure is said to ensure data reliability if it satisfies the following

properties:

1. Follow-up: If a DLC enters Initialization Mode at some time when the other DLC is in Connected state,

then the latter will also enter Initialization Mode in finite time.

2. Crossing: If a DLC enters Initialization Mode at some time t1, there is a time t after t1 but before the

DLC next enters Connected State, such that the other DLC is also in Initialization Mode and no packet

accepted by the sender DLC at either end before time t can be delivered to the corresponding data sink after

time t.

3. Deadlock-Free: There exists a value T1 such that if (a) both DLC’s are in Initialization Mode at some

time t and (b) during the interval of length T1 after t there are no channel errors and (c) the delay for all

frames (queueing+propagation) is bounded, then at time t + T1 both DLC’s are in Connected State. The

DLC’s stay in Connected State if there are no media failures afterwards.

4. FIFO: Suppose that a DLC delivers to its data sink a packet that has been accepted at time t by the other

DLC from the corresponding data source. Then all data packets accepted by the other DLC since it last

entered Connected Mode until time t, have been delivered to the data sink without errors, in order, with no

gaps or duplicates.

5. Confirm: Whenever a DLC is in Connected State, all packets accepted from its data source since it last

entered the Connected State, and considered acknowledged, have been delivered to the corresponding data

sink.

6. Delivery: Suppose that a DLC enters Connected State and stays there forever afterwards. Then all

packets produced by that DLC’s data source and accepted by the DLC after it entered Connected state are

considered acknowledged within finite time.

The need for the Follow-up property is obvious. In particular it disallows the situation where one DLC

stays forever in Connected state and the other is in Initialization Mode. The Crossing property relaxes

and formalizes the usual notion of a “correct global initial state” that we have used in Sec. 2.2 (see e.g.

[SL83]), where both DLC’s are in Connected State with sequence number 0 and the channel is empty of

frames. The generalization takes into consideration the case when one DLC enters Connected State and

starts sending frames before the other enters Connected State, so that strictly speaking there is no instant

when the system is in a “correct global initial state”. In this situation we still think of the DLC procedure as

reliable, provided it satisfies the property indicated above under Crossing. The Deadlock-Free property

says that if the channel works properly, the DLC’s are not deadlocked in Initialization Mode. FIFO states

that the sequence of packets delivered to the data sink is a prefix of the sequence received from the data

source. Confirm states that packets that are considered acknowledged by the source DLC have indeed been

delivered to the data sink. The Delivery property ensures that the DLC procedure is not the cause for

nondelivery of data. It does not allow the possibility that the media is operational and is not declared failed

by the failure detection mechanism, but the DLC procedure is stagnated in a situation where packets are
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not delivered or not considered acknowledged. Observe that Delivery and Confirm ensure that under the

conditions stated in the Delivery property, all packets are delivered to the data sink in finite time. Note also

that FIFO and Confirm ensure proper delivery of packets corresponding to frames that are considered

acknowledged . At any instant there are (W − 1) packets that have been accepted from the data source but

are not yet acknowledged. Such packets may or may not be delivered to the data sink (if the DLC enters

Initialization Mode), but the FIFO property says that whatever is delivered to the sink, is delivered in

sequence, whether it is considered acknowledged or not. In particular, if a DLC enters Initialization Mode, it

should notify the higher layers that these packets have not been acknowledged and consequently, may have

been lost. This is in accordance with model assumption d).

We reiterate here that packets containing data, as well as control messages belonging to protocols of

levels higher than the DLC layer, are considered by the DLC layer as data packets. Reliable transmission

of data consists of fulfilling the 6 properties above. Regarding control messages of higher-level protocols,

most such protocols assume a DLC protocol on each link that ensures reliability. One of the basic questions

asked very often in the design and validation of higher level protocols, is what are the precise properties

one can expect from the DLC. Unfortunately, in many works those properties are loosely stated, and the

statement differs from work to work. We believe that the 6 properties stated above provide a precise and

unifying definition of DLC data reliability. In an environment without failures, it is very easy to establish

the properties that should be required from the protocol to be considered reliable ( see Sec. 2.2 ). However,

it is not that easy to define reliability in a system where failures may occur. The definition of reliability

in [BS88] has been an attempt to include all necessary requirements in the definition. However, it turned

out during the period since [BS88] was published, that important features were left out or misstated. In

particular, in that work the requirement of FIFO for unacknowledged packets was not included and the

FIFO and Delivery properties were stated incorrectly. The present definitions are an attempt to restate

the properties in a better and hopefully final form, but given the past experience, it is very doubtful that

this will indeed be the final word in this respect.

In the sequel we will show that any sliding-window DLC procedure ensures data reliability if properly

synchronized at initialization. However, we must first formalize the notions of synchronization and of a Link

Initialization procedure.

The procedure that synchronizes the DLC’s when the system first comes up and resynchronizes them

after a media or node failure will be referred to as the Link Initialization (LI) Procedure [BS88]. In particular,

whenever a node comes up, it enters Initialization Mode and performs the LI procedure. Also, if a node is

up and the failure detection mechanism declares the media failed, the node enters Initialization Mode and

performs the LI procedure. When the LI procedure is invoked, the DLC enters Initialization Mode and, if

the media is operational again, it communicates with the other DLC through special LI-Control frames (the

equivalent of Unnumbered Frames in HDLC [Car82], [ISO81]). After appropriate frame exchange, the LI

procedure should bring both DLC’s into the Connected State. The following definition formalizes the notion

of synchronization for a DLC procedure.

Definition: An LI procedure working in conjunction with a bit-oriented DLC procedure is said to ensure

synchronization if it satisfies the following four properties:

1. Follow-up: If a DLC enters Initialization Mode at some time when the other DLC is in Connected state,

then the latter will also enter Initialization Mode in finite time.

2. Clear: If a DLC enters Initialization Mode at some time t1 and returns to Connected state at time t2,

there is a time t between t1 and t2 when the other DLC is also in Initialization Mode and the system is

devoid of any information frames and any information ACK frames.
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3. Reset: If a DLC enters Connected state while the other DLC is already in Connected state, then the send

(VS) and receive counter numbers at one DLC are identical to the receive (VR) and send counter numbers,

respectively, at the other DLC.

4. Deadlock-Free: There exists a value T1 such that if (a) both DLC’s are in Initialization Mode at some

time t and (b) during the interval of length T1 after t there are no channel errors and (c) the delay for all

frames (queueing + propagation) is bounded, then at time t+ T1 both DLC’s are in Connected State.

The following Theorem demonstrates the relationship between a sliding-window DLC procedure, its

associated LI procedure, and the notion of data reliability.

Theorem 2.3 If a sliding-window DLC procedure is initialized by an LI procedure that ensures synchro-

nization, then the DLC procedure ensures data reliability.

Proof: Consider a sliding-window DLC procedure with an LI procedure that ensures synchronization. We

need to prove that the DLC procedure has the Crossing, FIFO, Confirm and Delivery properties.

Proof of Crossing: The Clear property of the LI procedure defines a time t when there are no information

frames or information ACK frames in the system and when both DLC’s are in Initialization Mode. Therefore,

at that time, there are no information frames at all in the entire system. This means that no frame containing

any packet accepted from any source before time t exists in the system. Moreover, when it enters Initialization

Mode, the DLC cleans its buffer of stored frames containing previously accepted packets. Therefore, no

frames containing packets accepted from any data source before time t can arrive to any DLC from the

media after that time, hence the Crossing property.

Proof of FIFO, Confirm and Delivery:

Consider the time t defined in the Clear property of the LI procedure and suppose that after time t some

DLC is the first to go to Connected State. The Clear property implies that until time t0 when the other

DLC also goes to Connected State, no information or information ACK frames can be accepted at either

DLC from the other. This is because (a) the second DLC is still in Initialization Mode and will discard

any information frames, and (b) the first DLC will not receive before t0 any information or ACK frames

because the second does not send any. The Reset property says that at time t0 the counter numbers are

synchronized, and without loss of generality we can take them to be 0.

As said before, we look at information data flowing in one direction only, from A to B. Packets accepted

by station A from the local data source will be numbered for identification purposes by consecutive increasing

numbers P (0), P (1), . . . (not modulo W ), where P (0) is the first packet accepted after entering Connected

state. Hence the sequence number assigned to P (I) is I mod W . First observe that the sliding-window DLC

mechanism dictates that a frame can be considered acknowledged (and discarded) by A only as a result of

receiving an ACK frame and no more than (W − 1) frames can be discarded as a result of receiving a given

ACK frame. Also, consecutively discarded frames contain consecutive packets. An ACK frame whose receipt

at the sender DLC results in discarded information frames will be referred to as an active ack. Observe that

an ack is labeled as active or not active only upon being received by A. More precisely, an ACK with number

NR received by A is active if NR 6= VS, and not active otherwise. The packet corresponding to the last

frame that is discarded when an active ack is received will be referred to as correlated with the active ack.

Lemma 2.4 provides the proof of the Confirm property and of the FIFO property for packets that are

considered acknowledged. FIFO for packets that are not considered acknowledged is proved in Lemma 2.5.

Lemma 2.4 Suppose an ACK arrives at the sender DLC and is labeled active. At the time when the ACK

was sent by the receiver DLC, all packets, starting with P (0) and ending with the correlated packet, and only

those, have been delivered to the data sink in order, with no duplicates and no gaps.
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Proof: Notes a) and b) below follow directly from the sliding-window DLC properties and will be used in

the proof:

a) No frame containing packets prior to and including P (I − (W − 1)) can be sent by the sender DLC after

accepting packet P (I) and consequently no such frame can be received by the receiver DLC after any frame

containing P (I).

b) No frame containing packets following and including P (I + (W − 1)) can be sent by the sender DLC

before the time when the frame containing packet P (I) is discarded.

Now consider Figure 2.4 where NR1, NR2 denote the ACK numbers of two consecutive active acks and let

t1, t3 and t2, t4 denote the respective arrival and departure times. From the time just after ACKNR1
is

processed and until just before ACKNR2
is received, the variable VS does not change and for this value of

VS holds VS = NR1 and VS 6= NR2, hence NR1 6= NR2. Let P (I), P (K) be the packets correlated with

the two consecutive active acks. We have 0 < K − I ≤ W − 1; I mod W = (NR1 − 1) mod W ; K

mod W = (NR2 − 1) mod W .

Figure 2.4: Diagram for proof

The induction step consists of showing that, if all packets up to and including P (I) and only those have

been delivered in order, with no duplicates and no gaps until time t2, the same is true for all packets up to and

including P (K) until time t4. This amounts to showing that during [t2, t4], the packets P (I + 1), · · · , P (K)

and only those packets are delivered to the sink at B exactly once and in order. First note that, since P (I+1)

is discarded at time t3, b) above implies that no frame containing packets following and including P (I +W )

can arrive at the receiver DLC during the interval [t2, t4]. Also, a) above, says that for all J holds that,

after any frame containing packet P (J) arrives at the receiver DLC, no frame containing P (J − (W − 1))

or preceding packets can arrive at the receiver DLC afterwards. Now, take J to be I, I + 1, ..., I + (W − 1).

We obtain that in the considered interval the following must be true: the only frame with send sequence

number NS = NR1 that can arrive is the one containing P (I + 1); if the frame containing P (I + 1) arrives,

the only frame with NS = (NR1 + 1) mod W that can arrive afterwards contains P (I + 2); and so on, if

the frame containing P (I + (W − 2)) arrives, the only frame with NS = (NR1 + (W − 2)) mod W that can

arrive afterwards contains P (I + (W − 1)) and if the latter arrives, no frame with NS = (NR1 + (W − 1))

mod W can arrive afterwards. Since the receiver DLC accepts frames only with consecutive send sequence
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numbers modulo W, only P (I + 1) to P (I + (W − 1)) can be accepted in this interval, in order and with no

gaps or duplicates. Since VR at time t4 is NR2, the packets that have in fact been accepted in the interval

[t2, t4] are P (I + 1) up to and including P (K), completing the induction step.

Now, since at time t0, defined at the beginning of the proof of FIFO and Confirm, there are no information

ACK frames in the system, the first received active ACK is sent after that time, at time t′ say, and let NR′

be its ACK number. The fact that VS = 0 at initialization, implies NR′ 6= 0 and only frames containing

P (0) to P (W − 2) can be received by the receiver DLC before NR′ is sent. Finally the same argument as

before shows that the ones that have been indeed accepted are P (0) to P (NR′ − 1), in order and only once,

completing the proof of the Lemma. qed

Proof of Delivery: Suppose the sender DLC enters Connected state and stays there forever afterwards.

We need to show that in this situation all packets produced by the data source will eventually be considered

acknowledged. From the Follow-up property follows that the receiver DLC cannot stay forever in Initializa-

tion Mode. From the Clear property follows that it cannot enter and leave Initialization Mode. Hence after

some time the receiver DLC is in Connected state and stays there.

Let P (I) be the first packet that is never considered acknowledged. This means that all frames up to and

including P (I − 1) are delivered and considered acknowledged after a certain time. Hence VS = I mod W

and will never change, VR = I mod W and the frame containing P (I) will have sequence number VS. Since

the source DLC has a timer and the frame with sequence number VS is sent every time the timer expires,

the frame containing P (I) will be sent an infinite number of times. Consider the situation after the receiver

DLC is in Connected state and stays there. One of the basic model assumptions is that when the media is

operational, the probability of frame loss or error is less than 1, and hence, if the frame is repeatedly sent, it

will eventually arrive correctly at the receiver DLC. When this happens, packet P (I) is delivered to the data

sink, and VR becomes (I+1) mod W . The receiver also has a timer and will send ACKNR with NR = (I+1)

mod W ,..., (I +W − 1) mod W an infinite number of times. Again one of these ACK’S will arrive correctly

at the source DLC, causing P (I) to be considered acknowledged. qed

Lemma 2.5 Packets that are never considered acknowledged, but are delivered to the data sink, are deliv-

ered in order, with no duplicates and no gaps.

Proof: The Delivery property ensures that if there are packets that are never considered acknowledged,

then the sender DLC enters Initialization Mode. The Follow-up property ensures that the receiver DLC will

also enter Initialization Mode. Suppose NR2 in Fig. 2.4 is the last active ack sent by DLC B and received

by DLC A before entering Initialization Mode. As in Lemma 2.4, let P (K) be the correlated packet. We

need to show that any packets P (J), J > K that are delivered to the data sink, are delivered in order, with

no gaps or duplicates. The proof proceeds in a similar way as the induction step in the proof of Lemma

2.4. Note that, since P (K + 1) is never discarded, note b) in the proof of Lemma 2.4 implies that no frame

containing packets following and including P (K +W ) can ever arrive at the receiver DLC. Also, note a) in

the proof of Lemma 2.4 says that for all J holds that, after a packet P (J) arrives at the receiver DLC, no

frame containing P (J − (W − 1)) or preceding packets can arrive at the receiver DLC. Now, take J to be

K,K + 1, ...,K + (W − 1). We obtain that after t4 the following must be true: the only frame with send

sequence number NS = NR2 that can arrive is the one containing P (K+1); if the frame containing P (K+1)

arrives, the only frame with NS = (NR2 + 1) mod W that can arrive afterwards contains P (K + 2); and so

on, if the frame containing P (K+(W −2)) arrives, the only frame with NS = (NR2 +(W −2)) mod W that

can arrive afterwards contains P (K+(W −1)) and if the latter arrives, no frame with NS = (NR2 +(W −1))

mod W can arrive afterwards. Since the receiver DLC accepts frames only with consecutive send sequence

numbers modulo W, only P (K + 1) to P (K + (W − 1)) can be accepted, in order and with no gaps or
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duplicates, completing the proof of the Lemma. qed

Problems

Problem 2.3.1 Indicate the data reliability properties that do not hold if the window of the sliding-window

DLC Protocol is W instead of W − 1. Give examples.

Problem 2.3.2 Indicate the data reliability properties that do not hold if the media does not have the

FIFO property. Give examples.

Problem 2.3.3 Consider the sliding-window DLC Protocol of Table 2.3, where instead of discarding infor-

mation frames with NS 6= VR, the receiver saves them for later use. For example, if the sender sends frames

0, 1 and 2, but the first two are lost, then the receiver does not discard the third, but uses it later when the

first two arrive correctly. Assuming that the Initialization Procedure ensures Synchronization, is this DLC

Procedure reliable? If yes, prove. If not, indicate the necessary changes that will make it reliable, and prove

reliability of the new protocol.

Problem 2.3.4 Explain why are the six properties of data reliability independent. Give examples when

each of the properties does not hold while the other five do.

Problem 2.3.5 In some cases we want the receiver to have control of the window size (For example, it

can reflect the number of free buffers currently available to the receiver). A good place to do it is on the

acknowledge packet. Write the sender side of a protocol that ensures that no packet is sent beyond the

allowed window.

Problem 2.3.6 The normal selective repeat DLC presented in the exercise session has the following draw-

back : When several contiguous packets are not received and the timeout at the sender expires, the latter

sends only one packet and waits for the acknowledgement to see if the following packet have been received

correctly. Only then it sends the one after it, and so on. In other words, there is no windowing for these

packets. Discuss an efficient (with no unnecessary retransmission of packets) way to solve this problem.

When does this drawback make the go-back-n protocol better than the selective-repeat protocol presented

in the exercise session?

Problem 2.3.7 On a given full duplex link, the bit error rate is 1 per 1000 bits. The length of the DLC

header together with the CRC is 50 bits. It contains an ACK field that has an error correcting code, so even

in an erroneous frame, the ACK field can still be used. Each data packet sent is acknowledged immediately

by an ACK frame or in the ACK field of a data frame. The CRC is useful ? for packets of length less than

105 bits.

a) What packet size is optimal for achieving maximum throughput?

b) Repeat a) when it is known that on the average case, the number of consecutive corrupted bits is 4.

c) Suppose that the line has bandwidth of 300 bits/sec. The line is full duplex. What size of window would

you select for the DLC procedure ?

d) Now suppose that the delay on the line is 3 seconds. That means that a bit that was sent at time t on

the line, will be received at time t+ 3. What size of window would you select now?

e) Specify the DLC retransmission timeout and the LI timeouts that should be selected for the system.

f) Specify a failure detection mechanism for the above system. Specify its parameters (like timeouts).

g) Suppose that a real-time low-rate source uses this link. In this case, throughput is of less importance,

and instead it has delay demands : at least 99% of the data should be received correctly within 12 seconds.

What parameters should be changed?
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Problem 2.3.8 (Old statement of FIFO) This problem can be solved only after reading some of the chapters

on Network Protocols). The statement of FIFO in [BS88] did not include requirement of FIFO for packets

that are not considered acknowledged at the time of a failure detection. Give examples of Network Protocols

that do not work with the old statement of FIFO.
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2.4 Link Initialization Procedures

In this section we discuss the DLC Link Initialization (LI) Procedures. We have shown in Theorem 2.3 that

any sliding-window DLC procedure ensures data reliability if it is initialized by an LI procedure that ensures

synchronization. The best currently known LI procedures are the ones used by HDLC [Car82], [ISO81],

[BC77], [Sta82]. However, as shown in Section 2.4.1, the HDLC LI Procedures fail to provide synchronization

and allow inadvertent loss of data as a result of nothing more than unpredictably long media delays (e.g., due

to long queueing caused by congestion); these scenarios assume no loss of memory or failure of any other type

at the nodes. The problem is that, for proper operation, the HDLC LI procedures require that the time-out

periods used in the procedure are larger than the maximal roundtrip delay of the control frames. This poses

a major problem in the design of the time-out periods. As shown in the examples of Section 2.4.1, time-outs

that are too short may result in lack of synchronization, non-reliable communication and inadvertent loss

of frames. On the other hand, time-outs that are too long result in a long setup time, because the DLC

process waits longer than necessary before retransmitting control frames that are lost. The time-out interval

in the HDLC LI procedure has to be set to a large enough value to ensure that the media is free of old

control frames before it expires, but such a value may be much larger than it is normal necessary. Moreover

DLC procedures are often used on transmission media like satellite with on-board processing, gateways, local

area networks, etc., for which it is hard to determine a priori bounds on the transmission delay. For such

environments it is difficult to establish a time-out interval that is tight on one hand and not exceeded by the

round-trip delay on the other hand. Perlman,103.89,timers, low prob.

In Section 2.4.2 we present the Link Initialization procedures suggested in [BS88], that work without the

stringent requirement that the time-out interval exceeds the round-trip delay. Their main property is that

DLC process synchronization and channel clearance are achieved under arbitrary channel delays for all cases

of media malfunction, as long as there is no loss of memory in the nodes. The interesting fact is that the

complexity of those procedures is smaller than the one of the HDLC LI procedures, so that the increased

reliability is achieved at no extra expense. Moreover, the new procedures can be adapted to cope with node

failures, provided only two bits of non-volatile memory exist in each of the stations (or only one non-volatile

bit in the primary station for the Unbalanced mode). In fact it turns out that this is the best one can do

because it has been shown in [LMF88] that there exists no LI procedure that ensures synchronization under

node failures without the use of non-volatile memory.

As mentioned before, no procedure is completely failsafe against all types of failures. In particular, if the

non-volatile memory fails, then loss of synchronization and inadvertent loss of data may occur even with the

new LI procedures. However, the procedures of Section 2.4.2 considerably reduce the possibility of error as

compared to the HDLC LI procedures.

In the remainder of this section we shall use finite state diagrams (see for example Figure 2.5) to describe

the operation of various LI procedures. The notation T/A next to a state transition will denote the fact

that T is the trigger for that transition and A is the action to be taken after transition. The triggers will

generally be the receipt of particular LI-Control frames or a time-out. We shall adopt the convention that

the receipt of any frame other than those specified as triggers causes no action (i.e., the frame is disregarded

and discarded). The term reset will denote the resetting of all counter numbers and the clearing of all

memory associated with the communication system at the given node.

In order to describe the sequence of events that may occur between the two DLC processes, we will use

a timing diagram with two parallel time axes (one for each DLC) as shown for example in Figure 2.6 An

arrow drawn from one axis to the other represents a frame sent by one station and received by the other. An

arrow that does not terminate on a time axis represents a lost frame (e.g., a frame that arrives in error and
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is discarded). Each arrow is labeled with the corresponding frame type. LI-control frames are represented

by solid arrows and information frames or information ACK frames are represented by dashed arrows. An

represents an information frame with sequence number n and ACKm represents a frame with acknowledge

sequence number m.

2.4.1 The HDLC LI Procedure

In this section we describe the Link Initialization Procedure used by HDLC in the Unbalanced Normal

Response Mode and show that it does not ensure synchronization. The finite state diagrams describing the

HDLC Link Initialization Procedure are shown in Figure 2.5 [BC77] (Figure 2.5 is the same as Sec. 5 in

[BC77] except it also shows time-outs and exchange of messages with the higher layer). Set normal response

mode (SNRM), disconnect (DISC), unnumbered acknowledgement (UA), and disconnect mode (DM) are the

LI frames. notify means ”Notify the Higher Layer4” and reset means ”Reset sequence number.” Note that

the actual operation of this LI procedure is dependent on information obtained from a higher layer, allowing

for various versions of operation. In particular, transition from the Failure Detected and Disconnected States

is triggered by the receipt of instructions SNRM.CMD or DISC.CMD from a higher layer. However, we will

show that all versions of this LI procedure do not ensure synchronization, independent of the actions taken

by the higher layers.

Consider the possible sequence of frame exchanges shown in Figure 2.6(a)5. The sequence begins with

the primary station entering Wait-Disc ack state and the secondary in Disconnected state, a common con-

figuration. The primary sends a DISC message to which it receives a UA ack. The primary then enters

Wait-SNRM Ack. After sending an SNRM frame, the primary times-out. When the timer expires, another

SNRM is sent. Normally the timer is set such that if a UA is not received within its range, there is a good

chance that the SNRM or the UA has been lost. However, as indicated at the beginning of this section,

in some situations it may be hard or inefficient to guarantee that this is always the case. The situation

considered in Figure 2.6(a) is where the timer expires twice before the UA for the first frame is received.

Upon receiving the UA, the primary enters Connection Mode, and in the scenario shown in the figure, detects

another failure.

Upon detection of the media failure, the primary discards all information frames in the buffer and reenters

Initialization Mode. At this point the primary may send either an SNRM or a DISC frame, depending on

the instructions received from the higher layer. Figure 2.6(a) demonstrates the situation where the primary

sends a DISC frame. Upon receiving the UA frame, it sends SNRM and upon receiving the next UA frame,

it enters Connection Mode. At this point it accepts new packets from the higher layer. The first such

packet is included in a frame with NS = 0. The diagram shows a scenario when this frame is lost in the

media, but the DLC receives an information acknowledgement frame with NR = 1, that is interpreted to

acknowledge the lost information frame. Figure 2.6(b) shows that the same problem may result when the

primary sends an SNRM frame after the failure detection. Notice that three of the properties required to

ensure synchronization ( Follow-up, Clear and Reset ) are violated by this LI procedure, no matter

what action is taken by the higher layers. Thus the HDLC Link Initialization Procedure does not ensure

synchronization and the HDLC itself does not ensure data reliability.

4Higher Layer is not Layer 3 in ISO, it is part of layer 2 that controls the initialization process
5All Unnumbered Frames considered here have the P/F bit set to 1 (see [ISO81] for details).
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(a) Primary

(b) Secondary

Figure 2.5: The HDLC Link Initialization Procedure
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(a) With DISC

(b) Without DISC

Figure 2.6: The HDLC LI Procedure does not ensure Synchronization
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2.4.2 Link Initialization Procedures that Ensure Synchronization

One way to prevent the situation described in Section 2.4.1 and correct the HDLC Link Initialization Proce-

dure is to use sequence numbers. The LI-Control frames could carry correlated sequence numbers. However,

infinitely large sequence numbers would be required to ensure synchronization. In this section we describe

several new LI procedures that ensure synchronization without the use of sequence numbers or time-stamps.

The first of our procedures, presented in two versions, assumes that one of the stations is predesignated as

the primary station and the other as the secondary. The second procedure assumes no such preassignment,

but begins by explicitly assigning primary/secondary functions. In the third procedure no preassignment is

assumed and no postassignment is performed. In addition to ensuring synchronization, the second version

of the primary-secondary procedure and the last two LI procedures also satisfy an additional property that

may be important in some environments:

Test: A DLC process in Initialization Mode should not enter Connected State before it observes that the

round-trip delay across the system is within a prespecified bound for at least one frame.

More stringent Test requirements, like two round-trips, may be implemented. The purpose of the Test

property is to provide insurance that the DLC’s will not unnecessarily oscillate between the Connected State

and Initialization Mode.

2.4.3 Unbalanced LI Procedures that Ensure Synchronization

This procedure is designed for the situation where one of the DLC’s is predesignated as the primary and the

other as the secondary. The finite state diagrams describing the algorithm performed by each station are

given in Figure 2.8. When the primary comes up, it enters the Wait-DM state; when the secondary comes

up, it enters the Disconnected state. A DLC in Initialization Mode ignores all information frames and all

information ACK frames and inhibits the media failure detection mechanism. Similarly, in the Connected

state the primary ignores all LI-control frames and the secondary ignores all LI-Control frames other than

DISC.

The primary station begins by transmitting DISC control frames at arbitrary time intervals until receiving

a DM from the secondary. It then transmits SNRM control frames at arbitrary time intervals until receiving

a UA, at which time it transmits a SUCCESS frame, resets its send and receive counter numbers, and

enters Connected State. The secondary simply transmits a DM or UA frame whenever it receives a DISC

or SNRM respectively. In addition, when the secondary receives a SUCCESS frame it resets its send and

receive counter numbers and enters the Connected State.

The timeout employed between DISC and SNRM frames is arbitrary from a correctness point of view.

The LI procedure ensures synchronization for any value of this timeout. The only reason not to make it too

short is performance, since this will unnecessarily clutter the channel with DISC and SNRM frames.

We may point out that the LI procedure of Fig. 2.8 is even simpler than the HDLC LI procedure. We

outline here the differences between the two. To obtain Fig. 2.8 from the HDLC LI procedure one has to

make the following changes ( see Fig. 2.7):

Primary

a) delete the two transitions between ”failure detected” and ”Wait-SNRM ack” states; in particular, this

means that in Wait-SNRM ack, the primary does not react to Failure detected by the failure detection

mechanism. In fact, the failure detection mechanism is disabled in Disconnected Mode at both primary and

secondary nodes.

b) delete the transition from ”Connected” to ”Wait-SNRM ack”
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(a) Primary

(b) Secondary

Figure 2.7: Corrections to the HDLC LI Procedure
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(a) Primary

(b) Secondary

Figure 2.8: An Unbalanced LI that ensures Synchronization

c) in ”Wait-DISC ack”, do not react to UA frames

d) in the transition from ”Wait-SNRM ack” to Connected, send also a SUCCESS frame

e) disregard internal messages like DISC.CMD and SNRM.CMD

Secondary

e) when receiving DISC, always send DM (and never UA).

f) when receiving SNRM in Disconnected state, stay there.

g) SNRM cannot be received in Connected state.

h) when receiving SUCCESS in Disconnected state, transit to Connected state.

In fact the procedure of Fig. 2.8 would have ensured synchronization even without the SUCCESS frame, i.e.

without changes d),f),g) and h) above. We prefer the procedure as stated because the primary is the first

to go to Connected state.

The HDLC LI Procedure fails to ensure synchronization because UA acknowledges both DISC and SNRM

frames, the failure detection mechanism is not inhibited in Initialization Mode and it allows operation without

use of DISC frames. By correcting these problems, we develop here a Link Initialization Procedure that not

only ensures synchronization, but is much simpler than the HDLC LI protocol.

The procedure of Fig. 2.8 suffers from the difficulty that it may bring the DLC’s to Connected state

even if the media is very bad, and in this case the stations may unnecessarily oscillate between Connected
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state and Initialization Mode. In order to avoid this, we introduce in Figure 2.9 a modified version of the

Unbalanced LI procedure,where we add a state at the primary, the Wait-Tack state. The purpose of the

Wait-Tack state and the associated timeout is to provide a certain degree of insurance that the channel

works properly before the DLC’s return to Connected state. In the form given in Figure 2.9 we are sure

that the Test property is satisfied, namely at least one round-trip delay across the communication system

did not exceed the bound specified by the TEST timeout. Therefore, the TEST timeout should be set to

comply with the required specification. In fact, in various implementations, the Wait-Tack state and the

corresponding timeout may be replaced by another ”box” if there is a different Test requirement.

(a) Primary

(b) Secondary

Figure 2.9: A LI that ensures Synchronization and Test

The remainder of this subsection will be devoted to proving the correctness of the Unbalanced LI Proce-

dure in both versions. We will first show that the procedures, as stated, ensure synchronization and that the

second version satisfies the Test property, as long as the primary DLC does not fail during execution of the

LI procedure. We will then show how to extend the protocols to handle environments in which the primary

station can fail during execution of the LI procedure. This extension will require one bit of non-volatile

memory at the primary.

Theorem 2.6 Suppose that the primary station begins operating at a time when the media contains no

DISC or DM frames and subsequently does not fail while in Initialization Mode. Then both versions of
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the Unbalanced LI procedure ensure synchronization and, in addition, the second version satisfies the Test

property.

Proof: Since the secondary station enters Disconnected state after it recovers from a station failure, any

failure of the secondary station will have no effect on the operation of the LI procedure other than increased

frame delay or loss. Similarly, failures of the physical transmission media are equivalent to frame loss on the

media. Thus, we need only consider the case where there are no media or station failures, but there may be

arbitrary frame losses and arbitrary long frame delays.

Before continuing, we shall prove the following Lemma, that holds for both versions of the LI procedure:

Lemma 2.7 - The cleaning property

Suppose the primary station does not fail in Initialization mode. Suppose also that the primary station

enters the Wait-DM state at a time when the system is devoid of DISC or DM frames. Then

a) at the time t1 when the primary next exits Wait-DM, only DISC or DM frames may exist in the system

and the secondary is in Disconnected state.

b) at the time t2 when the primary next exits the Wait-UA state, only SNRM and UA frames may exist in

the system and the secondary is in Disconnected state over the entire interval [t1, t2].

Suppose the assumptions of the Theorem hold. Then

c) every time the primary enters the Wait-DM state, the system is devoid of DISC and DM frames and a)

and b) above hold at every exit of the primary from the Wait-DM and Wait-UA states respectively.

Proof: Let t0 be the time when the primary enters the Wait-DM state while the system contains no

DISC or DM frames (see Fig. 2.10). The time t1 defined in a) is the time when the primary receives the

first DM after t0, and therefore exits Wait-DM state. Let t′1 be the time when that DM frame is sent by the

secondary and t′′1 < t′1 be the time when the primary sends the DISC frame that causes that DM. By the

FIFO property of the media (assumption b) on page 22), frames sent by the primary before t′′1 and by the

secondary before t′1 cannot exist in the system at time t1. Since at time t0− the system was devoid of DISC

and DM, holds t′′1 ≥ t0. But between t0 and t1 the primary sends only DISC frames and between t′1 and

t1 the secondary sends only DM frames. Therefore only these types of frames may exist in the system at

time t1. In addition, at time t′1+, the secondary is in Disconnected state. Since it cannot receive SUCCESS

between t′1 and t1, it stays in that state until t1. This completes the proof of part a). Part b) is proved in a

similar way.

To prove part c), observe that by the assumption of the Theorem, when the primary comes up, it enters

Wait-DM state and at that time the system is devoid of DISC and DM. Consequently a) and b) hold at

the times when the primary next exits Wait-DM and Wait-UA respectively. In particular, when Wait-UA

is exited, there are no DISC or DM frames in the system. Since such frames are not be generated until the

next entrance of the primary into Wait-DM state, at that time the system is devoid of DISC or DM frames.

It follows now inductively that a) and b) hold after every entrance of the primary into the Wait-DM state,

completing the proof of the Lemma. qed

Lemma 2.8 Suppose that the assumptions of the Theorem hold and let t3 denote the time when the primary

sends some SUCCESS frame ( that may or may not arrive at the secondary ).

a) In the second version (Fig. 2.9), let t2 be the last time before t3 when the primary exits Wait-UA state

(see Fig. 2.10). Between t2 and t3 the primary stays in Initialization Mode. (Note: In the first version holds

t3 ≡ t2).

c©Adrian Segall 38



Sec. 2.4

Figure 2.10: Diagram for proof

b) In both versions, suppose the SUCCESS frame arrives at the secondary, at some time t4 say. Between

t2 and t4, the secondary stays in Initialization Mode. Moreover, if the primary is in Connected state at time

t4, then the primary is in Connected state over the entire interval (t3, t4].

Proof: During (t2, t3) the primary is in Wait-Tack state hence it is in Initialization Mode. This is part a).

In order to prove b), note that from Lemma 2.7, at time t2 the system contains no other frames except for

SNRM and UA and the secondary is in Disconnected state. In addition, the primary sends no SUCCESS

frame between t2 and t3−, so no such frame can arrive at the secondary between t2 and t4. Hence the

secondary stays in Disconnected state until t4. If the primary leaves Connected state between t3 and t4, it

cannot return to Connected state by t4. This is because if it does return, there must be a time between

t3 and t4 when it leaves Wait-DM state. At that time the system may contain only DISC or DM frames,

contradicting the fact that the SUCCESS frame is in the system on the entire interval (t3, t4). qed

We continue now with the proof of the Theorem. We first prove the Follow-up property. As stated in

the definition of the protocol, the primary can enter Initialization Mode only when the failure detection

mechanism declares a failure; the secondary can enter Initialization Mode when a failure is detected or when

it receives a DISC frame. If the primary enters Initialization Mode when the secondary is in Connected state,

it starts sending DISC frames and only those frames. If the media is operational, one of those frames will

arrive, forcing the secondary into Initialization Mode (if it is not there already). If not, the failure detection

mechanism at the secondary detects a failure, and this forces the secondary into Initialization Mode. If the

secondary enters Initialization Mode when the primary is in Connected state, it ignores all information and

all information ACK frames. Consequently, the failure detection mechanism at the primary will declare the

media as failed, forcing the DLC into Initialization Mode.

The Clear property follows from Lemma 2.8. Suppose first that the primary goes into Initialization Mode

and then returns to Connected state at some time t3 (see Fig. 2.10). At that time it sends a SUCCESS

frame. The instant required in the Clear property when the secondary is also in Initialization Mode and the

media is devoid of Information frames and information ACK frames can be taken as t1, the last time before

t3 when the primary exits Wait-DM state. This is because by Lemmas 2.7 and 2.8a), the primary stays in

Initialization mode between t1 and t3 and the system may contain at t1 only DISC and DM frames. Now

suppose that the secondary goes to Initialization Mode and then returns to Connected state, at some time

t4 when it receives a SUCCESS frame. If t1 is defined as the last time before t4 when the primary exits

Wait-DM state, then by Lemmas 2.7 and 2.8a), the secondary stays in Initialization Mode between t1 and

t4 and the media may contain only DISC and DM frames at time t1. Therefore, time t1 may again be taken
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as the instant required in the Clear property.

To prove the Reset property, observe first that according to Lemma 2.8, when the primary enters Con-

nected state, the secondary is still in Initialization Mode. Consequently, the only process that may enter

Connected state while the other is already in Connected state is the secondary. It does so when it receives a

SUCCESS frame, at time t4 say (see Fig. 2.10). Let t3 be the time when that SUCCESS frame was sent. At

time t3 the primary sets V S = V R = 0. From Lemma 2.8, between t3 and t4 the primary stays in Connected

state. Also, during this time, the primary receives no information or information-ACK frames, since the

secondary sends no such frames while in Initialization Mode. Consequently, at time t4+ holds V S = V R = 0

at both the primary and the secondary.

We now prove the Deadlock-free property. Suppose that both DLC’s are in Initialization Mode. In the

first version, the DLC’s will return to Connected state if some DISC and the corresponding DM will arrive

correctly, some SNRM and the corresponding UA will arrive correctly and the subsequent SUCCESS will

not be lost or corrupted. Hence the first version satisfies the Deadlock-free property. For the second version

there is an additional requirement that the TEST-Tack pair arrive correctly and within the Tack timeout.

Hence that version also satisfies the Deadlock-free property.

To prove the Test property for the second version, observe that at the time when the primary leaves

the Wait-UA state, there can be only SNRM and UA frames in the system. Consequently, in order for the

primary to send the SUCCESS frame at t3, it must be the case that after t2, the last time before t3 when

the primary left Wait-UA state, it has sent a TEST frame and has received the Tack response within the

Tack timeout. Hence the TEST property. qed

Our discussion thus far has been based on the assumption that the primary DLC does not fail during

execution of the LI procedure. If we drop this assumption, there is the question of what state does the

primary station restart in. It is easy to show that no matter which state is selected for restart, Theorem

2.6 no longer holds. Thus the unbalanced LI procedure must be modified so that its operation is unaffected

by primary station failures. This can be easily accomplished if the primary station maintains one bit of

non-volatile memory which is set to 1 every time the Wait-UA state is entered and reset to 0 every time the

Wait-UA state is exited. Whenever the primary station fails, it restarts in the Wait-UA state if the value of

the bit is 1 and in the Wait-DM state otherwise. This modification will essentially leave the LI procedure

unaffected by primary station failures. This is because if the station fails in Wait-DM or Wait-UA state,

it will come up in the same state. If it fails in Connected or Wait-Tack state, it will come up in WAIT

DM state, and this transition is equivalent to failure detected on the media or TEST timeout expiration

respectively. Therefore Theorem 2.6 will once again apply. We mention again that the above is the best one

can do because it has been shown in [LMF88] that there exists no LI procedure that ensures synchronization

under node failures without the use of non-volatile memory.

2.4.4 A Function-Assigning LI-Procedure

In the Unbalanced LI-Procedure of the previous section it was assumed that the primary/secondary functions

are preassigned. This section considers the case where no such preassignment exists, but the LI procedure is

required to assign primary/secondary functions to the stations. A procedure of this type is necessary when

the stations must use an Unbalanced Operation Mode in Connected State (as in SDLC for example). We

note, however, that such an LI procedure can also be used if the stations employ a Balanced Operation Mode

in Connected State, by simply disregarding the assignment. The advantage over the Balanced LI Procedure

(to be presented in the next section) is that fewer LI-Control frames are used. On the other hand, the

Balanced LI Procedure must be used if there is no ordering of the station identities or if there is an explicit
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requirement that the entire activity of the LI Procedure be completely symmetric.

The Function-Assignment LI Procedure uses a fairly simple rule for primary/secondary assignment. The

station that enters first Initialization Mode becomes the primary, except for the case when each of the two

stations enters Initialization Mode before finding out that the other station has also entered this mode. In

this latter situation, the station with higher identity number becomes the primary. The finite state diagram

for station A is shown in Figure 2.11. Station B has the same diagram except that A and B are interchanged.

The idea is that a station ( say A) which detects a media failure while in Connected State, enters Wait-DM

State and attempts to become the primary by sending DISC frames to the other station. If it receives a

DISC frame while in this state, it recognizes that Station B has done the same and if B > A, it yields the

primary function to the other station by sending DM and entering disconnected State. Otherwise, station

A will receive DM and declare itself the primary.

Figure 2.11: A Function-Assigning LI Procedure: algorithm for node A

The correctness of the Function-Assigning LI Procedure follows directly from the proofs for the Unbal-

anced LI Procedure and several additional observations. Consider first the case where the stations do not

fail and, whenever a station begins operating, it enters the Wait-DM state. Then note that:

• A station (say B) can enter disconnected state only if it receives a DISC frame and this can be sent only if

the other station is in Wait DM state; disconnected state can be left only by entering Connected Secondary

state.

• A station (say B) can make the transition to Wait-UA state only if it receives a DM frame and this can be
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sent only if the other station is in disconnected state.

These observations imply that after any station (say A) enters Wait UA state (and until both enter

Connected state), the stations operate exactly as in the Unbalanced LI Procedure with A the primary and

B the secondary. Therefore all properties of Section 2.4.3 hold here as well.

If the stations may fail while in Initialization Mode, each needs two bits of non-volatile memory to indicate

if the failure occurs in disconnected state, in Wait-UA state or elsewhere. The station will then restart in

disconnected state, Wait-UA state or Wait-DM state respectively. The argument why this leaves the LI

Procedure unaffected by station failures is the same as in the last paragraph of Section 2.4.3.

2.4.5 A Balanced LI Procedure

The Unbalanced LI Procedure described in Section 2.4.3 can be easily modified to obtain a Balanced LI

Procedure for which no primary/secondary assignment is required or performed. The finite state diagram

describing the algorithm performed by each DLC is given in Figure 2.12. Notice that this procedure essentially

consists of two independent executions (one in each direction across the media) of the unbalanced procedure

described in Section 2.4.3. The only difference is the introduction of a Wait-Hold state which guarantees

that the two DLC’s re-enter the Connected state at about the same time. More specifically, neither station

can enter the Connected state until both stations have entered the Wait-Hold state. The correctness of this

protocol follows directly from the correctness of the unbalanced protocol.

Figure 2.12: A Balanced LI Procedure

Problems

Problem 2.4.1 Consider the HDLC Initialization Procedure with the two transitions between Failure De-

tected and Wait-SNRM ack deleted. Does this LI procedure ensure synchronization? Prove or give coun-

terexample.
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Problem 2.4.2 In the Function Assignment LI procedure there is need to preassign numbers to nodes.

Suppose that in order to relax this asymmetry, we try to assign numbers to functions rather than to nodes,i.e.

the will be a number for the primary and one for the secondary. If yes, at what time will each node receive

the number corresponding to its new function? Explain why the new version works.

Problem 2.4.3 Consider the Unbalanced LI procedure of Fig. 2.8 with the WAIT UA state removed and

no frames SNRM or UA. Does it ensure synchronization? Prove or give counterexample.

Problem 2.4.4 On link (A,B) operates a sliding-window DLC protocol with a Link Initialization Procedure

that ensures synchronization. Suppose that the source at A sends at time t1 a packet to B, that is delivered

to the sink at B at time τ1. Also, the source at B sends at time τ2 a packet, that is delivered to the sink at

A at time t2. Here τ1 < τ2 and t1 < t2. Show that DLC A is in Connected state during the entire interval

[t1, t2] if and only if DLC B is in Connected state during the entire interval τ1, τ2].

Problem 2.4.5 Consider the same situation as in Problem 2.4.4, except that τ2 < τ1. Can it happen that

DLC A enters Initialization Mode during [t1, t2]? Prove or give example.

Problem 2.4.6 On link (A,B) operates a sliding-window DLC protocol with a Link Initialization Procedure

that ensures synchronization. Suppose that the source at A sends at times t2, t1, where t2 < t1, two packets

to B, that are delivered to the sink at B at times τ2, τ1 respectively. Show that τ2 < τ1 and if DLC B is in

Connected state during the entire interval [τ2, τ1], so is DLC A during [t2, t1].

Problem 2.4.7 On link (A,B) operates a sliding-window DLC protocol with a Link Initialization Procedure

that ensures synchronization. Suppose that the source at A sends at time t1 a packet to B, that is delivered

to the sink at B at time τ1. At some time t2 < t1, the source at DLC A sends a packet to B. Suppose

that during the entire interval [t2, t1], DLC A is in Connected state. Show that the packet sent at t2 must

eventually arrive at B. Let τ2 be the arrival time. Show also that τ2 < τ1 and that DLC B is in Connected

state during the entire interval [τ2, τ1].

Problem 2.4.8 To increase the chances that the secondary enters Connected state after the primary does,

one can change the LI procedure of Sec. 2.4.3 such that the primary sends 3 SUCCESS frames and then goes

to Connected. The secondary goes to Connected if it receives at least one SUCCESS. Does this protocol

work? Prove or give counterexample.

Problem 2.4.9 Design an LI procedure that satisfies the following TEST property : The time for n round-

trips between the two nodes is within a prespecified bound.

Problem 2.4.10 Design a LI procedure that satisfies the following TEST property : When n frames are

sent contiguously from one node to the other, they are all being acknowledged within a prespecified bound.

Problem 2.4.11 Consider the following network : Three nodes are connected to a bus. Every frame that

is sent by one node, is received by both other nodes. The bus is not reliable, so a frame can be received

correctly at one node and received corrupted or not received at all at the other node. A frame can also be

corrupted or not received by both receivers.

a) Design a window protocol for the case when a primary node A needs to send the same sequence of frames

reliably to B and C.

b) Design an unbalanced LI procedure for this case.
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Figure 2.13: Altered diagram for the secondary node

Problem 2.4.12 a) The following change, given in Fig. 2.13 has been done to the secondary node in

the unbalanced LI procedure that ensures synchronization (Fig. 2.8b)). Does the new procedure ensure

synchronization. If yes, prove. If not, explain which properties are not satisfied and give an example.

b) Repeat (a) for the change in Fig. 2.14:

Figure 2.14: Altered diagram for the secondary node

c) Repeat (a) for the change in Fig. 2.15:

Figure 2.15: Altered diagram for the secondary node
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2.5 CONCLUSIONS

Also, basic DLC properties....????

In this chapter we have presented a new class of Link Initialization Procedures that can be used in

conjunction with any bit-oriented DLC procedure to achieve data reliability. These LI Procedures were

shown to ensure synchronization without the use of sequence numbers or time-stamps. Moreover, they do

not rely on special properties of the physical transmission media such as finite life of messages or line flushing

mechanisms. The LI Procedures provide in fact the flushing mechanism for the entire communication link.

The LI Procedures were shown to provide insurance that the link stations do not return to the Connected

State before the link is capable of reasonable operation. The procedures described in this chapter have been

designed to comply with the test requirement of one round-trip transmission within a specified interval.

However, they can be easily modified to perform any desired test sequence. The new mechanism can simply

be ”plugged” into the LI Procedure in place of the Wait TACK State. On the other hand, if there is no

Test requirement, the LI Procedures may be simplified by removing the TEST and TACK messages and the

Wait TACK State.

In order to ensure synchronizations across station failures, our LI procedures require one or two bits of

non-volatile memory.

??????? reword, expand Source (Distr,net. Prot) losing packets: Perlman, Rosen

Before concluding, we note that DLC procedures are often used to provide the lower layer link protocol

that serves various distributed network protocols and applications [Seg83], [SJ86], [HS82]. In this environ-

ment the data sources and sinks of Figure 2.1 are the node algorithms that perform the distributed protocols

and the packets are the protocol control messages exchanged by the node algorithms. In order to perform

correctly, the distributed algorithms require the lower layer link protocols to possess certain properties.

These properties are precisely Follow-up, Deliver, Confirm, FIFO, Crossing and Deadlock-Free as

defined in this paper. Consequently, a sliding-window bit-oriented DLC procedure such as HDLC, combined

with the LI procedures proposed in this paper, can provide the link-level protocols for distributed network

protocols.
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Chapter 3

PI-TYPE NETWORK PROTOCOLS

Consider the situation when a update introd number of physically distinct computation units work on

a common problem, while their operation is coordinated via communication channels connecting some of

these units. Each computation unit has certain processing and memory capability and is preprogrammed to

perform its part of the computation, as well as to receive and send control messages over the communication

channels. The program residing in each node will be referred to as the node algorithm and the ensemble of

all algorithms providing the solution to the common problem is named a distributed protocol.

The specific protocols considered here will collectively be called Distributed Network Protocols

(DNP), to indicate the fact that the common problem that has to be solved is connected with the network

topology. Many of the ”classical” graph algorithms have their distributed version and, in addition, several

new distributed network protocols appear from practical problems. The main application considered so far

for DNP’s is in data or voice communication networks. In such networks, geographically dispersed devices

must transmit information to one another and must somehow coordinate this transmission. The nodes

serve as communication processors and/or as switches. In principle, the common goal of these units is to

efficiently transmit the required information to achieve certain performance goals, like minimum delay or

maximum throughput. With this application in mind, several examples of problems for which DNP’s have

been proposed or are currently under investigation are routing of information, network resynchronization,

shortest path, minimum weight spanning tree, common channel access coordination, information broadcast

and others.

The presented protocols have one additional important feature. Since nodes and links may fail and

be added asynchronously to the network, the protocols must be able to work under arbitrarily changing

network topology. We first consider DNP’s for networks with fixed topology and in most cases we extend

those protocols to incorporate changing topology.

It is useful to emphasize, at this point, the importance of formal specification and validation of DNP’s.

The design of DNP’s has two main stages: first, the construction of its general idea and then specification

of the node algorithms intended to implement it. As with many computer programs, it is normally hard

to make sure that the node algorithms indeed perform their intended purpose under all circumstances and

the validation proofs attempt to provide this confidence, as well as deeper understanding of the algorithms.

The more formal these proofs are, the more confidence one can have in the correctness of the algorithm.

Although intuitive presentation and validation of DNP’s is important, it is certainly not sufficient and the

following chapters try to emphasize this point by introducing formal methods for description and validation

of DNP’s.

47



March 13, 2013

3.1 The Fixed Topology Model

In this section we give the general model and assumptions used in all presented DNP’s. Consider a connected

network (V,E) where V is a set of nodes and E is a set of links. We assume that the network has fixed

topology. We shall use the following assumptions:

a) Each link is bidirectional; the link connecting node i with node j considered in the direction from i to j is

denoted (i, j).

b) All messages are control messages of the DNP. We observe that those messages are considered as data packets

by the DLC’s on the links.

c) Associated with each link, there is a Data-Link Control protocol that ensures Data Reliability. Since links

and nodes do not fail in this model, Data Reliability means FIFO, Confirm and Delivery.

d) All messages received at a node i are stamped with the identification of the link from which they came

and then transferred into a common queue; each node uses one processor for the purpose of the algorithm;

the processor extracts the control message at the head of the queue (at that time we say that the node

receives the message), proceeds to process it and discards the message when processing is completed; actions

triggered by receipt of a message are atomic, namely no other operation related to the protocol is performed

by the processor while a message is being processed; consequently we may relate all processing that takes

place in response to the receipt of a control message to the instant this processing is completed and regard

the processing as if it takes zero time.

e) Each node has an identification; before the protocol starts, each node knows the identity of all nodes that

are potentially in the network; except when otherwise stated, it knows nothing about the topology of the

network and in particular about what nodes actually belong to the network. We denote by 1, 2, ..., |V | the

nodes that are potentially in the network and by 1, 2, ..., |V | the nodes actually belonging to the network.

We denote by |E| the number of bidirectional links in the network and by |E| the number of links potentially

in the network.

f) Each node knows its adjacent links, and possibly the identity of its neighbors. The latter can be normally

provided by the DLC Link Initialization at the time when the link is brought up. The collection of all

neighbors of node i will be denoted by Gi.

g) In some cases, the protocol may be started by only one node and in some others by several nodes asyn-

chronously. This will be stated explictly in the description of each protocol. A node starts the algorithm by

receiving a special message START from the outside world; a standing assumption is that, once a node has

entered the algorithm, it cannot receive START.

h) (don’t postpone) The message delay on a given link is measured from the time when the message is accepted

by the DLC until it is delivered by the DLC at the other end to the Network Protocol. The message delays

on a given link are assumed to be strictly positive and may be time varying, with the restriction that always

a message sent at a later time on a given link arrives at a later time.

Note that property h), that will be called don’t postpone, and FIFO are two different properties. The meaning

of the don’t postpone property is that if a given message is postponed, it arrives at a later time than if it

were not. The meaning of FIFO is that if two messages are sent on the same link, the one that is sent second

arrives at a later time than the one sent first.

Normally, the node or nodes that start the protocol perform a slightly different algorithm than the

others, because they receive a START message from the higher layer. In order to avoid having to specify
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two types of algorithms, one for the special nodes and one for the others, we shall denote throughout this

and subsequent chapters the receiving of a message from the higher level by “the node receives a message

from nil”. Sometimes, in the informal description of the protocols, we shall still say that a node receives

START instead of a node receives a message from nil . Moreover, “sending a message to nil” will mean

that the node sends no message. Also, a variable like ei(l) at node i is undefined if l = nil and the actions

involving such a variable in the algorithms are disregarded.

We shall distinguish between the terms receiving a message and accepting the information in a message.

A node receives a message when the algorithm dictates to take the message from the node queue and to

process it as defined in d). In some cases, the algorithm at the node dictates that the information in the

message be accepted and this means to pass it on to the higher level.

The measures of performance of a given protocol are the amount of communication required, the time

it takes to complete and the processing complexity of the algorithms at the node and the required memory.

In this and following chapters we shall try to quantify communication and time, and refer to processing

and memory requirements only in general terms. Communication complexity C is normally measured in

terms of the sum, over the network links, of the number of elementary quantities passed in messages over

those links. The elementary quantities are node identities, link weights, capacities, number of nodes or links

in certain subsets, etc. The time complexity T of a protocol is the number of units of time required if

each communication of an elementary quantity over a link requires one time unit and computation requires

negligible time. This is under the proviso that the protocol must continue to work correctly if link delays

are arbitrary. 1

1expand discussion of T ????
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3.2 The Variable Topology Model

The model introduced in Sec. 3.1 assumes fixed topology. In a general computer network, links and nodes

may fail and come up and Distributed Network Protocols must be restructured to take this into account. A

topological change of a link is its physical failure or coming up. However, the DLC models and properties

that we have developed in Chap. 2 enable us to stow away these physical level events and consider only

the events at the DLC levels. Thus, the only topological link-related events that must be considered is the

change at a node of a link status from Initialization Mode to Connected state and viceversa. Note that

with this definition, two topological events correspond to a link failure, one at each endpoint. Similarly, two

or more topological events correspond to each coming up of a link, since each end of the link may enter

Connected state and reenter Initialization Mode several times before stabilizing in Connected state. Also,

with this model a node failure does not directly indicate a topological event. It does indirectly result in

several topological events, since the Follow-up property of the DLC implies that the nodes at the other end

of the adjacent links will enter Initialization Mode. In our model a node comes up with all its adjacent links

in Initialization Mode. Thus a node coming up does not directly signify a topological event. Topological

events will occur upon completion of the Link Initialization procedure on each of its adjacent links. We

shall indicate by Gi the collection of all nodes l such that link (i, l) is in Connected state at a node i. Note

that this definition does not take into account the current status of link (i, l) at node l. The underlying

assumptions that the DLC level must provide to the Network Protocol should also be adapted to the new

situation. In particular, the basic assumptions of Sec. 3.1 are still valid here with the following changes:

a’),c’) Associated with each link there is a Data-Link protocol that ensures Data reliability, i.e. Follow-up,

Deadlock-Free, Crossing, FIFO, Confirm and Delivery.

e’) A link is considered to belong to the network, i.e. to be in the set E if both its ends are in Connected

state for this link. Therefore (i, l) ∈ E if and only if both i ∈ Gl and l ∈ Gi.

Another issue that must be addressed explicitly is the order of actions that a node takes upon coming

up, after a failure or at the time it first joins the network. We assume no nonvolatile memory devoted to

the state of the node in the Network Protocol, so that we do not distinguish between the events of node

recovery and the node first joining the network. As shown in Chap. 2, some nonvolatile memory may be

required for the DLC’s, but this is of no concern to us here, since we simply assume that the DLC ensures

Data Reliability, without being concerned with the way it achieves this. Obviously, if a node fails, some

finite time afterwards, the failure detection mechanism at the node at the other end of each adjacent link

will be triggered and that node will enter Initialization Mode. Therefore, failure of a node cannot and need

not be distinguished from failure of all adjacent operating links. On the other hand, we must explicitly state

in the model the order of the actions when a node comes up. Therefore we add to the model of Sec. 3.1 the

assumption:

i) When a node comes up, it first performs the actions required by the Network Protocol and then proceeds

to perform the Link Initialization Protocol for each of its links.

Note that this order of actions is almost mandatory, since waiting for all Link Initializations to complete

before entering the Network Protocol is impossible, because a node does not know a priori what Link

Initializations will succeed. In practice, some savings may be obtained by waiting for several links to enter

Connected State before entering the Network Protocol, and in this case the node should perform the Network

Protocol actions corresponding to the node coming up immediatly followed by the actions corresponding to

links coming up.
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Although the transient behavior of the network while topological changes take place is important, it

is difficult to give precise statements for the desirable behavior. In other words, it is difficult to define

reliability of the protocol for its behavior while changes take place. Moreover, if topological changes are

too frequent, then no meaningful distributed computation can be done. Consequently, in many situations,

the required properties are stated in terms of the behavior after topological and other parameters changes

cease. In particular, in all cases where a fixed topology protocol is extended to a changing topology protocol,

reliability of the latter means that after topological changes cease, the network converges to the same state

as the fixed topology network does in the former. At first glance this requirement seems trivial, because

after topological changes cease, the extended protocol works in a fixed topology environment and therefore

the node algorithms are identical to the fixed topology protocol, so that obviously it will bring the network

to the same final state. However, this is far from correct because neither of the following is trivial in most

cases: i) ensuring that the conditions in the network after the last topological event are identical to the initial

conditions assumed by the fixed topology protocol, and ii) ensuring that the extended protocol works in a

fixed topology network exactly as its fixed topology counterpart. These difficulties will become apparent in

the sequel.

While most reliability properties are stated in the context of convergence after topological events cease,

one notable exception is the property of route loop-freedom. The latter is often considered not only in

steady-state, but also in transient situations, and will be treated in some detail in the oncoming sections.
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3.3 Basic Protocols

3.3.1 Propagation of Information (PI)

Suppose that node s receives from the outside world a piece of information that has to be transmitted to

all nodes in the network. The simplest procedure to accomplish this, named PI1, is ”flooding” the network

[],[], references [Seg83]. As said in Sec. 3.1, we shall say that node s receives a message containing the

information to be propagated, called MSG, from nil, at the time when it starts the propagation. Sometimes

we shall also say that s receives START instead of saying that it receives MSG from nil. At the time

when it receives MSG from nil, node s starts the protocol by transmitting MSG to all its neighbors. Each

other node i in the network, when it receives the first MSG, accepts the information and sends a similar

message to all its own neighbors. All other MSG’s received at i are disregarded. The binary variable mi

indicates receipt of the first MSG at node i by taking on value 0 before the first message was received and

1 afterwards. Another version, that will prove useful later, is named PI2. In this version, when it receives

the first MSG, from a neighbor l say, a node i 6= s accepts the information, but sends the message only to

the other neighbors (and not back to l).

In PI1, each node receives exactly one message from each neighbor. Sometimes it is useful to explicitly

indicate that a node has indeed received a message from each neighbor. Version PI3 is designed to provide

this information by requiring every node i to monitor the receipt of messages from neighbors and to reset

mi to 0 upon detecting that it had received a message from each neighbor.

Before specifying the algorithms at the nodes, we discuss the issue of protocol initialization. A simple

initial state is to require that at the time when s starts the propagation, i.e. receives START , all nodes

i ∈ V have mi = 0 and there are no MSG’s on the links in E. However, as with the ”correct global initial

state” in the treatment of DLC protocols (see Sec. 2.3), not only does such a global initial state contradict

the spirit of nonsynchronization in Distributed Protocols, but in fact turns out to be too restrictive for our

purposes. Consequently, this restrictive initialization requirement must be relaxed. In PI1 and PI2, we

shall only require that if a MSG reaches a node i, then just before the first MSG arrives at i, holds mi = 0.

It is easy to give examples where if this condition does not hold, the information does not reach all nodes in

V . We shall do so at the end of this section. Version PI3 needs in addition the condition that after the first

MSG arrives at i, only MSG’s sent in the present protocol arrive at i. The latter condition is necessary

only in PI3, since in the other versions nodes ignore all received messages except the first one.

We shall now formally specify the algorithms for each node and prove the correctness of the protocols.

Protocol PI1

Messages

MSG(info) - message carrying the information info to be propagated

Variables

Gi - set of neighbors of i
mi - shows whether node i has already entered the protocol (values 0,1).

Initialization

if i receives a MSG, then

- just before receiving the first MSG, holds mi = 0
c©Adrian Segall 52



Sec. 3.3

Algorithm for node i

A1 receive MSG(info) from l ∈ Gi ∪ {nil}
A2 { if (mi = 0) phase1();

}
B1 phase1()
B2 { mi ← 1;
B3 accept(info);
B4 for (k ∈ Gi) send MSG(info) to k;

}
Properties of the protocol

We shall need the following notations: lines in the algorithm are denoted by <•>. The notation <•>i

refers to the event of node i performing line <•> of its algorithm; whenever the corresponding line contains

an if condition, the notation refers only to the cases when the condition holds. The notation phase1()i

refers to the event of node i performing function phase1() in its algorithm. Also, t(∗) will denote the time

when event ∗ happens.

Theorem 3.1 (PI1) Suppose that in Protocol PI1, node s ∈ V receives START . Recall that START is

defined as the event when s receives MSG from nil. Then:

a) All nodes i ∈ V will accept the information in finite time and exactly once.

b) During the execution of the protocol, exactly one MSG is sent on each link in each direction.

c) The propagation of information is the fastest possible, in the sense that no other protocol can bring the

information to any node i faster than PI1.

d) Define a string of messages as a sequence of messages ( of some other protocol ), such that each message

except the first one is sent by a node i to some neighbor at or after the time when the previous message in

the sequence was received by i from some neighbor. Then no string of messages can overtake PI1, i.e. if the

originator of the string sends the first message in the string after it has entered PI1, then all messages in

the string are received after the respective nodes have entered the PI1.

Note: Observe that properties c) and d) are similar, but not identical. Property c) says that no node can

gain in terms of speed if PI1 is replaced by another protocol. Property d) says that if both PI1 and another

protocol that generates strings of messages operate in the network, then no string of the other protocol can

overtake PI1.

Proof: To prove a), suppose the contrary, i.e. that there is at least one node i that never performs

phase1()i. Consider the set V ′ of nodes that do perform phase1() and the set V ′′ of nodes that never

perform phase1(). Since s ∈ V ′ and i ∈ V ′′, both sets are nonempty. Since V is connected, there are two

neighbors j and k such that j ∈ V ′ and k ∈ V ′′. When j performs phase1()j , it sends MSG to k. The

Delivery property of the DLC implies that the MSG will arrive at k. If this is the first MSG that arrives at

k, the initialization assumption states that it finds mi = 0, causing k to perform phase1()k, contradiction.

If this is not the first MSG that arrives at k, then phase1()k happened when k had received the first MSG.

The fact that each node i cannot accept the information more than once follows from the fact that the

parameter mi becomes 1 exactly once and never changes afterwards.

Property b) follows from the fact that each node i sends MSG on all adjacent links at the time when

it performs phase1()i and only then. To prove c), suppose that there is a protocol PI ′ that brings the

information earlier to some nodes. Let

tm, t
′
m = time when m accepts the information in PI1, P I ′ respectively

t(sendm(l)) = time when m sends MSG to neighbor l in PI1
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t(send′m(l)) = time when m sends first MSG to neighbor l in PI ′ (∞ if m does not send any MSG to l

in PI ′)

t(rcvm(l)), t(rcv′m(l)) = time when m receives MSG from neighbor l in PI1, P I ′ respectively

K = set of nodes k for which t′k < tk

i = node in K with minimum t′, i.e. holds t′i ≤ t′k ∀ k ∈ K.

j = neighbor of i from which i receives the information in PI ′.

Clearly t′j < t′i, hence j 6∈ K and therefore t′j ≥ tj . In PI ′ must hold t(send′j(i)) ≥ t′j and by <A2>,

holds t(sendj(i)) = tj , therefore t(send′j(i)) ≥ t(sendj(i)). This implies, by the don’t postpone property ( see

Sec. 3.1), that t(rcv′i(j)) ≥ t(rcvi(j)). But the definition of j is that t′i = t(rcv′i(j)). Also holds ti ≤ t(rcvi(j))
hence t′i ≥ ti contradicting the fact that i ∈ K.

If we replace PI ′ by the protocol that generates the string of messages , the proof of d) is identical to

the proof of c), except that t(rcv′j(i)) ≥ t(rcvj(i)) follows from the FIFO property of the DLC instead of the

don’t postpone property. qed

The communication complexity of PI1 is 2 | E |. Its time complexity is d, where d is the longest path

in the network in terms of number of hops from the node that receives START. Hence its worst case time

complexity is (| V | −1).
Protocol PI2

Messages

MSG(info) - message carrying the information info to be propagated

Variables

Gi - set of neighbors of i
mi - shows whether node i has already entered the protocol (values 0,1).
pi - neighbor from which the first MSG is received

Initialization

if i receives a MSG, then

- just before receiving the first MSG, holds mi = 0

Algorithm for node i

A1 receive MSG(info) from l ∈ Gi ∪ {nil}
A2 { if (mi = 0) phase1();

}
B1 phase1()
B2 { mi ← 1;
B3 pi ← l;
B4 accept(info);
B5 for (k ∈ Gi − {pi}) send MSG(info) to k;

}

Theorem 3.2 (PI2) Suppose that in Protocol PI2, a node s ∈ V receives START . Then:

a) all nodes i ∈ V will accept the information in finite time and exactly once; after this happens, the links

{(i, pi) , ∀i ∈ V } will form a directed spanning tree rooted at s; in addition, for all i holds t(phase1()i) >

t(phase1()pi).

b) During the execution of the protocol, exactly one MSG is sent on each link of the type 6= (i, pi) , in each

direction. On links of the type (i, pi), a MSG is sent only in the direction from pi to i.

c) The propagation of information is the fastest possible.

d) No string of messages can overtake PI2 ( in the sense of the definition in Theorem 3.1d) ).
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Proof: To prove a), suppose the contrary, i.e. that there is at least a node i that never performs

phase1()i. Consider the set V ′ of nodes that do perform phase1() and the set V ′′ of nodes that never

perform phase1(). Since s ∈ V ′ and i ∈ V ′′, both sets are nonempty. Since V is connected, there are two

neighbors j and k such that j ∈ V ′ and k ∈ V ′′. When j performs phase1()j , it cannot be that pj = k, since

receipt of a message from k means that k has previously performed phase1()k. Hence at time t(phase1()j),

node j sends MSG to k. The Delivery property of the DLC implies that the MSG will arrive at k. If this

is the first MSG that arrives at k, the initialization assumption states that it finds mi = 0, causing k to

perform phase1()k, contradiction. If this is not the first MSG that arrives at k, then phase1()k happened

when k had received the first MSG. To complete the proof of a), observe that since i enters the protocol

(i.e. performs phase1()i), when it receives the first message, from the preferred neighbor pi, a node i always

enters the protocol after its preferred neighbor. Therefore the links {(i, pi)} form a tree and this must be a

spanning tree rooted at s.

The proof of b) is identical to that of Theorem 3.1b). In order to prove c), consider the same notations

as in the proof of Theorem 3.1c). If i 6= pj , the proof of contradicting the fact i ∈ K is identical to the proof

in Theorem PI1c). If i = pj , then t(sendj(i)) = ∞, so that the same proof does not apply. However, since

t(phase1()j) > t(phase1()i), holds ti < tj . By the definitions of i and j, the inequalities t′j < t′i and t′j ≥ tj

hold as in Theorem 3.1c). Therefore, t′i > t′j ≥ tj > ti, contradicting again the fact that i ∈ K.

If we replace PI ′ by the protocol that generates the string of messages , the proof of d) is identical to

the proof of c), except that t(rcv′j(i)) ≥ t(rcvj(i)) follows from the FIFO property of the DLC instead of the

don’t postpone property. qed

The communication complexity of PI2 is 2 | E | − | V |. Its time complexity is d, where d is the longest

path in the network in terms of number of hops from the node that receives START. Hence its worst case

time complexity is (| V | −1).

Protocol PI3

Messages

MSG(info) - message carrying the information info to be propagated

Variables

Gi - set of neighbors of i
mi - shows whether node i is in the protocol (values 0,1).
ei(l) - number of MSG’s sent to neighbor l - number of MSG’s received from it, for all l ∈ Gi

Initialization

if i receives a MSG, then

- just before receiving the first MSG, holds mi = 0 and ei(l) = 0 for all l ∈ Gi

- after receiving the first MSG and until mi returns next to 0, node i discards and disregards messages
not sent in the present instance of the protocol
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Algorithm for node i

A1 receives MSG(info) from l ∈ Gi ∪ {nil}
A2 { if (mi = 0) {
A3 phase1();

}
A4 ei(l)← ei(l)− 1;
A5 if (ei(k) = 0 ∀k ∈ Gi) phase2();

}
B1 phase1() /* similar to PI1 */
B2 { mi ← 1;
B3 accept(info);
B4 for (k ∈ Gi){
B5 send MSG(info) to k;
B6 ei(k)← ei(k) + 1;

}
}

C1 phase2()
C2 { mi ← 0;

}

Note: recall that if MSG is received from nil, the lines containing ei(l) are disregarded.

Theorem 3.3 (PI3) Suppose that in Protocol PI3, node s ∈ V receives START . Then:

a) All nodes i ∈ V will accept the information in finite time and exactly once.

b) During the execution of the protocol, exactly one MSG is sent on each link in each direction.

c) The propagation of information is the fastest possible.

d) No string of messages can overtake PI3.

e) Every node i ∈ V executes phase2()i in finite time and after this time it receives no more MSG’s.

Proof: Except for the manipulation of ei(k), protocol PI3 is exactly PI1. When it enters the protocol

due to receipt of MSG from l say, node i sends MSG to all neighbors and sets ei(l) ← 0 and ei(k) ← 1

for all other neighbors k. After having received a message from each neighbor, it will have ei(k) = 0 for all

neighbors k and hence will perform phase2()k. All other properties follow from Theorem 3.1. qed

The communication and time complexities of PI3 are the same as for PI1.

To complete this section, we give a simple example where the PI protocols do not work if the initialization

requirements do not hold. In Fig. 3.1 suppose that s receives START and starts the protocol at time t0, but

when MSG arrives at b from a, it finds mb = 1. This can happen for example, if at time t0 all mi = 0, but

there is a MSG, containing different information, on the link from c to b and that MSG arrives at b shortly

after t0, setting mb ← 1. Then a and b will send to each other MSG’s containing different information, node

b will disregard the information that originated at s and node c will never receive it. Thus PI1, PI2 and PI3

do not work. On the other hand, if the MSG on the link (c, b) arrives at b after the MSG with the relevant

information arrives at b from a, in PI1 or PI2 node b disregards the faulty MSG when it arrives and the

protocols work. However in PI3, the faulty message contradicts the second initialization condition, i.e. that

only MSG’s sent by the protocol are processed at each node i after it sets mi ← 1. This faulty message

causes b to complete the protocol, i.e. reset mb ← 0, after which it still receives the MSG sent by c in

PI3. As a result, node b receives a MSG after executing phase2()i and reenters the protocol, contradicting

Theorem 3.3e) and a).

3.3.2 Propagation of Information with Feedback (PIF)

Sometimes the node s that receives START and propagates information may want to be positively informed

when the information has indeed reached all connected nodes. The following protocol can be used for this
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Figure 3.1: Counterexample for Initial Conditions

purpose [Seg83]. We start with a PI2 protocol, namely: when it receives MSG from nil, node s sends MSG

to all neighbors. When it receives the first MSG, from neighbor l say, a node i other than s accepts the

information contained in MSG, denotes this neighbor as pi and sends MSG to all neighbors except to pi.

We refer to pi as the preferred neighbor of i. We continue as follows: node i expects now messages MSG

from all neighbors except pi. When it observes that it had received MSG from all those neighbors, a node

i other than s sends MSG to pi. As shown presently, receipt of MSG from all neighbors at node s can

be interpreted as the signal that the information has indeed reached all connected nodes. In this way, the

propagation of MSG’s occurs in two phases: phase1() from node s into the network according to PI2, for

purposes of propagation and phase2() from the network back to node s for the purpose of confirmation. The

formal description of the protocol follows.

Protocol PIF1

Messages

MSG(info) - message carrying the information info to be propagated

Variables

Gi - set of neighbors of i
mi - shows if node i has already entered the protocol (values 0,1).
ei(l) - number of MSG’s sent to l - number of MSG’s received from l, for all l ∈ Gi

pi - neighbor from which the first MSG is received

Initialization

if i receives a MSG, then

- just before receiving the first MSG, holds mi = 0 and ei(k) = 0 for all k ∈ Gi

- after receiving the first MSG, node i discards and disregards messages not sent in the present instance
of the protocol

Note: By definition, a condition on an empty set is always true. For instance, in <A5> below, if
Gi − {pi} = ∅, then the condition holds and i should perform phase2().
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Algorithm for node i

A1 receives MSG(info) from l ∈ Gi ∪ {nil}
A2 { if (mi = 0) {
A3 phase1();

}
A4 ei(l)← ei(l)− 1;
A5 if (ei(k) = 0 ∀k ∈ Gi − {pi}) phase2();

}
B1 phase1() /* similar to PI2 */
B2 { mi ← 1;
B3 pi ← l;
B4 accept(info);
B5 for (k ∈ Gi − {pi}){
B6 send MSG(info) to k;
B7 ei(k)← ei(k) + 1;

}
}

C1 phase2()
C2 { send MSG(info) to pi
C3 ei(pi)← ei(pi) + 1;

}

Note: recall that for a node i that receives MSG from nil, the paprameter pi becomes nil, the lines
containing ei(l) are disregarded and when eventually node i performs <C2>, it sends MSG to no one.

Theorem 3.4 (PIF1) Suppose that a node s ∈ V receives START . Then:

a) all nodes i ∈ V will perform the event phase1()i in finite time and exactly once (among other actions,

a node accepts the information at the time when it performs phase1()i and only at that time); after this

happens, the links {(i, pi),∀i ∈ V } will form a directed spanning tree rooted at s; in addition, for all i holds

t(phase1()i) > t(phase1()pi
); moreover, the propagation of information is the same as in PI, namely the

fastest possible. Note: some nodes may perform phase2() before all nodes have performed phase1().

b) for all k ∈ Gi, the variables ei(k) denotes the number of MSG’s sent by i to k minus the number of MSG’s

received by i from k.

c) all nodes i ∈ V will perform phase2()i in finite time and exactly once; moreover t(phase2()i) < t(phase2()pi);

node i receives no messages after time t(phase2()i); also, at the time when node s performs phase2()s, all

nodes in V have completed the algorithm, i.e. have performed phase2(), there are no messages traveling in

the network and holds ei(k) = 0 for all i ∈ V and all k ∈ Gi.

d) exactly one MSG travels on each link in (V,E) in each direction.

e) no string of messages can overtake PIF1.

Proof: The propagation of phase1() is as in PI2, hence a) and e) follow from Theorem 3.2a) and d).

Part b) follows directly from the algorithm.

To prove c) let k be a leaf of the tree referred to in a), i.e. 6 ∃ such that pl = k. Then all neighbors n

of k will send MSG to k when they perform phase1()n. Node k will receive all these messages, at which

time holds from b) that ek(n) = 0 for all n ∈ Gk − {pk}, which will enable k to perform phase2()k. At that

time there are no messages traveling towards k, node k will send MSG to pk and ek(pk) will return to 0.

The same will be true for all leaves. Now nodes that are on the last-but-one level in the tree will be able

to perform phase2() and the procedure will continue downtree all the way to node s. This argument also

shows that a node i performs phase2()i before its preferred neighbor does.

To prove d), observe that in phase1()i, a node i sends MSG to all k ∈ Gi − {pi} and in phase2()i it

sends MSG to pi. Since it performs each of phase1()i and phase2()i exactly once, d) follows. qed
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As with Protocol PI3, it is useful sometimes to explicitly indicate that node i has already completed the

protocol, i.e. has performed phase2()i. This can be done by adding the action mi ← 0 in phase2()i. We

shall refer to this version of PIF as Protocol PIF2.
Protocol PIF2

Messages

MSG(info) - message carrying the information info to be propagated

Variables

Gi - set of neighbors of i
mi - shows if node i is currently in the protocol (values 0,1).
ei(l) - number of MSG’s sent to l - number of MSG’s received from l, for all l ∈ Gi

pi - neighbor from which the first MSG is received

Initialization

if i receives a MSG, then

- just before receiving the first MSG, holds mi = 0 and ei(k) = 0 for all k ∈ Gi

- after receiving the first MSG and until mi returns next to 0, node i discards and disregards messages
not sent in the present instance of the protocol

Algorithm for node i

A1 receive MSG(info) from l ∈ Gi ∪ {nil}
A2 { if (mi = 0) {
A3 phase1();

}
A4 ei(l)← ei(l)− 1;
A5 if (ei(k) = 0 ∀k ∈ Gi − {pi}) phase2();

}
B1 phase1() /* similar to PI2 */
B2 { mi ← 1;
B3 pi ← l;
B4 accept(info);
B5 for (k ∈ Gi − {pi}) {
B6 send MSG(info) to k;
B7 ei(k)← ei(k) + 1;

}
}

C1 phase2()
C2 { send MSG(info) to pi
C3 ei(pi)← ei(pi) + 1;
C4 mi ← 0

}
Note that with the change of mi ← 0 in phase2()i, there is danger that a node will enter the protocol

two or more times. The following Theorem states that this cannot happen.

Theorem 3.5 (PIF2) Protocol PIF2 has the same properties as PIF1.

Proof: We first prove that no node can perform phase1() more than once and that no node can send

a MSG on the same link more than once. Note that we cannot deduct this property directly from the

properties of Protocol PI2 since here the value of mi returns to 0 at time t(phase2()i), whereas in PI2 it

stays 1 forever. Suppose that MSG can be sent on the same link more than once and let i be the first node

that sends a second MSG to the same neighbor, at time t say. Note that since s does not receive START

twice, holds i 6= s. Let t0 be the time when i enters the protocol, i.e. performs phase1()i, for the first time.

Before time t0, node i sends no MSG and at time t0 it sends MSG to all k ∈ Gi − {pi}, so t > t0. Let

t1 be the first time at or after t0 when i completes the algorithm, i.e.performs phase2()i. Since we do not

know yet that phase2()i will ever be performed, we allow t1 ≤ ∞. From time t0 until time t1, node i sends

no MSG and at time t1 it sends MSG to pi, so t > t1. In addition, for all k ∈ Gi − {pi}, at time t0+ holds
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ei(k) = 1 and at time t1− holds ei(k) = 0, so that before or at time t1−, node i has received at least one

MSG from every neighbor. However, in order to send a MSG at time t, node i must receive a MSG from

some neighbor l at time t−, and since t > t1, this is at least the second MSG received by i from l. Since,

by assumption h) in Sec. 3.1, delays are strictly positive, that MSG was sent by l before t. This contradicts

the fact that i is the first node to send MSG twice to the same neighbor. This proves that no node can

send two MSG’s to the same neighbor and therefore that no node can receive two MSG’s from the same

neighbor. Also, since the only way to perform phase1()i the second time is to receive a MSG after having

reset mi to 0, and the latter can be done only after having received a MSG from all neighbors, no node i

can perform phase1()i twice.

Now, after having proved that no node can perform phase1() more than once and that no node can send

a MSG on the same link more than once, all other properties follow in exactly the same way as in Theorem

3.4. qed

The communication complexity of PIF is 2 | E |. Its time complexity from start to termination at s

is 2d, where d is the longest path in the network in terms of the number of hops from s, hence the worst

time complexity is 2(| V | −1). The time necessary to propagate information is the same as in PI1 and PI2,

namely d.

Problems

Problem 3.3.1 Suppose PIF1(1) is started by s and almost immediately afterwards PIF1(2) is started by

s. Prove or give counterexample: no MSG(2) is sent on any link before MSG(1).

Problem 3.3.2 Prove or give counterexample: no string of messages can overtake PIF2.

Problem 3.3.3 Prove Theorems 3.1, 3.2, 3.3 for the case when several nodes receive asynchronously the

same message from the higher layer.

Problem 3.3.4 Consider a network with nodes a, b, c, d, s and links and delays (in both directions) as

follows:
Link a,b a,c a,s b,c b,d c,d c,s d,s

Delay 3 5 3 3 2 2 1 6
Suppose that s receives MSG from nil at t = 0 and the nodes perform PIF1.

a) Indicate the values of the various variables as a function of time at each node.

b) When does the protocol complete?

c) What is the tree that is formed?

Problem 3.3.5 Consider any two nodes i and j such that i is an ancestor of j in the tree formed in PIF1

(i.e. j is in the subtree rooted at i). Show that the MSG’s sent by the nodes k on the tree path from j to i

when they perform phase2()k form a string of messages.

Problem 3.3.6 Consider a network with nodes a,b,c,d,s. The links and delays on them (in both directions)

are given below.

Link a,b a,c a,d b,s b,c b,d c,d d,s a,s

Delay 3 5 8 4 3 3 2 6 3
Suppose s receives START at time t=0, and

the nodes perform PIF1.

a) Indicate the values of the various variables as a function of time at each node.

b) When does the protocol complete?
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c) What is the tree that is formed?

Problem 3.3.7 Consider a network with fixed topology, fixed delays and a given source node s. If the

delays are such that no two mesages from different neighbors can arrive at exactly the same time to a node,

all PIF1 runs give the same tree and the same timing of events. This is however not the case if for example

delays are integers, messages can arrive at a node from different neighbors at the same time and the order

of processing is determined randomly.

a) Does every node perform phase1 at the same time in all PIF runs?

b) Show that there is a node that is a leaf in the PIF tree in all runs.

c) Does every node perform phase2 at the same time in all PIF runs?

Problem 3.3.8 Source Routing is a widely used routing method that requires the source to know the entire

path to the destination. Consider a network with time-invariant link delays.

a) Show how PIF can be used to provide the source with the fastest path to the destination.

b) Design a PI-type protocol to provide the source with an additional path to the destination that is with

high probability as disjoint as possible from the first.
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3.4 Repeated Propagations of Information (RPI)

Broadcast?? , Topo.changes?? , separate chapter?? Suppose that a node s needs to propagate

several pieces of information, for short referred to as packets, that cannot be included in a single message,

either because they are not all available at the same time at s or because they would make together an

excessively long message. We require here for each node in V properties similar to FIFO and Delivery in

Link Protocols (see Sec. 2.2): packets must be accepted by each node in the same order as sent by the

source s, with no gaps or duplicates and every packet is eventually accepted by each node. The simplest

way to propagate several packets is to use repeated PI1 or PI2 protocols. Each PI is assigned a sequence

number r = 0, 1, 2, . . . and the MSG’s that belong to a given PI carry its sequence number. Due to the

no-overtake property of PI1 and PI2, consecutive PI’s are entered by each node in appropriate order, so

packets are accepted at each node in the same order as sent by the source. Consequently there is no need

to reorder packets at nodes. Therefore, the sequence numbers are not needed for reordering packets, but

only to identify messages containing different packets, to allow nodes to distinguish between new packets

and already received ones.
Protocol RPI1

Messages

MSG(r, P ) - message with sequence number r carrying information P (r = 0, 1, 2, . . . )

Variables

Gi - set of neighbors of node i
ri - largest sequence number received by i ( values 0,1,2,... )

Initialization

- just before the first packet becomes available, holds rs = −1
- if i receives a MSG, then just before receiving the first MSG, holds ri = −1

Algorithm for node i
A1 packet P becomes available
A2 { deliver MSG(rs + 1, P ) from nil to yourself;

}
B1 receive MSG(r, P ) from l ∈ Gi ∪ {nil}
B2 { if (r > ri) phase1(r);

}
C1 phase1(r) /* similar to PI1 */
C2 { ri ← r ;
C3 accept(P );
C4 for (k ∈ Gi) send MSG(r, P ) to k;

}

Note: In <C4>, node i 6= s may send MSG(r, P ) to all k ∈ Gi −{l}, where l is the neighbor MSG was
received from, instead of to all neighbors.

Theorem 3.6 (RPI1) Suppose s ∈ V . Then packets are accepted by each node in V in the same order,

without gaps or duplicates, as generated at the source s and all packets are eventually accepted at every node

in V .

Proof: As in Sec. 2.3, let P (0), P (1), P (2), . . . denote the packets that become available at the source node

s. Then a message with sequence number r sent by s contains packet P (r), i.e. has the form MSG(r, P (r)).

When a node i 6= s, sends a message, it copies the incoming one and thus all messages in the network have

this form.

Now, temporarily alter Protocol RPI1, so that a sequence of independent PI1’s propagate the packets.

This will require defining variables mi(r), r = 0, 1, 2, . . . and changing line <B2> to if (mi(r) = 0)phase1(r)
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and line <C2> to mi(r)← 1. Now consecutive packets are included in consecutively started PI’s, say PI(r′)

and PI(r′ + 1). Since the propagation of MSG(r′ + 1, P (r′ + 1)) from s to any node can be regarded as

a string of messages that is started after the time when s triggers PI(r′), Theorem 3.1d) implies that

MSG(r′+ 1, P (r′+ 1))’s do not overtake PI(r′). Therefore, every MSG(r′+ 1, P (r′+ 1)), and in particular

the one that causes acceptance of P (r′ + 1), is received by every node after the time when the node had

entered PI(r′), i.e. after it had accepted P (r′). Therefore, the condition r > ri is equivalent to mi(r) = 0,

so that the protocol as originally defined has the stated properties. qed

The sequence numbers scheme is the most commonly used method for propagating multiple packets of

information mostly because of its conceptual simplicity, its reliability and its obvious extension to changing

topology networks [],[]. reference However, in fixed topology networks, other, not much more complicated,

methods can be used. The first fact to realize is that if we use PI1’s, sequence numbers need not be carried

in MSG’s. Variables ei(l) that hold the difference between the number of messages sent to and messages

received from l can do the job. The protocol will be as follows. Source s starts a PI1, i.e. sends MSG(P )

to all its neighbors, as soon as a new packet P becomes available. We shall prove in Lemma 3.7 that every

node receives on every link messages exactly in the same order as sent by the source. Also, in PI1, a node

sends to each neighbor a copy of each new message. Therefore, whenever a node i receives from a neighbor

l a message that makes ei(l) strictly negative, this indicates that node i had just received from l a new

packet. This new packet is accepted and a copy of it is sent out to all neighbors of i. It is interesting to

point out that in this way, in a fixed topology network, we are able to propagate packets using PI1’s without

explicitly identifying messages that belong to the different PI’s. The difficulty with this protocol, as well as

with RPI1 is that unbounded variables, r and ri or ei(l) , are necessary. The specification of the protocol

is given below:

Protocol RPI2

Messages

MSG(P ) - message carrying information P

Variables

Gi - set of neighbors of i
mi - shows if node i is in the protocol (values 0,1)
ei(l) = number of messages sent to l - number of messages received from l, for all l ∈ Gi (values
0,±1,±2, . . . )

Initialization

if i receives a MSG, then

- just before receiving the first MSG, holds mi = 0 and ei(k) = 0 for all k ∈ Gi

- after receiving the first MSG, node i discards and disregards messages not sent in the present instance
of the protocol
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Algorithm for node i
A1 packet P becomes available
A2 { deliver MSG(P ) from nil to yourself;

}
B1 receive MSG(P ) from l ∈ Gi ∪ {nil}
B2 { if (mi = 0) {
B3 mi ← 1; /* enter protocol */

}
B4 ei(l)← ei(l)− 1;
B5 if (ei(l) < 0) phase1();

}
C1 phase1() /* similar to PI1 */
C2 { accept(P );
C3 for (k ∈ Gi) {
C4 send MSG(P ) to k;
C5 ei(k)← ei(k) + 1;

}
}

As before, denote by P (0), P (1), P (2), . . . the packets that become available at the source node s. We

want to show that packets are accepted at each node i 6= s exactly in the order P (0), P (1), P (2), . . ..

Lemma 3.7

a) At every node, the sequence of accepted packets is identical to the sequence of packets sent to each neighbor.

b) At all times, ei(l) equals the number of MSG’s sent by i to l so far minus the number of MSG’s received

by i from l. Except for the interim value between executions of <B4> and <B5> when ei(l) takes on value

−1, the variables ei(l) are nonnegative.

c) Every node i receives on each link the packets exactly in the order P (0), P (1), . . ., without gaps or duplicates.

d) Every node i accepts packets exactly in the order P (0), P (1), . . ., without gaps or duplicates.

Proof: Part a) is obvious, since every packet accepted in <C2> is sent to all neighbors in <C4>. Part b)

is also obvious: all ei(l) are initialized to 0, every MSG received from l decrements ei(l), every MSG sent

to l increments it, and as soon as some ei(l) is decremented to −1 in <B4>, it is returned to 0 in <B5>.

Parts c) and d) are proved by a common induction. Suppose both hold at all nodes in V until time t− and

let t be the first time when either c) or d) is contradicted, at node i say. Observe that the packet, P (K)

say, that contradicts c) or d) for the first time, cannot be an out of order packet, it can be only a packet

that produces a gap or a duplicate. Now, if arrival of P (K), from neighbor l say, contradicts c) at time t,

then, by FIFO, packet P (K) had been sent by l with a gap or duplicate in the series P (0), P (1), . . .. By

assumption h) in Sec. 3.1, this has occurred at a time earlier than t. However this means by a) above that

P (K) had been accepted by i with a gap or duplicate, contradicting d) at a time before t. This contradicts

the assumption that c) and d) hold at all times at all nodes before t.

Now suppose that d) is violated at t, upon receipt of MSG(P (K)) by i from l. In view of b), message

P (K) is accepted at t only if ei(l)(t−) = 0. Since at time t− holds ei(l) = 0, the number of MSG’s received

from l equals the number of MSG’s sent to l. From a) follows that at t− the number of accepted packets

at i equals to the number of MSG’s sent by i to l and therefore equals to the number of MSG′s received

by i from l. Since by theinduction hypothesis, all packets accepted by i until t− and all packets received

by i from l until t− are in order, without gaps or duplicates, the sequence of packets accepted by i until

t− is identical to the sequence of packets received by i from l until t−. Thus packet P (K) accepted by i at

time t forms a gap or a duplicate not only in the sequence of packets accepted by i, but also in the sequence

received by i from l. However, we have shown above that the latter cannot happen at t. This completes the

proof of c) and d) and of the Lemma. qed
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Theorem 3.8 (RPI2) Suppose s ∈ V . In RPI2 packets are accepted by each node in V in the same order

as generated at the source s, without gaps or duplicates, and all packets are accepted by each node in V in

finite time.

Proof: The fact that all packets are accepted by each node in the order P (0), P (1), . . . was established

in Lemma 3.7. When a packet is generated at s, the latter sends it to all neighbors. From Lemma 3.7c) and

d) follows that when a MSG arrives at i from l that makes ei(l) strictly negative, this indicates the arrival

of a new packet. At that time the packet is accepted and sent to all neighbors. In all other cases MSG’s are

disregarded, except for updating ei(l). Hence the propagation of a given packet is exactly a PI1, and from

Theorem 3.1a) follows that each packet is accepted in finite time at each node. qed

It is interesting to note that the above protocol does not work with PI2’s, since in the latter a node does

not send a message to the neighbor from which it receives the first message containing a given packet, and

this first neighbor may be different from packet to packet2.

The communication and time complexities of protocol RPI2 per packet are the same as for PI1. The

communication required for each packet is one message per link in each direction, i.e. 2 | E | messages

networkwise. The time necessary to disseminate the information is the fastest possible. In RPI1, the

communication and time complexities are the same, except that each message carries the sequence number

in addition to the information packet.

The main problem of protocol RPI2 is that in principle at least, the variables ei(l) are unbounded. In a

network with unknown delays, ei(l) cannot be bounded. For example, in Fig. 3.2, if link (b, a) is slow, ea(b)

may increase without bound while many new packets arrive on (s, a). Although a large enough field for ei(l)

may solve the problem (64 bits with one message/millisecond would take 500 million years to wrap around),

a large amount of work has been devoted to the design of protocols that work with finite fields. It turns out

that this can be done in fixed topology networks.

Figure 3.2: Example for RPI2

There are at least three ways to solve the problem of unbounded variables: blocking propagation of

PI1’s in case of excessively large ei(l)’s, working with PIF2’s instead of PI1’s and propagating on a tree.

In the first scheme, a node i whose largest ei(l) reaches a certain value, stops accepting messages that would

increase this variable even more. Those messages are queued until the value is decreased due to arrival of

messages from l. One drawback of this scheme is that messages containing packets are queued at network

nodes, thereby occupying network resources.

2See Problem 3.4.1.
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Another possibility is to perform for each packet a PIF2 protocol, whereby each PIF2 is started by s

after the previous PIF2 completes. In PIF2, each node resets mi ← 0 when it completes its part of the

protocol. Therefore, when PIF2 completes, all nodes i ∈ V have mi = 0 and there are no MSG’s in the

network, so that the initialization requirements for the next PIF2 are satisfied without need to distinguish

between different packets. In this solution, the problem of messages buffered at nodes is solved since messages

waiting for the previous PIF to complete will be buffered at the source, outside of the network, but this

protocol may be very slow in dissemination of the information, since each packet will have to wait for the

previous one to be sent and confirmed. The solution is to run in parallel several independent PIF2’s,

each containing a different packet. The various PIF’s will be distinguished from each other by including a

finite field instance number, denoted by r, in each MSG of the PIF. For example, if we use 3 bits for PIF

identification, then 8 PIF’s can propagate independently in the network. As shown presently, a new packet

at the source can be sent in any PIF that is available, without causing information to get out of sequence

at any node. Since different PIF’s may form different trees, they may complete out of order. For example,

PIF(2) may be started after, but completed before, PIF(1) (we use brackets to indicate the instance number

of a PIF ). In this case, if a new packet becomes available at the source s after PIF(2) is completed, but

before PIF(1) is, it can be propagated in a new PIF(2). We shall show that the no-overtake property of PI2

(see Theorem 3.2d)) implies that still packets are accepted by each node in V in the same order as generated

at the source, so that there is no need to worry about out of sequence information. The reason of using the

term instance number here, as opposed to the more common term sequence number, should be clear by now.

The latter does not reflect the meaning of the field r in the present protocol, since consecutive packets do

not necessarily carry consecutive numbers.

The third scheme saves a lot of communication and node algorithm complexity. The idea is that dis-

semination of all but the first packet can take place on the tree formed by the first PIF2. In this case there

is no need for instance numbers or for feedback to the source. To implement this, the second packet must

wait until the first (and only) PIF is completed, during which nodes tell their preferred neighbors the fact

that they have selected them as preferred neighbors. This can be done in the second phase of the PIF, when

nodes send MSG’s to their preferred neighbors. When the PIF completes, every node knows not only its

preferred neighbor (parent in the tree), but also its children in the tree. Therefore from now on, information

can be sent only on the tree. No instance numbers, feedback to the source or postponement of propagation

are necessary. Simply every node, when it receives a message, accepts the packet and sends a copy of the

message to all its sons on the tree. This results in | V | −1 messages per packet, the minimum possible.

Since the second packet has to wait and messages are sent on a fixed tree, that is the fastest possible when

it is formed, but may deteriorate with time, the time characteristics of this version may be worse than of

the previous ones. However, since there is no postponement of propagation other than queueing, either at

the source or at the nodes, this version may still work better than the previous ones.

The main outcome here is that in fixed topology networks, repeated propagation of information can be

performed without sequence numbers. This will be used in Sec. 5.3 to considerably alleviate the problem

of sequence numbers for Topology-and-Congestion-Broadcast in changing topology networks. Again, it is

important to distinguish between sequence numbers and with bounded field instance numbers.

We shall specify the protocol with independent PIF2’s. The specification and proof of correctness of

the others is easy. We shall assume that the packets P (1), P (2), . . . become available at s and are included

in MSG(r, P ), where 0 ≤ r ≤ W − 1. Here W is a given number, determined by the fixed number of bits

allocated to the field r. PIF (r) will denote the PIF2 with instance number r.
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Protocol RPIF

Messages

MSG(r, P ) - message carrying information P and instance number r and also serving as confirmation

Variables

Gi - set of neighbors of node i
mi(r) - shows if node i is in PIF (r), r = 0, 1, . . . ,W − 1
pi(r) - preferred neighbor of node i for PIF (r)
ei(l)(r) = number of MSG(r) sent to l - number of MSG(r) received from l, for all l ∈ Gi

Initialization

if i receives a MSG, then

- just before receiving the first MSG, holds mi(r) = 0 and ei(k)(r) = 0 for all r = 0, 1, ...,W − 1 and
all k ∈ Gi
- after receiving the first MSG, node i discards and disregards messages not sent in the present instance
of the protocol

Note: By definition, a condition on an empty set is always true. For example, in <B5> below, if
Gi − {pi(r)} = ∅, then the condition holds and i should send MSG(r, P ) to pi(r).

Algorithm for node i
A1 packet P becomes available
A2 { while (mi(r

′) = 1 ∀r′) {} ;
A3 deliver MSG(r, P ) from nil to yourself with some r | mi(r) = 0;

}
B1 receive MSG(r, P ) from l ∈ Gi ∪ {nil}
B2 { if (mi(r) = 0){
B3 phase1(r);

}
B4 ei(l)(r)← ei(l)(r)− 1;
B5 if (ei(k)(r) = 0 ∀k ∈ Gi − {pi(r)}) phase2(r);

}
C1 phase1(r) /* same as PIF1 and PIF2 */
C2 { mi(r)← 1;
C3 pi(r)← l;
C4 accept(P );
C5 for (k ∈ Gi − {pi(r)}){
C6 send MSG(r, P ) to k;
C7 ei(k)(r)← ei(k)(r) + 1;

}
}

D1 phase2(r) /* same as PIF2 */
D2 { send MSG(r, P ) to pi(r);
D3 ei(pi(r))(r)← ei(pi(r))(r) + 1;
D4 mi(r)← 0;

}

Theorem 3.9 (RPIF)

a) Packets that become available at s are sent in finite time.

b) If s ∈ V , then packets are accepted by each node in V in the same order as generated at the source s and

all packets are eventually accepted at every node in V .

Proof: At the time when a PIF (r) is started, holds ms(r) = 0, namely s has completed the previous

PIF (r), and by Theorem 3.5, all nodes i ∈ V have mi(r) = 0 and ei(k)(r) = 0 for all k ∈ Gi and there are

no messages MSG(r) in (V,E). Consequently, the initial conditions for the new PIF (r) comply with the

PIF2 initialization requirements (Sec. 3.3.2). Therefore that PIF has the properties given in Theorem 3.5.

In particular, each PIF (r) that is started terminates in finite time, thereby making r available for the next

packet. Hence a).
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To prove b), observe that from Theorem 3.5, every given packet is disseminated, i.e. performs step

phase1() in the algorithm, according to PI2. Now consecutive packets P (I) and P (I + 1) are included in

consecutively started PIF’s, say PIF(r′) and PIF(r′′). Observe that in general the PIF instance numbers r′

and r′′ are not consecutive and r′ is not necessarily smaller than r′′. Since the propagation of MSG(r′′) from

s to any node can be regarded as a string of messages that is started after the time when s triggers PIF(r′),

Theorem 3.2d) implies that MSG(r′′)’s do not overtake PIF (r′). Therefore, every message MSG(r′′), and

in particular the one that causes acceptance of P (I + 1), arrives at every node after the time when the node

had entered PIF (r′), i.e. after it had accepted P (I). Hence b). qed

The communication and time complexities of protocol RPIF per packet are the same as for PIF. The

communication required for each packet is one message per link in each direction, i.e. 2 | E | messages net-

workwise, where each message must contain, in addition to the information also log2W bits for identification.

The time necessary to disseminate the information is the fastest possible if there is no waiting time at the

source. If W is designed properly, the hope is that in most cases there will be no or little waiting time at

the source.

Protocol PI3, where nodes perform a flooding with termination, is similar to PIF2, where nodes perform

flooding with feedback and termination. A natural question that can be asked is if PI3 can be used in a

similar way as PIF2 to achieve propagation of information without sequence numbers. We give here an

example to show that PI3 cannot be used for this purpose. For simplicity, we take W = 1, so a new PI3

can be started by s only when it completes the previous one. Consider the network shown in Fig. 3.3.

We start with the situation shown in the inside of the figure. All nodes have completed their part in the

previous PI3, except for node d that is expecting a late MSG from c, hence md = 1 and ed(c) = 1. All

other m’s and e’s are 0. Therefore, s is allowed to start a new PI3. Clearly, if the MSG sent now by s

arrives at d before the old MSG, both initialization conditions of PI3 are violated: the first MSG of this

PI3 finds md = 1 and after this first MSG is received by d, the latter receives a MSG that was not sent in

the present protocol. Indeed, the protocol does not work. When the new MSG, containing the new packet,

arrives at d, the latter does not accept it, while md remains 1 and ed(s) becomes −1, and when later the

MSG containing the old packet arrives from c, the variable ed(c) becomes 0. When the MSG containing

the new packet arrives from c, it is not accepted again since md = 1. The final situation is that the system

is deadlocked with md = mc = ms = 1, es(d) = ec(d) = −ed(s) = −ed(c) = 1, as shown on the outside of

the figure, and d has not accepted the new packet.

Problems

Problem 3.4.1 RPI2 is a modification of PI1. Let RPI2’ be the protocol created when the same modifica-

tion is applied to PI2. Give an example where RPI2’ does not work properly.

Problem 3.4.2 RPI1 is a modification of PI1 that uses sequence numbers. Show that RPI1 with a finite

sequence number does not work. Show how it contradicts the initialization condition.

Problem 3.4.3 Give a counterexample similar to the one of Fig. 3.3 for W = 2.
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Figure 3.3: Example for PI3
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3.5 Multi-Initiator Propagation of Information (MPI) - Reset Pro-

tocols

In addition to propagation of information, Protocols PI and PIF of Sec. 3.3.1 are also useful for other

purposes, like resetting and cleaning the network. By this we mean that if there are some old messages

some other protocol P in the network at the time when a PIF is started, then at the time when the PIF

is completed, all nodes in the network are brought to a known state and there are no old messages of P in

the network. As seen in the following chapters, those protocols can also be used in order to ”wake up” the

nodes in a network to start performing some protocol. However, in order to be useful for these purposes, we

must allow for the possibility that the PI or PIF is started independently from several sources, as opposed

to the versions described in previous sections, where we required a single START. In this section more than

one node may receive START , still with the condition that only a node i that is not in the protocol, i.e. for

which mi = 0, can receive START .

In Protocols PI1, PI2 and PIF1 of Sec. 3.3.1, when a node enters the protocol, it sets mi ← 1 and

never changes mi afterwards. The specification for their multi-initiator counterparts MPI1, MPI2 and

MPIF1 is identical to the respective one-initiator algorithm, except that the messages MSG do not carry

information. Therefore, their specification will not be repeated here. The initialization conditions are also

identical. The only difference is that more than one node may receive START , provided that this happens

before the node has entered the protocol.

For easy reference, we give a short verbal refresh. In MPI1, every node i ∈ V enters the protocol, i.e.

performs phase1()i, and sets mi ← 1 when it receives the first MSG. At that time it sends MSG to all

its neighbors. It disregards all subsequent received MSG’s. Protocol MPI2 is identical to MPI1, except

that when it enters the protocol, a node i sends MSG’s to all neighbors except the one from which it has

just received MSG. The initialization condition for MPI1 and MPI2 is that if a node i receives a MSG,

then just before receiving the first MSG, it has mi = 0. Protocol MPIF1 is identical to MPI2, with the

addition that when it realizes that it had received a MSG from each neighbor, a node i sends a MSG to the

neighbor from which it had received the first MSG. This is referred to as step phase2()i in the algorithm,

or in words, the time when node i completes its part in the protocol. As in PIF1, in order to achieve the

properties we seek from MPIF1, we require here an additional initialization property: after entering the

protocol, i.e. setting mi ← 1 in step phase1()i, a node i processes only messages of the current instance of the

protocol. The properties of the MPI1, MPI2 and MPIF1 protocols are given in the following Theorems.

As stated before, in many cases the multi-initiator protocols, as well as the one-initiator protocols which

are special cases of the latter, are not intended for actual propagation of information. In these cases, the

statements of accept the information in MSG in the specification of the protocol are simply disregarded.

As a consequence, we shall avoid referring to acceptance of information in the statement of the protocol

properties.

The reason the Multi-Initiator protocols work is that each one-initiator PIF is triggered independently of

the others in different parts of the network and propagates undisturbed until it meets another one-initiator

PIF. When two (or more) PIF’s meet, each receives the MSG’s of the other, but does not distinguish them

from its own, so the PIF’s simply coalesce.

Theorem 3.10 (MPI1) Suppose that in Protocol MPI1, one or more nodes in V receive START . Then:

a) All nodes i ∈ V will enter the protocol, i.e. perform mi ← 1, in finite time and exactly once.

b) During the execution of the protocol, exactly one MSG is sent on each link in each direction.
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c) The propagation of mi ← 1 is the fastest possible.

d) No string of messages can overtake MPI1.

Proof: In the proof of PI1, there is no mention of the fact that there is only one initiator. Consequently

all properties hold for the multi-initiator protocol. qed

The communication complexity of MPI1 is 2 | E |. Its time complexity is d, where d is the longest path

in the network in terms of number of hops from any node that receives START. ????

Theorem 3.11 (MPI2) Suppose that in Protocol MPI2, one or more nodes in V receive START . Then:

a) all nodes i ∈ V will enter the protocol, i.e. perform phase1()i, in finite time and exactly once; after this

happens, the links {(i, pi), ∀i ∈ V } form a spanning forest of (disjoint) directed trees rooted at nodes that

have received START ; in addition, for all i holds t(phase1()i) > t(phase1()pi).

b) During the execution of the protocol, exactly one MSG is sent on each link of the type 6= (i, pi) , in each

direction. On links of the type (i, pi), a MSG is sent only in the direction from pi to i.

c) The propagation of mi ← 1 is the fastest possible.

d) No string of messages can overtake MPI2.

Proof: Identical to Theorem 3.2. qed

The communication complexity of PI2 is 2 | E | − | V |. Its time complexity is d, where d is the longest

path in the network in terms of number of hops from any node that receives START. ????

Theorem 3.12 (MPIF1) Suppose one or more nodes in V receive START . Then:

a) all nodes i ∈ V will enter the protocol, i.e. perform the event phase1()i, in finite time and exactly once.

After this happens, the links {(i, pi), ∀i ∈ V } form a spanning forest of (disjoint) directed trees rooted at

nodes that have received START ; in addition, for all i holds t(phase1()i) > t(phase1()pi
); moreover, the

propagation of mi ← 1 is the fastest possible.

Note: some nodes may perform phase2() before all nodes have performed phase1() .

b) all nodes i ∈ V will perform phase2()i in finite time and exactly once; moreover t(phase1()i) ≤ t(phase2()i) <

t(phase2()pi
); also, t(phase2()i) > t(phase1()k) for all k ∈ Gi; node i receives no messages after time

t(phase2()i).

c) exactly one MSG travels on each link in (V,E) in each direction.

d) No string of messages can overtake MPIF1.

Note: Observe that although most properties of PIF1 carry over to Protocol MPIF1, one basic property

is missing: although all nodes complete the protocol, i.e. execute phase2() , there is no knowledge at any

node that the protocol has completed at all nodes in the network; execution of phase2() at a node that has

received START signals only completion at the nodes on the tree rooted at this node and entrance into the

protocol of the neighbors of these nodes.

Proof: The propagation of phase1() is as in MPI2, hence a) follows from Theorem 3.11.

To prove b) let k be a leaf of a tree referred to in a), i.e. 6 ∃l such that pl = k. Then all neighbors n of k

will send MSG to k when they perform phase1()n. Node k will receive all these messages and will be able

to perform phase2()k. At that time there are no messages traveling towards k and node k will send MSG

to pk. The same will be true for all leaves. Now nodes that are on the last-but-one level in the tree will be
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able to perform phase2() and the procedure will continue downtree all the way to node s. This argument

also shows that a node i performs phase2()i before its preferred neighbor does, but after all its neighbors

have entered the protocol, i.e. have performed phase1() .

To prove c), observe that in phase1()i, a node i sends MSG to all k ∈ Gi − {pi} and in phase2()i it

sends MSG to pi. Since it performs each of phase1()i and phase2()i exactly once, c) follows. The proof of

d) is identical to the proof in Theorem 3.1. qed

The communication complexity of MPIF1 is 2 | E |. Its time complexity???

In many applications of the Multi-Initiator Propagation of Information, like network reset after topological

changes [AAG87b] and fast queries [CS89], it is necessary that a node that completes the protocol returns

to the state it starts from, i.e. resets mi ← 0. Therefore a node i may be at any time in one of two states:

mi = 0 indicates that i is not currently participating in the protocol, while mi = 1 indicates that it is. In

particular, as with Repeated PIF ’s, return to mi = 0 upon completion allows a node to start or to enter a

new version of the protocol. As seen presently however, if one is not careful, this may also allow a node to

enter several times the same protocol, a potentially waistful phenomenon.

The simplest Multi-Initiator PIF with return to initial state upon completion is the Multi-Initiator version

of Protocol PIF2, called MPIF2. There is one problem that must be solved however in the design of this

extension. Suppose a PIF2 has been started and is in process of completion. Upon completing its part

of the protocol every node resets mi ← 0, so it is free to start its own PIF2 if required. For example, in

Fig. 3.4, suppose that node a is the only one that has started a PIF2. All nodes except a have completed

it and a is only waiting for a MSG from b that is now on the link (b, a) (solid arrow in Fig. 3.4). Since

mb = 0, node b can start now a new PIF2. Suppose that link (b, a) is slow and the new PIF2 reaches d via

c, at which time node d sends a MSG to a (dashed arrows in Fig. 3.4). This is an unexpected MSG at a

since ea(d) = 0, indicating that a MSG has been already received at a from d. However a cannot disregard

this MSG since d expects an answer in the form of a MSG from a, i.e. ed(a) = 1. The simplest solution

is for a to send back immediately a MSG to d. This is implemented in Protocol MPIF2 below. However.

this solution allows a node to enter the same PIF more than once. As defined later, nodes that enter/exit

a given PIF are said to enter/exit a segment . In our example in Fig. 3.4, node d will exit the segment of b,

then a will complete its PIF and later will enter the segment of b, at which time it will send a MSG to d,

causing d to enter the same segment twice.

Figure 3.4: Example for MPIF2
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Protocol MPIF2

Messages

MSG) - message of the protocol

Variables

Gi - set of neighbors of node i
mi - shows whether node i is in the protocol (values 0,1)
ei(l) - number of MSG’s sent to l - number of MSG’s received from l, for all l ∈ Gi

Initialization

if i receives a MSG, then

- just before receiving the first MSG, holds mi = 0 and ei(l) = 0 for all l ∈ Gi

- after receiving the first MSG, node i discards and disregards messages not sent in the present instance
of the protocol

Note: By definition, a condition on an empty set is always true. For instance, in <A7> below, if
Gi − {pi} = ∅, then the condition holds and i should send MSG to pi.

Algorithm for node i

A1 receive MSG from l ∈ Gi ∪ {nil}
A2 { if (mi = 0){
A3 phase1();

}
A4 else {
A5 if (ei(l) = 1) ei(l)← ei(l)− 1;
A6 else send MSG to l;

}
A7 if (ei(k) = 0 ∀k ∈ Gi − {pi}) phase2();

}
B1 phase1() /* same as PIF1 and PIF2 */
B2 { mi ← 1;
B3 pi ← l;
B4 ei(l)← ei(l)− 1;
B5 for (k ∈ Gi − {pi}){
B6 send MSG to k;
B7 ei(k)← ei(k) + 1;

}
}

C1 phase2() /* same as PIF2 */
C2 { send MSG to pi ;
C3 ei(pi)← ei(pi) + 1;
C4 mi ← 0;

}

As with all Multi-Initiator protocols, MPIF2 is composed of several one-initiator segments, each segment

operating in a similar manner to PIF2. In order to state the properties ofMPIF2, we need to define precisely

what we mean by a segment of the MPIF2. Loosely speaking, a segment is the part of the network that

enters a given one-originator PIF . More precisely, a segment is started when a given node receives START

and the messages sent out by that node are said to belong to that segment. In the algorithm, a node sends

out a MSG only upon receipt of a MSG. Then we say that the MSG’s sent out by the node belong to

the same segment as the received MSG. We say that a node enters a segment if it enters the protocol, i.e.

performs phase1() , due to the receipt of a MSG belonging to that segment and exits the segment when it

next performs mi ← 0. After it enters a segment and until it exits it, we say that the node is in the segment .

Note that in general, this allows a node that has entered a given segment to send out MSG’s belonging to a

different segment, if it receives a MSG of the latter (for example in <A6>). In principle, it is even possible

that a node exits a segment due to receipt of a MSG of a different segment. We shall prove in the sequel

that the first type of event may occur, but the second cannot.
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As seen below, the properties of MPIF2 are significantly different from the ones of MPIF1. 3

Theorem 3.13 (MPIF2)

a) Suppose one or more nodes in V receive START . Then all nodes i ∈ V will enter the protocol, i.e.

perform the event phase1()i, in finite time at least once. The links {(i, pi),∀i ∈ V } form at all times a forest

of (disjoint) directed trees rooted at nodes that have received START ; moreover, the propagation of mi ← 1

is the fastest possible.

b) (Reset and cleaning) Suppose there are a finite number of times when nodes receive START . A finite time

after the START ’s stop, all nodes i ∈ V will have mi = 0 and there are no MSG’s in E and this situation

does not change. Also, if there is some other protocol P that runs in the network, there are no old messages

of that protocol in the network (old messages are defined as messages of P sent by a node before it has entered

for the last time MPIF2).

c) In MPIF2, a node may enter more than once a given segment. The number of entrances of a given node

into a given PIF2 is bounded by | V | ([CS89]).

Protocol MPIF3 solves the problem of multiple entries into the same segment that we found in MPIF2,

by adding a third phase to the protocol, that propagates on the tree from the root to the leaves, and allows

nodes to return to mi = 0 only upon performing the third phase.

Protocol MPIF3

Messages

MSG(z) - message of the protocol
z = 1 if MSG is sent to pi, z = 0 otherwise

Variables

Gi - set of neighbors of i
mi - shows whether node i is in the protocol (values 0,1).
ei(l) - number of MSG’s sent to l - number of MSG’s received from l, for all l ∈ Gi

Si - set of sons of i

Initialization

if i receives a MSG, then

- just before receiving the first MSG, holds mi = 0 and ei(l) = 0 for all l ∈ Gi

- after receiving the first MSG, node i discards and disregards messages not sent in the present instance
of the protocola

Note: By definition, a condition on an empty set is always true. For instance, in <A10> below, if
Gi − {pi} = ∅, then the condition holds and i should send MSG to pi.

aNot good enough for topo. changes. Partial trees, etc.

3Is there need to provide a separate proof of MPIF2, or do properties of this follow from MPIF3???
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Algorithm for node i

A1 receive MSG(z) from l ∈ Gi ∪ {nil}
A2 { if (mi = 0){
A3 initialize();
A4 phase1();

}
A5 else {
A6 if (ei(l) = 1){
A7 ei(l)← ei(l)− 1;
A8 if (z = 1) Si ← Si ∪ {l};

}
A9 else send MSG(0) to l;

}
A10 if (ei(k) = 0 ∀k ∈ Gi − {pi}) phase2();

}
B1 receive RELEASE
B2 { phase3();

}
C1 phase1()
C2 { mi ← 1;
C3 pi ← l;
C4 ei(l)← ei(l)− 1;
C5 for (k ∈ Gi − {pi}){
C6 send MSG(0) to k;
C7 ei(k)← ei(k) + 1;

}
}

D1 phase2()
D2 { if (pi 6= nil){
D3 send MSG(1) to pi ;
D4 ei(pi)← ei(pi) + 1;

}
D5 else phase3();

}
E1 phase3()
E2 { send RELEASE to all k ∈ Si;
E3 mi ← 0;

}
F1 initialize()
F2 Si ← ∅;

}
In [AAG87a], [AAG87b] it is argued that MPIF3 works as a regular multi-initiator PIF and hence there

is no need to provide a proof for MPIF3 once we know that MPIF1 or PIF2 work. However this is not the

case since for example clause <A9>, namely receipt of a MSG from l while ei(l) 6= 1, cannot happen in

MPIF1 or PIF2, thus it does not appear there. Moreover, as seen in the proofs, there is need to indicate

the exact role of RELEASE messages and show that they cannot arrive too early, resulting in premature

return of nodes to mi = 0. Another result that is necessary in the correctness proof, in particular in the

proof that a node can enter a given segment at most once, is that no nodes can enter a segment after the

segment root leaves it. In PIF2, this result is obvious. The proof of this property here is quite intricate.

Theorem 3.14 (MPIF3)

a) Suppose one or more nodes in V receive START . Then all nodes i ∈ V will enter the protocol, i.e. perform

the event phase1()i in finite time at least once. The links {(i, pi),∀i ∈ V } such that mi = 1 and there is no

RELEASE on link (pi, i) traveling towards i form at all times a forest of (disjoint) directed trees ; moreover,

the propagation of mi ← 1 is the fastest possible.

b) (Reset and cleaning) Suppose there are a finite number of times when nodes receive START . A finite time

after the START ’s stop, all nodes i ∈ V will have mi = 0 and there are no MSG’s in E and this situation

does not change. Also, if there is some other protocol P that runs in the network, there are no old messages
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of that protocol in the network (old messages are defined as messages of P sent by a node before it has entered

for the last time MPIF3).

c) In MPIF3, a node can enter a given segment not more than once.

The proof proceeds via a series of Lemmas.

Lemma 3.15 (Preliminary Properties)

a) A RELEASE cannot cross paths with a MSG(1) (two messages traveling on the same link in opposite

directions are said to cross paths if each is sent before the other is received).

b) If there is a RELEASE message on a link (l, i) ( and at the time when such a message is received by i ),

holds l = pi, mi = 1 and ei(k) = 0,∀k ∈ Gi.

c) Denote by σi(l) the number of MSG messages ever sent by i to l and by ρi(l) the number of such messages

ever received by i from l. Then

i) ei(l) can take values 0,+1 or −1; if mi = 1, then ei(l) = 0 or 1 for all l ∈ Gi − {pi} and in addition,

ei(pi) = −1 or 0.

ii) ei(l) = σi(l)− ρi(l).

iii) if mi = 0, then ei(k) = 0,∀k ∈ Gi.

Proof: The proof of a) and b) proceeds by a common induction. Suppose a), b) hold for all RELEASE

messages received by any node in V until time t−; we show that they cannot be contradicted for RELEASE

messages received at t.

Suppose that RELEASE is received by node i at time t from node l and it crosses paths with a MSG(1)

(see Fig. 3.5 ). At the time τ when the RELEASE was sent by l, held i ∈ Sl and ml has changed from

1 to 0. At the last time τ1 before τ when i had entered Sl, node l has received from i a MSG(1). At the

time t3 when the MSG(1) that crosses paths with the RELEASE was sent, holds mi = 1 and pi = l. Let

t2 be the last time before t3 when mi ← 1; at that time also pi ← l. Since during [t2, t3), node l sends no

messages to i, the MSG(1) received by i at time τ1 must have been sent before t2, at time t1 say. At that

time holds mi = 1 and pi = l. However at time t2, the variable mi changes from 0 to 1, so that between t1

and t2, node i must receive at least one RELEASE. Since by the induction assumption on b), until time t−
nodes receive RELEASE from their preferred neighbors, the first RELEASE received by i after t1 must

be received from l. Since between τ1 and τ , node l sends no messages to i, that RELEASE was sent before

τ1 and hence crosses paths with the MSG(1) received by l at τ1. This contradicts the induction assumption

on a) that states that RELEASE messages received before time t do not cross paths with a MSG(1).

To prove b), suppose that RELEASE is received by i from l at time t ( see Fig. 3.6 ). At the time τ

when it was sent, held i ∈ Sl. At the last time τ1 before τ when i has entered Sl, node i has received a

MSG(1) from i, sent at time t1 say. At time t1+, holds mi = 1, pi = l, ei(k) = 0,∀k ∈ Gi. The only way

for any of these relations not to hold during [τ , t) is if i receives at least one RELEASE between t1 and τ .

Since by the induction assumption on b), all such RELEASE’s are received from pi, the first one is received

from l. Since between τ1 and τ no messages are sent by l to i, such RELEASE was sent before τ1 and

crosses MSG(1), contradicting a) before time t. Hence b).

From the algorithm, ei(k) can receive only values 0 or −1 if k = pi and 0 or 1 for k 6= pi, hence c)i).

From b) follows that RELEASE can be received only when ei(k) = 0,∀k ∈ Gi and from phase3()i , at that

time node i sets mi ← 0. While mi = 0, node i sends no MSG’s and upon receipt of the first MSG, it sets

mi ← 1. Therefore all ei(k) remain 0 while mi = 0, hence c)iii). Upon entrance into the protocol, i.e. upon

c©Adrian Segall 76



Sec. 3.5

Figure 3.5: Diagram for Lemma

Figure 3.6: Diagram for Lemma
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setting mi ← 1 and while mi = 1, every MSG received from l decrements ei(l) and every MSG sent to l

increments it, therefore the relation ei(l) = σi(l)− ρi(l) holds throughout. qed

From Lemma 3.15b) and the algorithm we deduct that the events at a node i occur in the following

order: enter the protocol, i.e. perform phase1()i , wait until all ei(k),∀k ∈ Gi − {pi} become 0, at which

time send MSG(1) to pi and set ei(pi) ← 0, i.e. perform phase2()i , and finally receive RELEASE and

exit the protocol, i.e. perform phase3()i. In particular, in view of Lemma 3.15b), RELEASE cannot be

received before phase2()i is performed, since ei(pi) = −1. We shall say that before the time when phase2()i

is performed, the node is in the first phase of the protocol and between the time when it performs phase2()i

and until it exits the protocol, it is in the second phase of the protocol.

Lemma 3.16 (Preliminary Properties 2)

a) Suppose that at time t′ node i receives a message MSG from l when ei(l)(t
′−) = 0 and let τ ′ be the time

when that MSG was sent by l (see Fig. 3.7). Then el(i)(τ
′+) = 1 and l has entered the protocol, i.e. has

performed phase1()l at time τ ′. Moreover, no message crosses paths with such a MSG.

b) Suppose that the MSG referred to in a) finds mi = 0 and hence causes i to enter the protocol, i.e. to

perform phase1()i , and to set pi ← l. Then at time t′, node l is in the first phase of the protocol and stays

there as long as i is in the first phase ( and a nonzero period of time afterwards).

c) No message crosses paths with a MSG(1). A MSG(1) that arrives at a node l from a neighbor i, finds

ml = 1 and el(i) = 1 and at that time i is included in Sl.

d) A node i with mi = 1 cannot receive a MSG from its preferred neighbor pi.

Figure 3.7: Diagram for Lemma

Proof: To prove a), observe that, since at time τ ′ node l sends to i a MSG that is received at t′, the FIFO

property of the DLC implies that the number σl(i)(τ
′−) of MSG’s sent by l to i before τ ′ is identical to the

number ρi(l)(t
′−) of MSG’s received by i from l before t′ (see Fig. 3.7. Hence ρi(l)(t

′−) = σl(i)(τ
′+)− 1.

Moreover, the number of MSG’s sent by i to any neighbor until some time t′ is always larger than or

equal to the number of MSG’s received by that neighbor from i until t′ or until any earlier time. Thus

σi(l)(t
′−) ≥ ρl(i)(τ ′+). Therefore we have by Lemma 3.15c)

0 = ei(l)(t
′−) = σi(l)(t

′−)− ρi(l)(t′−) ≥ ρl(i)(τ ′+)− σl(i)(τ
′+) + 1 = −el(i)(τ ′+) + 1
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This implies el(i)(τ
′+) ≥ 1, and therefore, from Lemma 3.15c), we have el(i)(τ

′+) = 1. Moreover, this

says that the inequality in the above equation is in fact an equality, so that σi(l)(t
′−) = ρl(i)(τ

′+), meaning

that all MSG’s sent by i to l before t′ are received at or before τ ′. Thus no MSG crosses paths with the

MSG sent by l at τ ′. The proof of a) is completed by observing that the only case when sending a message

results in el(τ
′+)← 1 is in <C5>, so l has performed phase1()l at time τ ′.

In b) we assume that the MSG sent at τ ′ finds not only ei(l) = 0, but mi = 0. From a) follows that at

the time τ ′ when the MSG was sent, held el(i)(τ
′+) = 1. We need to show that l is still in the first phase

at time t′ and stays in this phase at least as long as i is in the first phase. In order for l to enter the second

phase, el(i) must become 0, namely l must receive a MSG from i. Since no MSG crosses paths with the

MSG sent at τ ′ and i sends to l no MSG while in the first phase of the protocol, no MSG arrives at l from i

from time τ ′ until after i enters the second phase. Hence l stays during all this time in the first phase,which

proves b).

To prove c), suppose that MSG(1) is sent by i to l, at time t2 say (see Fig. 3.7). Then at time t2+ holds

ei(l) = 0, pi = l,mi = 1. From Lemma 3.15a), no RELEASE can cross paths with the MSG(1). Suppose

that a MSG crosses paths with the MSG(1) and let t3 be the time when the first MSG that crosses paths

with this MSG(1) arrives at i. The only way for the situation at i at time t2+ to change until t3− is if a

RELEASE arrives at i, which cannot happen since from Lemma From Lemma 3.15b), that RELEASE

would have to come from l and would cross paths with the MSG(1), contradicting Lemma 3.15a). Hence

the MSG received at t3 by i finds ei(l) = 0 and crosses paths with MSG(1), contradicting part a). This

proves that no message crosses paths with a MSG(1). To prove the second part of c), let τ2 be the time

when MSG(1) is received at l from i (see Fig. 3.7). At time t2 when MSG(1) is sent, holds pi = l and let t1

be the last time before t2 when pi was set to l. At t1, node i receives a MSG from l while ei(l) = 0 and let

τ1 be the time when that MSG was sent. From a) and b), at τ1 node l sets ml ← 1 and el(i)← 1 and that

situation does not change until τ2. This is because a change necessitates receipt of a MSG from i, which

cannot happen since i sends no MSG to l between t1 and t2 and no MSG can cross the MSG sent by l at

τ1 because of a). Therefore at time τ2− holds ml = 1 and el(i) = 1 and i is included in Sl in <A8> , hence

c).

Next we prove d). Suppose that node i receives at time t′ a MSG from l = pi while mi = 1, sent by

l at time τ ′. We distinguish between two cases: ei(l)(t
′−) = 0 and ei(l)(t

′−) = −1. In the first case (see

Fig. 3.7) let t2 be the last time before t′ when node i sets ei(l)← 0, i.e. sends MSG(1) to l. During [t2, t
′]

holds mi = 1. Since MSG(1) crosses paths with no MSG, the MSG(1) must arrive at l before τ ′, at time

τ2 say. By c), at that time holds ml = 1 and i is included in Sl. From b), at time τ ′− holds ml = 0, so that

between τ2 and τ ′, node l receives at least one RELEASE. When the first such RELEASE arrives at l

it finds ml = 1 and i ∈ Sl, so l sends a RELEASE to i, which arrives at i before t′, contradicting the fact

that mi = 1 during [t2, t
′].

The second case is ei(l)(t
′−) = −1. As in the proof of a), ρi(l)(t

′−) = σl(i)(τ
′−) and σi(l)(t

′−) ≥
ρl(i)(τ

′−). Therefore,

−1 = ei(l)(t
′−) = σi(l)(t

′−)− ρi(l)(t′−) ≥ ρl(i)(τ ′−)− σl(i)(τ
′−) = −el(i)(τ ′−)

Therefore, due to the fact that e can take only values 0 or ±1, holds el(i)(τ
′−) = 1. But this is a contradiction

since in the algorithm, node l never sends a MSG to i if el(i) = 1. qed

The statements of Theorem MPIF3 are proved now in the following:

Lemma 3.17

a) At any time when mi = 1 and pi = l hold, either ml = 1 or there is a RELEASE on link (l, i).
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b) Links (i, pi) such that mi = 1 and there is no RELEASE on link (pi,i) traveling towards i form a forest

of disjoint directed trees.

c) From the time when a segment is started and until all nodes that ever enter that segment enter the second

phase of the protocol, the nodes that are in a segment form a tree. The tree is rooted at the node that had

started it. No node can enter a given segment after the time when the root exits it.

d) Every node can enter a given segment at most once.

e) Suppose one or more nodes in V receive START . Then every node i ∈ V will enter the protocol, i.e.

perform phase1()i, at least once.

f) Suppose that there are a finite number of times when nodes receive START . A finite time after the

START ’s stop, all nodes i ∈ V will have mi = 0 and there are no MSG’s in E and this situation does not

change.

Proof: Suppose that at time t holds mi = 1 and pi = l. At t1, the last time before t when i had set

pi ← l, it had received from l a MSG while mi was 0 (see Fig. 3.7). At the time τ1 when that MSG was

sent, node l had entered the protocol and had set ml ← 1 and el(i)← 1 ( Lemma 3.16a),b ). We shall show

that either ml does not change until time t or there is a RELEASE at time t on the link (l, i) traveling

towards i. Since ml can change only if l receives a RELEASE and the latter can be received only if all

el(k) are 0 (Lemma 3.15b)), the variable ml stays 1 at least until l receives a MSG from i that resets el(i)

to 0. From Lemma 3.16a), that MSG can be sent only after t1 and hence it is a MSG(1) and from Lemma

3.16c), it also causes inclusion of i into Sl. Therefore, if ml does change before t, it does so at a time when

i ∈ Sl, so l sends RELEASE to i. That RELEASE is still on the link at time t, because otherwise it would

have set mi ← 0 upon its arrival at i, contradicting the fact that mi = 1 on the entire interval (t1, t]. Hence

a).

To prove b), we only have to show that if at time t, a node i enters the protocol, i.e. sets mi ← 1, and

selects l as pi, it does not close a loop with the property that for all its links (n, pn) holds mn = 1 and no

RELEASE is traveling from pn to n. But at time t− holds mi = 0, so that by a), there is no node j with

mj = 1, pj = i and no RELEASE traveling from i to j, so no such loop can be closed. Hence b).

Since when a node i enters a given segment, it sends out MSG’s belonging to that segment, all nodes in a

segment belong to the same tree, rooted at the node, s say, that initiates the segment by receiving START .

Since from Lemma 3.16b), while a node i is in the first phase, its preferred neighbor pi is also in this phase,

no node can enter the second phase before all its descendants in the tree do so. Therefore the root s of the

tree is the last in the segment to enter the second phase. In fact, the root s exits the segment instead of

entering the second phase (see phase3() ), so that the root can exit the segment only after all nodes in the

segment enter the second phase.

The above only shows that the root s does not exit the segment before all nodes already in the tree enter

the second phase. It remains to show that no node enters the segment after the root had exited it. Suppose

that this is not the case and let node i be the first node to enter the segment, i.e. perform phase1()i , at a

time t say, after the time when s had exited the segment. Let l be the node from which i receives a MSG at

time t. Node l has entered the segment before the time when s had exited it and on the other hand, node

l is at time t still in the first phase (Lemma 3.16b)). This means that s exits the segment while l is still in

the first phase, contradicting the statements in the previous paragraph. This proves c).

To prove d), suppose a node i is the first to enter the same segment for the second time, at time t. This

means that prior to t, node i had been in that segment and had exited it. From c), this means that the root
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of the tree had exited the segment before time t. This contradicts the other part of c), that states that no

node can enter a segment after the time when the root had exited it.

The proof of e) proceeds exactly as in Theorem 3.1a). Suppose that there is a node i that never performs

phase1()i. Consider the set V ′ of nodes that do perform phase1() and the set V ′′ of nodes that never

perform phase1(). Since nodes that receive START are in V ′ and i ∈ V ′′, both sets are nonempty. Since V

is connected, there are two neighbors j and k such that j ∈ V ′ and k ∈ V ′′. When j performs phase1()j , it

sends MSG to k. The Delivery property of the DLC implies that the MSG will arrive at k. If this is the

first MSG that arrives at k, the initialization assumption states that it finds mi = 0, causing k to perform

phase1()k, contradiction. If this is not the first MSG that arrives at k, then phase1()k happened when k

had received the first MSG.

To prove f), consider first a leaf i of a tree corresponding to a given segment. When it enters the segment,

it sends a MSG to all neighbors k except pi and sets ei(k) ← 1. When the MSG arrives at a neighbor k,

it finds mk = 1, since otherwise k would select i as its preferred neighbor and i would not be a leaf. Note

that k may be in the same segment as i or in a different one and that by Lemma 3.16d), at the time when

the MSG arrives at k, the variable ek(i) cannot be −1. If at that time, ek(i) = 0, then k sends a MSG

back to i ( see <A9> ). If ek(i) = 1, then k had previously sent a MSG to i, that crosses paths with

the one sent by i to k. In both cases, when the MSG sent by k is received at i, it sets ei(k) ← 0. When

this happens for all neighbors except pi, node i enters the second phase and sends MSG(1) to its preferred

neighbor. This process continues downtree until all nodes enter the second phase. By Lemma 3.16c), when

a node i enters the second phase, its list Si contains exactly the sons of i in the tree, i.e. the neighbors

that had sent MSG(1) to i why?? . When the segment initiator is supposed to enter the second phase,

it exits the segment instead in phase3()s and sends RELEASE to all neighbors in Ss, i.e. to all sons in

the tree. Similarly, when a node i receives RELEASE, it exits the segment and sends RELEASE to its

sons. Consequently, all nodes in the tree eventually set mi ← 0 and no more messages of the segment can

subsequently be sent or received. qed

Problems

Problem 3.5.1 Show that no loop of RELEASES traveling on links can be formed in MPIF3.

Problem 3.5.2 Let MPI3 be the multiple PI created by allowing several nodes to receive a START when

executing PI3. Give an example of MPI3 that leads to a deadlock.

Problem 3.5.3 Suppose that there are two copies of four records of information at two nodes i and j in

a connected network. Nodes i and j use MPIF3 for propagating these records to all nodes. A message can

contain only one record, so after i or j sends a RELEASE message, it starts a new MPIF3 with the next

record.

Will all nodes accept all records?

will all nodes acccept the records in order?
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3.6 Multi-Initiator Propagation of Information-Topological changes

(EMPIF)

Here we are achieving the same reset and cleaning properties as with MPIF, when there are topological

changes in the network.

Protocol EMPIF3

Messages

MSG(z) - message of the protocol (z = 1 if sent to preferred neighbor, z = 0 otherwise)

Variables

Gi - set of neighbors of i, i.e. l ∈ Gi if (i, l) is in Connected state at i.
mi - shows whether node i is in the protocol (values 0,1).
ei(l) - number of MSG’s sent to l - number of MSG’s received from l, for all l ∈ Gi

Si - set of sons of i

Initialization

if i receives a MSG, then

- just before receiving the first MSG, holds mi = 0
- after receiving the first MSG, node i discards and disregards messages not sent in the present instance
of the protocola

Note: By definition, a condition on an empty set is always true. For instance, in <B8> below, if
Gi − {pi} = ∅, then the condition holds and i should perform phase2().

aNot good enough for topo. changes. Partial trees, etc.
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Algorithm for node i
A1 node i becomes operational
A2 { mi ← 0;

}
B1 link (i, l) enters Initialization Mode;
B2 { if (mi = 0) { /* behave as if receives START */
B3 pi ← nil;
B4 phase1();

}
B5 else {
B6 if (l ∈ Si) Si ← Si − {l};
B7 if (pi = l) pi ← nil;

}
B8 if (ei(k) = 0 ∀k ∈ Gi − {pi}) phase2();

}
C1 link (i, l) enters Connected State
C2 { ei(l)← 0;
C3 if (mi = 0) { /* behave as if receives START */
C4 pi ← nil;
C5 phase1();

}
}

D1 receives MSG(z) from l ∈ Gi
D2 { if (mi = 0) {
D3 pi ← l;
D4 phase1();

D5 if (ei(k) = 0 ∀k ∈ Gi − {pi}) phase2();
}

D6 else {
D7 if (ei(l) = 1) {
D8 ei(l)← 0;
D9 if (z = 1) Si ← Si ∪ {l};
D10 if (ei(k) = 0 ∀k ∈ Gi − {pi}) phase2();

}
D11 else send MSG(0) to l ;

}
}

E1 receives RELEASE
E2 { phase3();

}
F1 phase1()
F2 { mi ← 1;
F3 Si ← ∅;
F4 ei(pi)← −1;
F5 for (k ∈ Gi − {pi}) {
F6 send MSG(0) to k;
F7 ei(k)← ei(k) + 1;

}
}

G1 phase2()
G2 { if (pi 6= nil) {
G3 send MSG(1) to pi;
G4 ei(pi)← ei(pi) + 1;

}
G5 else phase3();

}
H1 phase3()
H2 { mi ← 0;
H3 send RELEASE to all k ∈ Si;

}

In [AAG87b], [AAG87a] it is argued that MPIF3 works as a regular multi-initiator PIF and hence there

is no need to provide a proof for MPIF3 once we know that MPIF1 or PIF2 work. However this is not the

case since for example there is no clause phase3() in those protocols since it cannot happen there. Moreover,
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as will be seen in the proofs, there is need to show what exactly is the role of RELEASE messages, that

they cannot arrive too early and cause nodes to return to mi = 0 too early, no nodes can enter a segment

after the segment root leaves it , etc. restate

The definition of a segment needs to be extended in the context of networks with topological changes.

We shall need the following definition: we shall say that there exists a path from i to s if there exist nodes

i = i0, i1, i2, . . . , in = s such that pik = ik+1 for k = 0, 1, . . . , (n− 1) and ps = nil. A node s is said to start

a new segment if it registers an adjacent topological change that causes it to set ps ← nil while entering or

staying in the protocol. Specifically, node s starts a new segment if:

a) it performs <C4>

b) it performs <B4>

c) it performs <B7>

In the first two cases, an adjacent link fails or recovers while s is not in the protocol, causing it to enter it.

In the third case, the link to ps fails, but s stays in the protocol. In the latter case, we say that any node i

that has a path to s enters the segment started by s. A node i is said to enter the segment rooted at a node

s if it enters the protocol by receiving a MSG, i.e. in <D4>, and immediatly after the time when it enters

the protocol, there exists a path from i to s. For example, in Fig. 3.8, suppose that nodes a, b, c, d, e, f are

in the protocol in the first phase, with preferred neighbors indicated by the dashed lines. If link (g, c) fails

or a link (g, b) comes up, then g enters the protocol, thereby starting a new segment. move???

Figure 3.8: Diagram for example

restate

Theorem 3.18 (EMPIF3)
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a) Suppose one or more nodes in V receive START . Then all nodes i ∈ V will enter the protocol, i.e. perform

the event phase1()i in finite time at least once4. The links {(i, pi),∀i ∈ V } such that mi = 1 and there is no

RELEASE on link (pi, i) traveling towards i form at all times a forest of (disjoint) directed trees ; moreover,

the propagation of information is the fastest possible.

b) Suppose there are a finite number of times when nodes receive START . A finite time after the START ’s

stop, all nodes i ∈ V will have mi = 0 and there are no MSG’s in E and this situation does not change.

c) In MPIF3, a node can enter a given segment not more than once. ??????

The following is an attempt to prove the properties of Protocol EMPIF3. As will be seen, the proof

cannot be carried out completely ( see Lemma 3.21).

Lemma 3.19 (Preliminary Properties)

a) A RELEASE cannot cross paths with a MSG(1) (two messages traveling on the same link in opposite

directions are said to cross paths if each is sent before the other is received).

b) Node i can receive RELEASE only from pi and only when mi = 1 and ei(k) = 0,∀k ∈ Gi.

c) Denote by σi(l) the number of MSG messages sent by i to l since the last time when (i, l) had entered

Connected state at i and by ρi(l) the number of MSG messages received by i from l since that time. Then

i) ei(l) can take values 0,+1 or −1; if mi = 1, then ei(l) = 0 or 1 for all l ∈ Gi − {pi} and in addition,

ei(pi) = −1 or 0.

ii) if mi = 0, then ei(k) = 0,∀k ∈ Gi.

iii) if pi 6= nil and for some k ∈ Gi holds ei(k) = 1, then ei(pi) = −1.

iv) ei(l) = σi(l)− ρi(l).

Proof: The proof of a) and b) proceeds by a common induction. Suppose a), b) hold for all RELEASE

messages received by any node in V until time t− and we show that they cannot be contradicted for

RELEASE messages received at t. Suppose that RELEASE is received by node i at time t from node l

and it crosses paths with a MSG(1) (see Fig. 3.9). At the time τ when the RELEASE was sent by l, held

i ∈ Sl and ml has changed from 1 to 0. At the last time τ1 before τ when i had entered Sl, node l has

received from i a MSG(1). At the time t3 when the MSG(1) that crosses paths with the RELEASE was

sent, holds mi = 1 and pi = l. Let t2 be the last time before t3 when mi ← 1; at that time also pi ← l. Since

during [t2, t3), node l sends no messages to i, the MSG(1) received by i at time τ1 must have been sent

before t2, at time t1 say. At that time holds mi = 1 and pi = l. However at time t2−, holds mi = 0. There

are two occurrences that can cause mi to change from 1 at t1 to 0 at time t2−: (i) node i receives at least

one RELEASE (<E1>), and (ii) node i fails and comes up again (<A1>). The latter case is not possible

here, because in view of the Crossing property of the DLC on link (i, l), it would require link (i, l) to enter

Initialization Mode between τ1 and τ at l (cf. Problem 2.4.4), contradicting the fact that i ∈ Sl during the

entire interval (τ1, τ ]. To see that case (i) is not possible either, note that by the induction assumption on

b), until time t− nodes receive RELEASE from their preferred neighbors, the first RELEASE received by

i after t1 must be received from l. Since between τ1 and τ , node l sends no messages to i, that RELEASE

was sent before τ1 and hence crosses paths with the MSG(1) received by l at time τ1. This contradicts the

induction assumption on a) that states that RELEASE messages received before time t do not cross paths

with a MSG(1).

4This is not proved yet
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Figure 3.9: Diagram for proof of lemma

To prove b), suppose that RELEASE is received by i from l at time t ( see Fig. 3.10 ). At the time

τ when it was sent, held i ∈ Sl. At the last time τ1 before τ when i had entered Sl, node i has received a

MSG(1) from i, sent at time t1 say. At time t1+, holds mi = 1, pi = l, ei(k) = 0,∀k ∈ Gi. For any of these

relations not to hold at time t, one of the occurrences in the proof of a) must occur between t1 and t. As

in a), node i cannot fail and recover and (i, l) cannot enter Initialization Mode at i, since this would cause

i to leave Sl during (τ1, τ ]. Since by the induction assumption on b), all RELEASE’s that arrive before t

are received from preferred neighbors, the first one is received from l. Since between τ1 and τ no messages

are sent by l to i, such RELEASE was sent before τ1 and crosses MSG(1), contradicting a) before time t.

Hence b).

Figure 3.10: Diagram for proof of lemma

From the algorithm, ei(k) can receive only values 0 or −1 if k = pi and 0 or 1 for k 6= pi, hence c)i).

From b) follows that RELEASE can be received only when ei(k) = 0,∀k ∈ Gi and from <H2>, at that

time node i sets mi ← 0. While mi = 0, node i sends no MSG’s and upon receipt of the first MSG, it sets

mi ← 1. Therefore all ei(k) remain 0 while mi = 0, hence c)ii). Variables ei(k) can be set to 1 and pi can
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become 6= nil only when i enters the protocol in phase1() and at that time, if indeed pi 6= nil, node i sets

ei(pi) ← −1 (see <F4>). Whenever the last ei(k) switches from 1 to 0, if pi 6= nil, then ei(pi) becomes

0 (in <G4>). Hence c)iii). When (i, l) enters Connected state at i, node i sets ei(l) ← 0 (see <C2>).

Therefore c)iv) will be proved if we show that as long as (i, l) is in Connected state, every MSG received

from l decrements ei(l) and every MSG sent to l increments it. In view of the fact that all ei(k) are 0 just

before any entrance of node i into the protocol ( from c)ii) above), this is easily checked for all cases when

i enters the protocol. When it enters the second phase with pi = nil, node i sends no MSG’s. It can enter

the second phase with pi 6= nil only if it receives a MSG from a neighbor l while mi = 0 ( in <F6>), if l

is the only neighbor, or while mi = 1 and ei(l) = 1 ( in <D10> ). In both cases, it sends a MSG(1) to pi

and increments ei(pi) from −1 to 0. In the first case, it was −1 because it had been just set to this value,

in the second case it was −1 because of c)iii) above. The only other case that needs to be checked is when i

receives a MSG from l while mi = 1 (see <D6>). In this case, if ei(l) = 1, then ei(l) is decremented to 0;

otherwise, it is left unchanged and a MSG is returned to l. qed

It is interesting to observe that properties a) and b) above of RELEASE depend only on the fact that

RELEASE is sent by a node i to its sons, i.e. to nodes in Si, and not on the fact that the RELEASE

chain in propagated from the root to the leaves of the trees. Expand !?????

From Lemma 3.19b) and the algorithm we deduct that the events at a node i occur in the following

order: enter the protocol, i.e. perform phase1(), wait until all ei(k),∀k ∈ Gi − {pi} become 0, i.e. <B8>

holds, at which time send MSG(1) to pi and set also ei(pi) ← 0, and finally receive RELEASE and exit

the protocol, i.e. perform phase3(). In particular, in view of Lemma 3.19b), RELEASE cannot be received

before <B8> is performed, since ei(pi) = −1. We shall say that before the time when <B8> holds, the node

is in the first phase of the protocol and afterwards and until it exits the protocol, it is in the second phase of

the protocol.

Lemma 3.20 (Preliminary Properties)

a) Suppose that at time t′ node i receives a message MSG from l when ei(l)(t
′−) = 0 and let τ ′ be the time

when that MSG was sent by l (see Fig. 3.11). Then el(i)(τ
′+) = 1 and l has entered the protocol, i.e. has

performed phase1()l, at time τ ′. Moreover, no message crosses paths with such a MSG.

b) Suppose that the MSG referred to in a) finds mi = 0 and hence causes i to enter the protocol, i.e. to

perform phase1()i, and to set pi ← l. Let t′′ be the first time after t′ when i enters the second phase. If

during (τ ′, t′′) holds i ∈ Gl, then l stays in the first phase during this entire interval and a nonzero period of

time afterwards (note that i ∈ Gl means that node l is operational and (i, l) is in Connected state ).

c) No message crosses paths with a MSG(1). Any MSG(1) that arrives at a node i, from a neighbor l say,

finds ml = 1 and el(i) = 1 and at that time i is included in Sl.

d) A node i with mi = 1 cannot receive a MSG from its preferred neighbor pi.

Proof: To prove a), observe that, since at time τ ′ node l sends to i a MSG that is received at t′, the

Crossing property of the DLC implies that during (τ ′, t′), node i is in Connected state for (i, l). Also, the

Crossing and FIFO properties of the DLC imply that the number σl(i)(τ
′−) of MSG’s sent by l to i before

τ ′ is identical to the number ρi(l)(t
′−) of MSG’s received by i from l before t′ (see Fig. 3.11). Hence

ρi(l)(t
′−) = σl(i)(τ

′+)−1. Moreover, the number of MSG’s sent by i to any neighbor until time t′ is always

larger than or equal to the number of MSG’s received by that neighbor from i until t′ or until any earlier

time. Thus σi(l)(t
′−) ≥ ρl(i)(τ ′+). Therefore we have by Lemma 3.19c),

0 = ei(l)(t
′−) = σi(l)(t

′−)− ρi(l)(t′−) ≥ ρl(i)(τ ′+)− σl(i)(τ
′+) + 1 = −el(i)(τ ′+) + 1
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Figure 3.11: Diagram for proof of lemma

This shows el(i)(τ
′+) ≥ 1, and from Lemma 3.19c) holds el(i)(τ

′+) = 1. Moreover, this says that the

inequality in the above equation is in fact an equality, thus σi(l)(t
′−) = ρl(i)(τ

′+), meaning that all MSG’s

sent by i to l before t′ are received at or before τ ′. Thus no MSG crosses paths with the MSG sent by l at

τ ′. The proof of a) is completed by observing that the only case when sending of a MSG and el(τ
′+)← 1

occur at the same time, is when i enters the protocol. Thus l has performed phase1()l at time τ ′.

In b) we assume that the MSG sent at τ ′ finds not only ei(l) = 0, but also mi = 0. From a) follows

that at the time τ ′ when the MSG was sent, held el(i)(τ
′+) = 1. We also assume that during the entire

interval (τ ′, t′′), node l is up and link (i, l) is in Connected state at l. Hence the only way for l to leave the

first state is by entering the second. In order for l to enter the second phase, el(i) must become 0, namely l

must receive a MSG from i. Since no MSG crosses paths with the MSG sent at τ ′ (cf. a)) and i sends to

l no MSG while in the first phase of the protocol, no MSG arrives at l from i from time τ ′ until t′′ when i

enters the second phase. Hence l stays during all this time in the first phase,which proves b).

To prove c), suppose that MSG(1) is sent by i to l, at time t2 say (see Fig. 3.12). Then at time t2+ holds

ei(l) = 0, pi = l,mi = 1. From Lemma 3.19a), no RELEASE can cross paths with the MSG(1). Suppose

that a MSG crosses paths with the MSG(1) and let t′ be the time when the first MSG that crosses paths

with this MSG(1) arrives at i. Since during (t2, t
′), link (i, l) cannot enter Initialization Mode at i because

that would contradict the Crossing property of the DLC (see Problem 2.4.5) the only way for the situation

at i at time t2+ to change until t′− is if a RELEASE arrives at i. However, this cannot happen since

from Lemma 3.19b), that RELEASE would have to come from l and would cross paths with the MSG(1),

contradicting Lemma 3.19a). Thus the situation at t2+ does not change until t′− and in particular the MSG

received by i at t′ finds ei(l)(t
′−) = 0. This means that a MSG that finds ei(l) = 0 crosses paths with the

MSG(1), contradicting part a). Therefore, no message crosses paths with a MSG(1). To prove the second

part of c), let τ2 be the time when MSG(1) is received at l from i (see Fig.3.12). At time t2 when MSG(1)

is sent, holds mi = 1, pi = l and let t1 be the last time before t2 when i had entered the protocol, i.e. mi was

set to 1. At that time pi ← l and during [t1, t2], link (i, l) is in Connected state at i. At t1, node i receives a

MSG from l while ei(l) = 0 and let τ1 be the time when that MSG was sent. From a) and b), at τ1 node l

sets ml ← 1 and el(i)← 1 and that situation does not change until τ2. This is because a change necessitates

either link (i, l) entering Initialization Mode or receipt of a MSG from i. The first cannot happen as shown

in Problem 2.4.4 and the latter cannot happen since i sends no MSG to l between t1 and t2 and no MSG
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can cross the MSG sent by l at τ1 because of a). Therefore at time τ2− holds ml = 1, el(i) = 1 and i is

included in Sl in <D9>, hence c).

Figure 3.12: Diagram for proof of lemma

Next we prove d). Suppose that node i receives at time t′ a MSG from l = pi while mi = 1, sent by l at

time τ ′. We distinguish between two cases: ei(l)(t
′−) = 0 and ei(l)(t

′−) = −1. In the first case, note that

ei(pi) can be 0 while node i is in the protocol, i.e. if mi = 1, only if i is in the second phase of the protocol,

and let t2 be the time when i had entered that phase. (see Fig. 3.11). Let t1 be the last time before t′ when

i has entered the protocol, i.e. has set mi ← 1 and pi ← l. At time t2 node i has sent MSG(1) to l and

during [t1, t
′], link (l, i) is in Connected state at i and holds mi = 1. Let τ1 be the time when l has sent the

MSG received by i at t1. From Problem 2.4.6, link (l, i) is in Connected state at l during [τ1, τ
′]. During

[t1, t
′], node i sends to l only the MSG(1) at t2 and from a), no message crosses paths with the MSG that

arrives at t1, thus the only message that can arrive at l from i during [τ1, τ
′] is the MSG(1) sent by i at t2.

Since at τ1+ holds el(i) = 1 and from a), at time τ ′− holds el(i) = 0, some message must arrive on [τ1, τ
′]

at l from i, thus the MSG(1) indeed arrives at l, at time τ2 say. By c), at that time holds ml = 1 and i is

included in Sl. From a), at time τ ′− holds ml = 0, and link (i, l) is in Connected state at l between τ2 and

τ ′, so that l receives at least one RELEASE during this period. When the first such RELEASE arrives at

l, it finds ml = 1 and i ∈ Sl, so l sends a RELEASE to i. From Problem 2.4.7, the latter does not get lost

on the link and arrives at i before t′, contradicting the fact that mi = 1 during [t2, t
′].

The second case is ei(l)(t
′−) = −1. As in the proof of a), ρi(l)(t

′−) = σl(i)(τ
′−) and σi(l)(t

′−) ≥
ρl(i)(τ

′−). Therefore,

−1 = ei(l)(t
′−) = σi(l)(t

′−)− ρi(l)(t′−) ≥ ρl(i)(τ ′−)− σl(i)(τ
′−) = −el(i)(τ ′−).

Due to the fact that e can take only values 0 or ±1, this implies el(i)(τ
′−) = 1. But this is a contradiction

since in the algorithm, node l never sends a MSG to i at some time τ ′ if el(i)(τ
′−) = 1. qed

The statements of Theorem 3.18 are proved now in Lemma 3.21.

Definition: A message is said to be outstanding on a link (i, j) towards j if it had been sent by i, but

has not arrived yet at j. Note that an outstanding message may never arrive at j, due to the latter entering

Initialization mode for that link before the message arrives.

Lemma 3.21
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a) At any time when mi = 1 and pi = l, if i ∈ Gl, then either ml = 1 or there is a RELEASE outstanding

on link (l, i) towards i ( the condition i ∈ Gl says that l is operational and link (i, l) is in Connected state.)

If ml = 1, then i and l belong to the same segment.

b) At any time, links (i, pi), pi 6= nil such that mi = 1, i ∈ Gpi and there is no outstanding RELEASE on

link (pi, i) traveling towards i, form a forest of disjoint directed trees. All nodes i in a given tree belong to

the same segment.

c) Each tree referred to in b) is rooted at a node i such that mi = 1 and one of the following holds:

(i) pi = nil

(ii) pi 6= nil and i 6∈ Gpi

(iii) pi 6= nil and i ∈ Gpi
and there is a RELEASE outstanding on (pi, i) towards i.

The initiator s of a segment is the root of a tree as long as ms = 1. Moreover, nodes in a given tree enter

the second phase in order from leaves to root. No node can enter a tree whose root is of the type (iii) above.

d) Every node can enter a given tree segment??? at most once.5

e) At the time when a node enters the protocol, it sends a MSG to all neighbors, except to pi. When this

MSG arrives at a neighbor, then either that neighbor enters the protocol, or it is in the protocol already.

f) Suppose that there are a finite number of topological changes. A finite time after those changes stop, all

nodes i ∈ V will have mi = 0 and there are no MSG’s in E and this situation does not change (where (V,E)

is the final network).

g) An information message sent by a node i after the final mi ← 0, can be received by a neighbor l only after

the final ml ← 1.

Proof: Suppose that at time t holds mi = 1 and pi = l. At t1, the last time before t when i had set pi ← l, it

had received from l a MSG while mi was 0 (see Fig. 3.11). At the time τ1 when that MSG was sent, node

l had entered the protocol and had set ml ← 1 and el(i)← 1 ( Lemma 3.20a),b). Moreover, link (i, l) is in

Connected state at i during the entire interval [t1, t], so that the Crossing property of DLC shows that link

(l, i) could not have entered Initialization Mode at l and returned to Connected during [τ1, t]. Therefore,

if at time t holds i ∈ Gl, i.e. (l, i) is in Connected state at l, then it is so during the entire interval [τ1, t]. We

shall show that either ml, that had value 1 at τ1+, does not change until time t or there is a RELEASE

outstanding at time t on the link (l, i) from l to i. Since ml can change only if l receives a RELEASE

and the later can be received only if all el(k) are 0 (Lemma 3.19b)), the variable ml stays 1 at least until l

receives a MSG from i that resets el(i) to 0. From Lemma 3.20a), that MSG cannot cross paths with the

MSG sent at τ1, thus it can be sent only after t1 and hence it is a MSG(1). From Lemma 3.20c), it also

causes inclusion of i into Sl. Therefore, if ml does change before t, it does so at a time when i ∈ Sl, so l

sends RELEASE to i. That RELEASE is still outstanding at time t, because if it arrived beforehand, it

would have set mi ← 0, contradicting the fact that mi = 1 on the entire interval (t1, t]. Hence the first part

of a). If ml = 1 at time t, then l has entered its current segment at τ1 and has sent to i a MSG of that

segment. Thus at time t1, node i enters the same segment.

To prove the first part of b), we only have to show that if at time t, a node i enters the protocol, i.e.

sets mi ← 1, and selects l as pi, it does not close a loop with the property that for all its links (n, pn) holds

5Example when a node can enter a given segment ???? twice (link comes up).
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mn = 1, no RELEASE is outstanding from pn to n and n ∈ Gpn . But at time t− holds mi = 0, so that by

a), there is no node j with mj = 1, pj = i, j ∈ Gi and no RELEASE outstanding from i to j, so no such

loop can be closed. The second part of b) follows from the second part of a).

A root of a tree referred to in b) is a node i such that mi = 1 and either pi = nil or (i, pi) does not satisfy

one of the conditions in b). In case (i) holds pi = nil, while in cases (ii) and (iii) one of the conditions in b)

are not satisfied. If i is the initiator of a segment, then since pi = nil as long as mi = 1, the initiator of a

segment is the root of the tree as long as mi = 1. Since from Lemma 3.20b), as long as node i is in the first

phase and i ∈ Gpi , its preferred neighbor pi is also in the first phase, no node can enter the second phase

before all its sons in the tree do so. Therefore the root of the tree is the last in the tree to enter the second

phase. In fact the root exits the protocol instead of entering the second phase (see <G5>), so that the root

can exit the protocol only after all nodes in the tree enter the second phase.

The above only shows that the root of a tree does not exit the protocol before all nodes already in the

tree enter the second phase. It remains to show that no node enters a tree whose root is of type (iii), namely

such that (s, ps) is in Connected state at both ends and there is a RELEASE outstanding towards s on

(ps, s). Suppose that this is not the case and let node i be the first node to enter such a tree, i.e. perform

phase1()i, at a time t say. Let l be the node from which i receives a MSG at time t. Node l has entered

the tree before the RELEASE has been sent

the time when s had exited it and on the other hand, node l is at time t still in the first phase (Lemma

3.20b)). This means that s exits the segment while l is still in the first phase, contradicting the statements

in the previous paragraph. in the tree is in the first phase.

To prove d), suppose a node i is the first to enter the same segment for the second time, at time t. This

means that prior to t, node i had been in that segment and had exited it. From c), this means that the root

of the tree had exited the segment before time t. This contradicts the other part of c), that states that no

node can enter a segment after the time when the root had exited it.

To prove e), consider first a leaf i of a tree corresponding to a given segment. When it enters the segment,

it sends a MSG to all neighbors k except pi and sets ei(k)← 1. When the MSG arrives at a neighbor k, it

finds mk = 1, since otherwise k would select i as its preferred neighbor and i would not be a leaf. Note that

k may be in the same segment as i or in a different one and that by Lemma 3.20d), at the time when the

MSG arrives at k, the variable ek(i) cannot be −1. If at that time, ek(i) = 0, then k sends a MSG back to

i ( see phase3()). If ek(i) = 1, then k had previously sent a MSG to i, that crosses paths with the one sent

by i to k. In both cases, when the MSG sent by k is received at i, it sets ei(k) ← 0. When this happens

for all neighbors except pi, node i enters the second phase and sends MSG(1) to its preferred neighbor.

This process continues downtree until all nodes enter the second phase. By Lemma 3.20c), when a node i

enters the second phase, its list Si contains exactly the sons of i in the tree, i.e. the neighbors that had

sent MSG(1) to i. When the segment initiator is supposed to enter the second phase, it exits the segment

instead (see phase4()) and sends RELEASE to all neighbors in Ss, i.e. to all sons in the tree. Similarly,

when a node i receives RELEASE, it exits the segment and sends RELEASE to its sons. 6 Consequently,

all nodes in the tree eventually set mi ← 0 and no more messages of the segment can subsequently be sent

or received. qed

?????? Partial PIF’s

In various situations, it may be important to allow certain nodes to refuse to enter a PIF protocol. This

may be the situation if for example, the nodes are temporarily busy in another protocol. The refusal may

be temporary, so that receipt of a message at a subsequent time may cause the same node to enter the PIF.

Obviously, when nodes are allowed to temporarily refuse entrance in the protocol, one cannot expect the

6Show that the above protocol with PI3 instead of PIF3 does not work.
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information to reach all nodes in the network, but we shall show that in this situation
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3.7 Generalized PIF (GPIF)

In this section we generalize the PIF protocol introduced in Section 3.3.2. Many protocols will prove to be

special cases of the Generalized PIF .

In the Generalized PIF it is required that every node i in the network receives at least one message

MSG. As in PIF , in the first stage of the Generalized PIF, every node i enters the protocol when it receives

the first MSG; if l is the neighbor from which that message was received, i sets at that time pi ← l. In this

way a spanning tree rooted at s is defined by the collection {(i, pi),∀i ∈ V }. However we do not necessarily

require that upon entering the protocol, every node i will send messages to all k ∈ Gi − {pi}.
Before introducing the generalization for the second stage, it will be useful to rename the message sent

by a node i in phase2()i of PIF to its preferred neighbor. This message will be called here ECHO. Also,

for a node i, we introduce the notation Si as the set of sons of i in the tree constructed in the first phase,

i.e. Si = {k : pk = i}. Observe that node i does not know the set Si.

Now recall that the purpose of PIF was to deliver to the initiator s confirmation that the information

has reached all nodes in the network. Observe that in principle, in order to achieve this goal, it is not

necessary that nodes wait to receive messages from all Gi − {pi} before performing phase2()i. Receipt of

ECHO messages from all sons k ∈ Si would suffice. The difficulty in implementing this change is that the

set Si is not known to i. The solution in PIF was to wait for MSG or ECHO from all k ∈ Gi−{pi}. Since

the latter set includes Si, we are sure that when phase2()i is performed, ECHO messages have indeed been

received from all neighbors in Si. In doing so we have achieved the additional property that when phase2()i

is performed, there are and will be no messages traveling towards i, so that when the Protocol initiator s

completes the protocol, i.e. performs phase2()s, the entire network is and will be free of messages. The

above properties will also be preserved in the Generalized version.

A predicate at node i is a boolean function on the state of node i. Following [CL85] , in a given protocol,

we say that a predicate at i is stable after a time ti ≤ ∞ if it is false before ti, becomes true at time ti

and stays true forever afterwards. For a neighbor l ∈ Si, we define Ni(l) as a predicate that is true after

ECHO is received from l and false beforehand. Obviously, Ni(l) is a stable predicate. A predicate Yi

at i will be said to be confirming for a given protocol, if it satisfies the following properties:

a) stability: Yi is stable at i in the protocol and becomes true at a finite time ti <∞.

b) detectability: node i can detect if and when the stable predicate (Yi and Ni(l),∀l ∈ Si) becomes true ,

without the knowledge of Si.

c) quiescence: no message travels on a link (i, k) after the later of the times when in the given protocol

(Yi and Ni(l),∀l ∈ Si) becomes true and (Yk and Nk(l),∀l ∈ Sk) becomes true .

For example, the predicate Yi =( node i has received a MSG from all k ∈ Gi − Si − {pi}) is confirming

for PIF . The trivial predicate Yi ≡ true is not confirming for any reasonable protocol, since it does not

satisfy at least detectability.

Definition: A protocol is said to be a Generalized PIF on a network (V,E) if every node i ∈ V receives

at least one message MSG and if the protocol consists of two phases:

i) In the first phase, denoted by phase1()i, every node i enters the protocol when it receives the first message

MSG; if l is the neighbor from which this message is received, node i sets pi ← l.

ii) A node i performs its part of the second phase, denoted by phase2()i, when and if

(Yi and Ni(l),∀l ∈ Si) becomes true , where Yi is a confirming predicate for the protocol. At that time

it sends an ECHO message to pi.
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In particular, PIF is a generalized PIF with the confirming predicate Yi = (node i has received a MSG

from all k ∈ Gi − Si − {pi}).
Protocol GPIF

Messages

MSG(info) - message carrying the information info
ECHO -message serving as confirmation

Variables

Gi - set of neighbors of i
mi - shows if node i has already entered the protocol (values 0,1);
pi - preferred neighbor, i.e. neighbor from which MSG was received first.
Ni(l) = true after i has received ECHO from l,= false otherwise ( for all l ∈ Gi )

Initialization

if a node i receives a MSG, then

- just before receiving the first MSG, holds mi = 0
- after receiving the first MSG, node i discards and disregards messages not sent in the present instance
of the protocol

Algorithm for node i

A1 receive MSG(info) from l ∈ Gi ∪ {nil}
A2 { if (mi = 0) {
A3 initalize();
A4 phase1();

}
}

B1 receive ECHO from l ∈ Gi
B2 { Ni(l)← true ;

}
C1 (Yi and Ni(l

′),∀l′ ∈ Si) becomes true
C2 { phase2();

}
D1 phase1()
D2 { mi ← 1;
D3 pi ← l;
D4 accept(info);

}
E1 phase2()
E2 { send ECHO to pi

}
F1 initialize()
F2 { for (k ∈ Gi − {pi}) Ni(k)← false ;

}

Theorem 3.22 ( Generalized PIF ) Suppose that in a Generalized PIF Protocol node s receives START .

Then:

a) all connected nodes i will perform the event phase1()i in finite time and exactly once; after this happens,

the links {(i, pi),∀i ∈ V } will form a directed tree rooted at s; in addition, for all i holds t(phase1()i) >

t(phase1()pi
).

b) node s and all connected nodes i will perform phase2()i in finite time and exactly once; moreover t(phase1()i) ≤
t(phase2()i) < t(phase2()pi); also, when node s performs phase2()s, all Yi’s hold, all nodes will have com-

pleted the algorithm, i.e. performed phase2() and there are no messages traveling in the network.

Proof: In the definition of the Generalized PIF it is assumed that every node i enters the protocol. Node

i selects the neighbor from which it receives the message that causes i to enter the protocol as pi. Since the

latter can send a message only after it enters itself the protocol, it has previously performed phase1()pi
.
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This also implies that {(i, pi), ∀i ∈ V } is a tree rooted at s. Hence a). To prove b), let k be a leaf of the tree

referred to in a), i.e. 6 ∃l such that pl = k. Since Sk = Φ, the condition for phase2()k will become true

when Yk becomes true . At that time node k will send ECHO to pk. The same will be true for all leaves.

When those messages arrive, a node i in the last-but-one level in the tree will have (Ni(l),∀l ∈ Si) = true .

Therefore, when its Yi will become true ,it will be able to perform phase2()i. The procedure will continue

downtree all the way to node s. Since s performs phase2() last in the network, and Yi has the quiescence

property, at time t(phase2()s) there are no messages in the network, completing the proof. qed

3.7.1 Distributed Snapshots (DS)

In a given protocol P , consider a collection of instances {ti,∀i ∈ V } such that every message of P received

by a node k from a neighbor i before tk was sent by i before ti. The state of node i in P at time ti is

denoted by si. The state s(i,k) of the link (i, k) corresponding to this collection of times is defined as the

sequence of messages sent by i in P on link (i, k) before ti and received by k after tk. A Distributed Snapshot

[CL85], [Gaf86] is the collection of node states si and link states s(i,k) corresponding to a collection of times

ti with the property mentioned above. Distributed Snapshots are useful in several classes of problems. For

example, it can be shown [CL85] that if protocol P is in a deadlock situation during the snapshot, it is in

this situation at any time later. Similarly, if the snapshot discovers termination of P . Hence snapshots are

useful in discovering stable network states, like deadlock or termination. A PI1 protocol can be used to

determine a Distributed Snapshot for an arbitrary protocol P as follows [CL85]. The Distributed Snapshot

protocol, denoted by DS1, is given below.
Protocol DS1

Algorithm for node i

A1 receives MSG from l ∈ Gi ∪ {nil}
A2 { if (mi = 0) phase1();
A3 else s(l,i) ← sequence of messages of P received on (l, i) since ti;

}
B1 phase1()
B2 { mi ← 1;
B3 pi ← l;
B4 ti ← current time;
B5 si ← current state of i;
B6 s(pi,i) ← empty sequence;
B7 for (k ∈ Gi) send MSG to k;

}

Theorem 3.23 (DS1) Protocol DS1 generates a Distributed Snapshot.

Proof: As in Theorem 3.1, let

t(sendk(i)) = time when k sends MSG to neighbor i

t(rcvk(i)) = time when k receives MSG from neighbor i.

Then for any two neighbors i and k, holds ti = t(sendi(k)) and tk ≤ t(rcvk(i)). The FIFO property implies

that every message of the underlying protocol P received by k from i before t(rcvk(i)) was sent before

t(sendi(k)) and therefore every message received by k from i before tk was sent before ti. Moreover, the

state of the link (i, k) is registered in <A3> as the sequence of P messages received by k on (i, k) between

tk and t(rcvk(i)). This is exactly the sequence of P messages sent by i on (i, k) before t(sendi(k)) = ti and

not received by k until tk. qed

A combination of PI1 and PIF1 can be used to allow a node s to collect the information of the Distributed

Snapshot. This is Protocol DS2.
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Protocol DS2

Algorithm for node i

A1 receives MSG or MSG′ from l ∈ Gi ∪ {nil}
A2 { if (mi = 0) {
A3 initialize();
A4 phase1();

}
A5 else {
A6 if (received MSG) ei(l)← ei(l)− 1;
A7 else s(l,i) ← sequence of messages of P received on (l, i) since ti;

}
A8 if (ei(l

′) = 0 ∀l′ ∈ Gi − {pi}) phase2();
}

B1 phase1()
B2 { mi ← 1;
B3 pi ← l;
B4 ti ← current time;
B5 si ← current state of i;
B6 s(pi,i) ← empty sequence;
B7 for (k ∈ Gi − {pi}) {
B8 send MSG to k;
B9 ei(l)← ei(l) + 1;

}
B10 send MSG′ to pi;

}
C1 phase2()
C2 { put (si, s(k,i) ∀k ∈ Gi and all s’s received in MSG’s ) into MSG;
C3 send MSG to pi;

}
D1 initialize()
D2 { for (k ∈ Gi) ei(k)← 0;

}
Except for lines <C1>-<C3>, Protocol DS2 is the same as DS1 where the message sent by i to pi in

<C3> is renamed MSG′. Therefore DS2 generates a Distributed Snapshot. Superimposed on that, the

collection of messages MSG defines a PIF , where the MSG’s sent to preferred neighbors collect the states

of the descendants in the tree. Consequently, when s performs phase2()s it has the Distributed Snapshot

information from the entire network. We have therefore proved:

Theorem 3.24 (DS2) Protocol DS2 defines a Distributed Snapshot. Also, node s will perform phase2()s

in finite time and at that time it has the information of the Distributed Snapshot states of the entire network.

3.7.2 The Echo Protocol

The Echo Protocol of [Cha78],[Cha82] accomplishes the same task as PIF , with twice as many messages.

We bring it here for completeness and because it will be used in later protocols. The first phase is a PI2

protocol. When a node i receives a MSG while mi = 1, it returns on the same link an ECHO′ message.

When a node i receives ECHO or ECHO′ messages from all neighbors, it performs phase2()i and sends an

ECHO message to pi. Therefore the Echo Protocol is a Generalized PIF , with a PI2 as its first phase and

with Yi = (ECHO′ received from all k ∈ Gi−Si−{pi}). In fact it turns out that the actions in response to

receipt of ECHO and ECHO′ are the same, so we shall distinguish between them only in the explanations

and the proofs. In the code, both types will be called ECHO.
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Protocol ECHO

Messages

MSG(info) - message containing the information info to be distributed ( in [Cha78] , this is called an
explorer message )
ECHO - echo message to MSG, as well as a message serving for confirmation
START - message received from the outside world

Variables

Gi - set of neighbors of i
mi - shows if node i has already entered the protocol (values 0,1)
pi - neighbor from which MSG was received first
ei(l) = number of MSG’s sent − number of ECHO’s received on link (i, l) ( ∀l ∈ Gi)

Initialization

if a node i receives a MSG, then

- just before receiving the first MSG, holds mi = 0.
- after receiving the first MSG, node i discards and disregards messages not sent in the present instance
of the protocol

Note: By definition, a condition on an empty set is always true. For example, in <B3> below, if
Gi − {pi} = ∅, then the condition holds and i should perform phase2().

Algorithm for node i

A1 receives MSG(info) from l ∈ Gi ∪ {nil}
A2 { if (mi = 0) {
A3 initialize();
A4 phase1();
A5 if (Gi = pi) phase2();

}
A6 else send ECHO to l;

}
B1 receives ECHO from l ∈ Gi
B2 { ei(l)← ei(l)− 1;
B3 if (ei(k) = 0 ∀k ∈ Gi − {pi}) phase2();

}
C1 phase1() /* similar to PI2 */
C2 { mi ← 1;
C3 pi ← l;
C4 accept(info);
C5 for (k ∈ Gi − {pi}){
C6 send MSG(info) to k;
C7 ei(k)← ei(k) + 1;

}
}

D1 phase2()
D2 { send ECHO to pi;

}
E1 initialize()
E2 { for (k ∈ Gi) ei(k)← 0;

}
In the proof we shall refer to the ECHO messages sent in <A6> as ECHO′ and to the ones sent in

<D2> as ECHO.

Lemma 3.25 (ECHO) The Echo Protocol is a Generalized PIF with a PI2 as its first phase and with

Yi = (ei(l
′) = 0,∀l′ ∈ Gi − Si − {pi}).

Proof: The actions in phase1()i are identical to those of PI2, with the addition that ei(l) is set to 1

when MSG is sent by i to l. Messages MSG are sent by a node i only in phase1()i to all k ∈ Gi − {pi}.
When a MSG arrives to such a neighbor k, it either finds it with mk = 1, in which case k ∈ Gi − Si − {pi}
or with mk = 0, in which case k ∈ Si. In the first case, k sends an ECHO′ to i in <A6> and afterwards
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sends no messages to i. The receipt of this message at i sets ei(k)← 0. Since afterwards no ECHO arrives

at i from k and no MSG is sent by i to k, the event ei(k) = 0 is stable and therefore Yi is stable. After a

node k ∈ Si sends ECHO to i in phase2()k, it does nothing and that ECHO sets Ni(k)← true when it

arrives. Therefore, for k ∈ Si, after ei(k) is set to 0, no message arrives to i from k. Since after t(phase1()i)

no message arrives at i from pi and after the time when ei(l) ← 0 for any l ∈ Gi − Si − {pi}, no message

arrives at i from l, Yi satisfies the quiescence property. Obviously it satisfies the detectability property, since

(Yi and Ni(l),∀l ∈ Si) ≡ (ei(l) = 0,∀l ∈ Gi − {pi}). qed

This completes the proof of the Lemma and therefore of the following Theorem.

Theorem 3.26 (ECHO) Suppose node s receives START. Then:

a) all connected nodes i will perform the event phase1()i in finite time and exactly once; after this happens,

the links {(i, pi) ∀i ∈ V } will form a directed tree rooted at s; in addition, for all i holds t(phase1()pi
) >

t(phase1()i). Moreover, the propagation of information is the fastest possible.

Note: some nodes may perform phase2() before all nodes have performed phase1() )

b) node s and all connected nodes i will perform phase2()i in finite time and exactly once; moreover t(phase1()i) ≤
t(phase2()i) < t(phase2()pi

) also, when node s performs phase2()s , all connected nodes will have completed

the algorithm, i.e. performed phase2() and there are no messages traveling in the network.

c) on all links 6= (i, pi), exactly one MSG and one ECHO travels on each link in each direction; on all links

of the type (i, pi), exactly one MSG travels from pi to i and one ECHO travels in the other direction7.

3.7.3 Termination Detection for Diffusing Computations (TDDC)

The problem is the following [DS80]. A node s starts the protocol by sending some messages MSG to

some of its neighbors. A node i enters the protocol when it receives the first message MSG. Afterwards

it may perform some computations that may require it to send some messages MSG, a finite number of

them, to neighbors. Eventually, a node is in a situation when it sends no more messages MSG of the

computation. We say then that the node has terminated the computation. A node i that receives a MSG

but has no computation to perform and hence sends no messages MSG is considered as if it had terminated

the computation. The problem is to superimpose on the above a signalling scheme that will allow the source

s to know that all nodes have indeed terminated their computations and will receive no more messages.

The signalling protocol proposed in [DS80] is the following: whenever a node i receives the first MSG,

from a neighbor l say, it denotes pi ← l and enters the protocol. Subsequently, whenever it receives some

MSG, from a neighbor k say, it returns to k a signalling message ECHO. It does that whether it is still

performing the computation or it had already terminated it. Recall that if it has no computation to perform,

node i is considered to have terminated the computation, so that it returns an ECHO even in response to

the first MSG. After having terminated the computation, node i waits until it receives an ECHO for every

MSG it has sent and then it sends an ECHO message to pi. The latter is the response to the first received

MSG. When the initiator s terminates its computation and receives an ECHO for every MSG sent, it

knows that all nodes that have started the computation have terminated it and there are no messages in the

network. Observe that this protocol does not guarantee that all nodes that have a computation to perform

indeed enter the protocol. The solution to this is given in Problem 3.7.2 and in the second version of TDDC,

presented in the next section.

7Communication complexity ???

Time complexity ???
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Protocol TDDC1

Messages

MSG - message of the computations and of wake-up
ECHO - signalling message

Variables

Gi - set of neighbors of i
mi - shows if node i has already entered the protocol
pi - neighbor from which MSG was received first.
ei(l) - number of MSG’s sent − number of ECHO’s received on link (i, l) ( ∀l ∈ Gi )

Initialization

if a node i receives a MSG, then

- just before it receives the first MSG, holds mi = 0 and ei(k) = 0 for all k ∈ Gi

- after receiving the first MSG, node i discards and disregards messages not sent in the present instance
of the protocol

Algorithm for node i

A1 receive MSG from l ∈ Gi ∪ {nil}
A2 { if (computation completed) send ECHO to l;
A3 else if (mi = 0){
A4 phase1();

}
A5 else send ECHO to l;

}
B1 computation requires sending message to l
B2 { send MSG to l;
B3 ei(l)← ei(l) + 1;

}
C1 receive ECHO from l ∈ Gi;
C2 { ei(l)← ei(l)− 1;

}
D1 ( computation completed and ei(l

′) = 0 ∀l′ ∈ Gi ) becomes true
D2 { phase2();

}
E1 phase1()
E2 { mi ← 1;
E3 pi ← l;

}
F1 phase2()
F2 { send ECHO to pi;

}
As said earlier, the ECHO message sent in <A2> or <A5> will be referred to as ECHO′. Let V ′ be

the set of nodes that enter the protocol, i.e. perform phase1() and let E′ be the set of links of (V,E) that

connect those nodes. For a node in V ′, we denote by G′i the set of neighbors in (V ′, E′) and, as usual, by

Gi the set of neighbors in the original network.

Lemma 3.27 Protocol TDDC1 is a Generalized PIF over the network (V ′, E′) with

Yi = ( computation completed and ei(l) = 0,∀l ∈ Gi).

Proof: Node i increments ei(l) when it sends a MSG to l and decrements it when it receives an ECHO

from l. Since node l sends at most one ECHO, on the corresponding link, for every received MSG, either

immediately (in <A2>) or later (in phase2()), and since after the computation is completed at i, node i

sends no MSG’s, the predicate (computation completed and ei(l) = 0) is stable for any l ∈ Gi. Hence Yi

is stable.

Now observe that for any l ∈ Si, if ei(l) = 0 holds, thenNi(l) = true also holds, hence (Yi and Ni(l),∀l ∈
Si) ≡ Yi. Therefore detectability holds for Yi. Finally, for a link (i, k), if both Yi and Yk hold, then there

are no messages on the link (i, k), so quiescence holds. qed
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This completes the proof of the Lemma and therefore of the following Theorem.

Theorem 3.28 (TDDC1) Suppose node s receives START. Then node s and all connected nodes i that enter

the protocol will perform phase2()i in finite time and exactly once; moreover t(phase1()i) ≤ t(phase2()i) <

t(phase2()pi
); also, when node s performs phase2()s, all nodes that have entered the protocol will have

completed the algorithm, i.e. performed phase2() and there are no messages traveling in the network.

3.7.4 Termination Detection for Diffusing Computations - Version 2

Version 1 is not appropriate if there are one or more nodes i that need to perform a computation, but there

is no neighbor of i whose computation requires it to send a message to i. This is because such a node i will

never enter the protocol. The present version will work for this case. As seen below, the present version is

also more economical in terms of messages in most situations.

In order to allow all nodes to enter the protocol, the first phase in this version will be a PI2 protocol with

wake-up messages, which we call MSG. After entering the protocol, a node starts its computation and sends

computation messages, called COMP , to neighbors as required. No reply messages to COMP are needed

in this version. When it completes its computation, a node i sends a completion message, called ECHO,

to each of its neighbors, except to pi. Subsequently, if it receives some (late) message MSG, it responds

with an ECHO. Finally, when it had received a ECHO message from all neighbors and had completed

the computation, it sends a ECHO message to pi. Receipt of an ECHO message from all neighbors at s

indicates completion of the protocol in the entire network.

The present version is more economical in terms of messages if there are many computation messages to

be sent, since in the previous version, an ECHO was sent for each of these messages.

Note that the present version is exactly the Echo Protocol, except that the transmission of the ECHO

messages is postponed until completion of the computation. Hence,

Lemma 3.29 (TDDC2) The TDDC2 Protocol is a Generalized PIF with

Yi = (computation completed and ei(l
′) = 0, ∀l′ ∈ Gi − Si − {pi}) and with the first phase corresponding

to a PI2 protocol.

3.7.5 Synchronizers

In a synchronous protocol, messages are allowed to be sent only at integer times and the delay of each

message is at most one time unit. In an asynchronous network, for each node i, consider a sequence of

instances {ti(0), ti(1), ti(2), . . . }. These sequences of instances define a synchronizer [Awe85a] for a given

execution of a protocol P if:

a) messages of P can be sent by i only at times {ti(n), n ≥ 0}.

b) messages of P sent by i to neighbor k at time ti(n) arrive at k before tk(n+ 1).

c) messages of P sent by i to neighbor k at time ti(n) arrive at k after tk(n).

Note that the definition of a synchronizer in [Awe85a] omits requirement c). The latter is however re-

quired if the asynchronous protocol is to behave as a synchronous one. The simplest synchronizer, called

synchronizer α in [Awe85a] works as follows. The initial times ti(0) can be set by nodes by a PI1 or

PI2 protocol. Whenever a node i enters the PI, it sets the tick ti(0). In general, when a node i com-

pletes sending to k the messages corresponding to tick ti(n), it sends to k a message SY NCH(n). The

time incorrect??,safe,ack, [LT87], [SS91] ti(n + 1) is defined as the time when i has received mes-

sages SY NCH(n) from all its neighbors. With this protocol, conditions a) and b) above are satisfied. If
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Protocol P is such that it ensures that no P message sent by a node i at tick ti(n) arrives at k before tk(n)

for all (i, k), then the instances defined above define a synchronizer for P .

Another synchronizer designed in [Awe85a], called synchronizer β, uses asymptotically (in the size of the

network) less messages, but longer time. This synchronizer needs an initialization phase, where a leader

s is selected in the network and a spanning tree, rooted at s is built. In this protocol it is required that

every node i learns that all messages of Protocol P sent to neighbors in round (n− 1) have arrived, before

being able to participate in the protocol for determining tk(n),∀k. In order to save messages, we exploit

the Confirm property of the DLC that states that every considered acknowledged data packet has been

delivered to the other side. Recall that messages of Protocol P (as well as any messages of levels higher than

the DLC level) are considered as data packets by the DLC. If, when the DLC considers the packet containing

a P message acknowledged, it also informs the local synchronizer algorithm, this information can be used by

the latter to know that the message has indeed arrived to the other side. Eventually a node i will find out

that all P messages sent at tick ti(n − 1) have been delivered. At that time node i is said to be safe with

respect to tick (n− 1).

The rest now is like a PIF on the tree, except that phase (ii) of the PIF is performed first. When leaves

learn that they are safe , they send to their father in the tree a SY NCH(n−1) message. In general, when a

node learns that it is safe and has received SY NCH(n−1) messages from all sons, it sends a SY NCH(n−1)

message to its father. When the leader s receives SY NCH(n− 1) from all its sons, it knows that all nodes

are safe, and triggers broadcast of a SY NCH(n) message over the tree. The time ti(n) is defined as the

time when i receives the SY NCH(n) message. As shown in the Problem 3.7.8, messages sent by i at tick

ti(n) can arrive at a neighbor k between tk(n− 1) and tk(n+ 1). Therefore, in order to have a synchronizer,

we have to require here also that no P message sent by a node i at tick ti(n) arrives at k before tk(n) for

all (i, k). The communication load of this protocol is 0(| V |) per tick, plus the communication load of the

spanning tree construction and of the leader election, as opposed to the simple synchronizer presented above,

whose communication load is O(| E |) per tick.

Problems

Problem 3.7.1 Give examples of various predicates {Yi} and check whether they are confirming.

Problem 3.7.2 Protocol TDDC1 does not ensure that all nodes that have a computation to perform indeed

enter the protocol. Indicate a protocol that solves this problem, based on TDDC1 and other protocols in

this Chapter.

Problem 3.7.3 Write the code for TDDC2.

Problem 3.7.4 Show that with the SY NCH messages sent as in synchronizer α, P messages sent at tick

ti(n) can arrive at a neighbor k only between tk(n− 1) and tk(n+ 1).

Problem 3.7.5 Various protocols in this chapter, and synchronizers for them.

Problem 3.7.6 Suggestion: use two types of SYNCH(n) messages, one before P messages of ti(n) and one

after. Does this work???

Problem 3.7.7 Which of the protocols ECHO,PI, PIF, DS, TDDC, can be made more efficient by using

the Confirm property of the DLC. Write the corresponding codes and prove their correctness.

Problem 3.7.8 Show that with protocol β , messages sent by i at tick ti(n) can arrive at a neighbor k

between tk(n− 1) and tk(n+ 1).
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Problem 3.7.9 Analyse precisely communication and time cost of synchronizers α and β (including the

initialization cost for β).

Problem 3.7.10 Which of the following will not work properly when the FIFO property of the data-link

does not hold : PI, PIF, DS, ECHO, TDDC?

Problem 3.7.11 a)Is the DS protocol a generalized PIF, prove or disprove.

b) Is the α synchronizer a generalized PIF, prove or disprove.

Problem 3.7.12 Is the following protocol a generalized PIF?
Protocol birds

Messages

MSG
MSG’
START

Variables

mi : contains 1 when in the MSG protocol.
m′i : contains 1 when in the MSG’ protocol.
pi : like in PIF.
Ni(l) : like in PIF, addressing MSG messages.
N ′i(l) : like in PIF, addressing MSG’ messages.

Initialization

mi = 0
m′i = 0
pi = NIL
(Ni(l),∀l ∈ Gi) = 0
(N ′i(l),∀l ∈ Gi) = 0

Algorithm for node s
A1 When receiving START
A2 ms ← 1; m′s ← 1
A3 ∀l′ ∈ Gsdo
A4 send MSG to l’
A5 send MSG’ to l’
B1 When receiving MSG from neighbor l
B2 Ns(l)← 1
B3 if ((Ns(l

′) = 1) ∧ (N ′s(l
′) = 1)),∀l′ ∈ Gs then

B4 terminate.
C1 when receiving MSG′ from neighbor l
C2 N ′s(l)← 1
C3 if ((Ns(l

′) = 1) ∧ (N ′s(l
′) = 1)),∀l′ ∈ Gs then

C4 terminate.

Algorithm for node i 6= s
D1 When receiving MSG from neighbor l
D2 if mi = 0 then
D3 mi ← 1
D4 pi ← l
D5 ∀l′ ∈ Gi − {pi}do
D6 send MSG to l′
D7 else
D8 Ni(l)← 1
D9 if ((Ni(l

′) = 1),∀l′ ∈ Gi − {pi}) ∧ ((N ′i(l
′) = 1),∀l′ ∈ Gi) then

D10 send MSG to pi
E1 when receiving MSG’ from neighbor l
E2 if m′i = 0 then
E3 m′i ← 1
E4 ∀l′ ∈ Gido
E5 send MSG’ to l′
E6 N ′i(l)← 1
E7 if ((Ni(l

′) = 1),∀l′ ∈ Gi − {pi}) ∧ ((N ′i(l
′) = 1),∀l′ ∈ Gi) then

E8 send MSG to pi
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Problem 3.7.13 The protocol of Problem 3.7.12 has been changed as follows: Two nodes in the network

— s and s’ receive asynchronously each a START message. The algorithm of all the nodes except s and s’

has not been changed.
Protocol birds1

Algorithm for node s
A1 When receiving START
A2 ms ← 1
A3 ∀l′ ∈ Gsdo
A4 send MSG to l′
B1 When receiving MSG from neighbor l
B2 Ns(l)← 1
B3 if ((Ns(l

′) = 1) ∧ (N ′s(l
′) = 1)),∀l′ ∈ Gs then

B4 terminate.
C1 when receiving MSG′ from neighbor l
C2 if m′s = 0 then
C3 m′s ← 1
C4 ∀l′ ∈ Gsdo
C5 send MSG′ to l′
C6 N ′s(l)← 1
C7 if ((Ns(l

′) = 1) ∧ (N ′s(l
′) = 1)),∀l′ ∈ Gs then

C8 terminate.

Algorithm for node s′

D1 When receiving START
D2 m′s′ ← 1
D3 ∀l′ ∈ Gs′do
D4 send MSG’ to l′
E1 When receiving MSG from neighbor l
E2 if ms′ = 0 then
E3 ms′ ← 1
E4 ps′ ← 1
E5 ∀l′ ∈ Gs′ − {ps′}do
E6 send MSG to l′
E7 else
E8 Ns′(l)← 1
E9 if ((Ns′(l

′) = 1),∀l′ ∈ Gs′ − {ps′}) ∧ ((N ′s′(l
′) = 1),∀l′ ∈ Gs′) then

E10 send MSG to ps′
F1 when receiving MSG’ from neighbor l
F2 N ′s′(l)← 1
F3 if ((Ns′(l

′) = 1),∀l′ ∈ Gs′ − {ps′}) ∧ ((N ′s′(l
′) = 1),∀l′ ∈ Gs′) then

F4 send MSG to pi
Is this a generalized PIF?
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Chapter 4

CONNECTIVITY TEST

PROTOCOLS

The purpose of this class of DNP’s [Seg83] is to allow each node to learn what nodes are connected to it, i.e.

nodes that are in V .

4.1 Protocol CT1

The idea here is to use protocol PI1 repeatedly, first to inform all nodes that the protocol is in progress

and then for each node to propagate its own identity. Every node (or several nodes) can start the protocol

by receiving START . A node enters the protocol whenever it receives either START or the first control

message from any of its neighbors. The first action taken by a node when entering the protocol is to send a

control message containing its own identity to all its neighbors, thereby starting PI1i, i.e. a PI1 protocol

containing its own identity. In addition, whenever a node i receives the first control message with the

identity of some other node j, it marks j as connected and sends a message MSGj with the identity of j to

all neighbors. All further messages with the identity of j are discarded with no action taken.

As in previous sections, a variable with subscript i will indicate that the variable is located at node i.

Here and in all subsequent sections, a superscript j in variables, messages,protocol names, etc. will always

indicate entities related to some distant node j. For example, PIF1j will denote a PIF1 whose initiator is

j whose MSG’s are MSGj and for example, the preferred neighbor of node i in this PIF1 will be denoted

by pji . The START message received at node i will be denoted by MSGi received from nil. The latter can

be received only if mi = 0. In previous sections we have suppressed the superscript since we considered only

one basic protocol at a time, so that no confusion has arisen.
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Protocol CT1

Messages

MSGj - control messages with identity j

Variables

Gi - set of neighbors of node i
mi - shows whether i has already entered the algorithm (values 0,1 )

cji - designates knowledge at i about connectivity to j (values 0,1), for all j ∈ V

Initialization

if a node receives at least one MSG,

- just before the time it receives the first one holds mi = 0
- after receiving the first MSG, node i discards and disregards messages not sent in the present instance
of the protocol

Algorithm for node i

A1 receives MSGj from l ∈ Gi ∪ {nil}
A2 { if (mi = 0){
A3 mi ← 1; /* enter protocol */
A4 initialize();
A5 phase1i();

}
A6 if (cji = 0) phase1j();

}
B1 phase1j()
B2 { cji ← 1;
B3 for (k ∈ Gi) send MSGj to k;

}
C1 initialize()
C2 { for (k ∈ V ) cki ← 0;

}

Theorem 4.1 (CT1) Suppose that at least one node in V receives START . Then for every i ∈ V , the

variables cji will become 1 in finite time for all j ∈ V and will remain 0 forever for all j 6∈ V .

Proof: The event mk ← 1 propagates as in MPI1 and hence will happen in finite time at all nodes

k ∈ V . For a given j ∈ V , after mj becomes 1, the event phase1()j propagates again as in PI1 and hence

will happen in finite time at every node i ∈ V . The fact that cji remains 0 forever for j 6∈ V is obvious. qed

Theorem 4.2 With protocol CT1, there is no way for node j to know for sure what nodes are disconnected

from it or in other words, there is no way for j to know when the algorithm is completed, except for the case

when V ≡ V .

Proof: Consider first the case of three nodes 1,2,3 with links (1,2) and (2,3). If 1 starts the protocol, it will

receive the same sequence of messages whether (2,3) is working or not, except that if it does, it will later

receive the identity of 3. Now, after receiving the identity of node 2 and before receiving the identity of

3, there is no way for node 1 to positively know whether it has already completed the protocol or not, i.e.

whether new identities are supposed to still arrive. It is easy to see that similar situations may arise for any

other topology. qed

Communication cost: The number of bits transmitted on each link in each direction is | V | log2 | V |.
This is because every identity travels exactly once on each link in each direction, there are | V | identities and

it takes log2 | V | bits to describe an identity. The total number of bits in the network is 2 | E || V | log2 | V |,
where E is the number of bidirectional links.
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The rest of this chapter is devoted to the presentation of several protocols that solve the problem raised in

Theorem 4.2, namely allow nodes to positively know that the protocol has indeed been completed. We shall

say then that the protocol has the termination property. Protocol CT2 achieves the property by employing

the basic protocol PIF , while the others use a different idea.

Problems

Problem 4.1.1 Let N be a ring consisting of nodes s, a, b, c. The nodes of N perform CT1. Node s receives

START at t=0. The delay on each line is 1.

a) Indicate the values of the various variables as a function of time at each node.

b) Repeat the above question for the case when (s,a) and (b,c) do not work.
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4.2 Protocol CT2

The protocol is started and entered by nodes in the same way as in CT1, except that when it enters the

protocol, every node j triggers a PIF1j with its identity j instead of a PI1j as in CT1. It is shown in

Theorem 4.3 that at the time it completes its own PIF1, a node j has complete knowledge about the

identities of nodes in V and those that are not in V . Consequently, the termination property holds for

Protocol CT2.
Protocol CT2

Messages

MSGj - control messages with identity j sent by i

Variables

Gi - set of neighbors of node i
mi - indicates whether i has entered the protocol (values 0,1)

cji - designates knowledge at i about connectivity to j (values 0,1) for all j ∈ V
pji - neighbor from which MSGj has been received first, for all j 6= i.

eji (l) - number of MSGj sent to l - number of MSGj received from l, for all l ∈ Gi

Initialization

if a node receives at least one MSG, then

- just before the time it receives the first one, holds mi = 0
- after receiving the first MSG, node i discards and disregards messages not sent in the present instance
of the protocol

Algorithm for node i

A1 receives MSGj from l ∈ Gi ∪ {nil}
A2 { if (mi = 0){
A3 mi ← 1; /* enter protocol */
A4 initialize();
A5 phase1i();

}
A6 if (cji = 0) phase1j();
A7 eji (l)← eji (l)− 1
A8 if (eji (k) = 0 ∀k ∈ Gi − {pji}) phase2j();

}
B1 phase1j() /* same as PIF1 */
B2 { cji ← 1;
B3 if (i 6= j) pji ← l else pji ← nil;
B4 for (k ∈ Gi − {pji}){
B5 send MSGj to k;
B6 eji (k)← eji (k) + 1;

}
}

C1 phase2j() /* same as PIF1 */
C2 { send MSGj to pji
C3 eji (p

j
i )← eji (p

j
i ) + 1;

}
D1 initialize()
D2 { for (j ∈ V ){
D3 cji ← 0;
D4 for (k ∈ Gi) e

j
i (k)← 0;

}
}

In order to analyze the protocol, we shall need the following notations:

< • >j
i - the event of node i performing line < • >j of its algorithm regarding node j (i.e. reacting to
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receipt of MSGj ) ; whenever the corresponding line contains an if condition, the notation refers only to

the cases when the condition holds.

phase ∗ ()ji - the event of node i performing the actions corresponding to phase ∗ ()j

t(∗) - time when event ∗ happens.

The properties of the algorithm are given in the following:

Theorem 4.3 (CT2) Suppose that at least one node in V receives START . Then:

a) at every node i ∈ V , the variables cji will become 1 in finite time for all j ∈ V and will remain 0 forever

for all j 6∈ V .

b) every i ∈ V will perform phase2()ii in finite time and exactly once, and when this happens, it will have

cji = 1 for all j ∈ V and cji = 0 for all j 6∈ V . In other words, it will positively know at that time what nodes

are connected, resolving the problem raised in Theorem 4.2.

Proof: The event mk ← 1 propagates as in MPI1 and hence will happen in finite time at all nodes k ∈ V .

For a given j ∈ V , after mj becomes 1, the event phase1()j propagates as in PI2 and hence will happen

in finite time at every node i ∈ V . The fact that cji remains 0 forever for j 6∈ V is obvious, completing the

proof of a).

To prove b), observe that for a given node j ∈ V , event phase2()j propagates in the same way as phase2()

in PIF1 and hence phase2()jj will happen in finite time and exactly once. It remains to show that phase2()jj
is indeed the signal indicating that node j knows all k ∈ V , namely to show that t(phase2()jj) > t(phase1()kj )

for all nodes k, j ∈ V . However this follows from the no-overtake property of PI2 ( Theorem 3.2d) ), since for

a given k, the event phase1()kj propagates according to PI2k, started by k when it received the first MSG

and phase2()jj can be considered as the end of a string of messages MSGj started by k at some time after

it has entered this PI2 (cf. Problem 3.3.5).

Communication Cost: Observe that by Theorem 4.3, the communication requirements of CT2 are

the same as those of CT1, namely | V | log2 | V | bits per link in each direction. Observe however, that the

storage and processing requirements, as well as the required execution time1are larger than in CT12.

Protocols CT3-CT5 use a different idea for achieving the termination property, CT3 is quite wasteful

in terms of communication requirements, but it is convenient in order to illustrate the idea and to be used

as a basis for developing the more efficient versions CT4 and CT5. In addition, it can be used for different

purposes, like learning the network topology.

Problems

Problem 4.2.1 Show that in CT2, a node can receive messages after it has completed its own PIF, i.e.

after it has performed phase2()ii.

Problem 4.2.2 Augment the CT2 protocol to give nodes a positive indication that no more messages will

arrive.

1Time complexity??
2Roskind

c©Adrian Segall 109



March 13, 2013

4.3 Protocol CT3

Suppose we use protocol CT1, except that for each node j, we propagate in PIj not only the identity of

the node, but also of its neighbors. In other words MSGj of CT1 will now carry the identity of j as well as

of all its neighbors, i.e. will have the format MSGj(Λ), where Λ = Gj , i.e. Λ contains the identities of all

neighbors of j. The termination property is achieved using the fact that, if a node k receives a MSG that has

originated at j, it will eventually receive MSG’s that have originated at all neighbors of j. The termination

signal will occur when node k will have heard from all these nodes.
Protocol CT3

Messages

MSGj(Λ) - control messages with identity j and Λ = Gj

Variables

Gi - set of neighbors of node i
mi - shows whether i has already entered the algorithm (values 0,1 )

cji - designates knowledge at i about connectivity to j (values 0,1,2), for all j ∈ V
= 0 when i knows nothing about j
= 1 while i knows j only as a neighbor of another node
= 2 while i knows j directly (i.e. MSGj(Λ) has been received)

Initialization

if a node receives at least one MSG, then

- just before the time it receives the first one holds mi = 0
- after receiving the first MSG, node i discards and disregards messages not sent in the present instance
of the protocol

Algorithm for node i

A1 receives MSGj(Λ) from l ∈ Gi ∪ {nil}
A2 { if (mi = 0){
A3 mi ← 1; /* enter protocol */
A4 initialize();
A5 phase1i(Gi);

}
A6 if (cji 6= 2) phase1j(Λ);
A7 if (cji = 0 or 2,∀j ∈ V ) connectivity known;

}
B1 phase1j(Λ)
B2 { cji ← 2;
B3 for (k ∈ Λ) cki ← max(cki , 1);
B4 for (k ∈ Gi) send MSGj(Λ) to k;

}
C1 initialize()

C2 { for (j′ ∈ V ) cj
′

i ← 0;
}

Theorem 4.4 (CT3) Suppose that at least one node in V receives START . Then:

a) for every i ∈ V , the variables cji will become 2 in finite time for all j ∈ V and will remain 0 forever for all

j 6∈ V .

b) every i ∈ V will perform <A7>i in finite time, and when this happens for the first time, it will have cji = 2

for all j ∈ V and cji = 0 for all j 6∈ V . In other words, it will positively know at that time what nodes are

connected, resolving the problem raised in Theorem 4.2.

Proof: The event mk ← 0 propagates as in MPI1 and hence will happen in finite time at all nodes k ∈ V .

For a given j ∈ V , after mj becomes 1, the event cjk ← 2 propagates again as in PI1 and hence will happen
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in finite time at every node i ∈ V . The fact that cji remains 0 forever for j 6∈ V is obvious. Hence a).

For each j ∈ V , propagation of MSGj(Λ) happens as in protocol PI1 except that it is triggered by <A6>

instead of by START and therefore, every node in V sends exactly one MSGj(Λ) on each of its outgoing

links. In order to prove b), consider the situation at the time when all those messages have arrived. Then

from <B2> a node i will have cji = 2 for all nodes j ∈ V . Since for all j 6∈ V it has at all times cji = 0,

<A7> may hold even before the arrival of all messages considered above and it remains to prove that in

this case as well, holds cji = 2 for all j ∈ V . Suppose cji = 0 for some j ∈ V . Let V ′ denote the subset of V

containing nodes k with cki = 2 and V ′′ the subset of V containing nodes k with cki = 0. Since i ∈ V ′ and

j ∈ V ′′, neither set is empty. Since V is connected, there must exist two neighbors l′, l′′ such that l′ ∈ V ′

and l′′ ∈ V ′′. However, since cl
′

i = 2, holds from <B3> that cl
′′

i ≥ 1, contradicting the fact that l′′ ∈ V ′′.
qed

Communication Cost: On each link in each direction we send | V | (D + 1)log2(| V |) bits, where D

is the average degree of the nodes (average number of neighbors). Clearly D = 2 | E | / | V | and hence the

communication cost is (2 | E | + | V |)log2 | V | bits per link in each direction3.

A similar example to the one given in Sec. 3.3 shows that CT3 does not work if the initialization

requirements do not hold. Let (V,E) be the network of Fig. 4.1, suppose that s receives START and

mb = 1 when the first MSG of the CT3 protocol arrives at b from a. This can happen if for example, at the

time when START was given to s, holds mi = 0 for all nodes i, but there is a MSGa(s, b, x) on the link

from c to b, where x ∈ V , but is disconnected now from V . Suppose that this MSG arrives at b at about

the same time when the MSGs of CT3 sent by s arrives at a. At that time b will set mb = 1, cab = 2, cxb = 1

and will expect, among other messages a MSGx(Λ). The latter will never arrive however. Hence b will

never complete the protocol, i.e. will never perform <A7>. If some old MSGx(Λ) is still somewhere in the

network, node b may complete the protocol, but with the wrong connectivity information, since it will have

cxb = 2.

Figure 4.1: Counterexample for Initial Conditions

Although as seen in Chapter 5, protocol CT3 is useful for other requirements, for connectivity test it is

too waistful in communication and its performance can be considerably improved. One way is to use the

position of a variable in a vector to indicate the identity of a node, instead of explicitly mentioning it. This

idea was used in a protocol by [Fin79] and we present here an improved version of that protocol.

3time, computation,???
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4.4 Protocol CT4

Protocol CT4

Messages

Ci = {c1i , c2i , ..., c
|V |
i }, message sent by i

C = message received, we denote its contents by {c1, c2, ..., c|V |}

Variables

Gi - set of neighbors of node i
mi - shows whether i has already entered the algorithm (values 0,1 )

cji - designates knowledge at i about connectivity to j (values 0,1,2), for all j ∈ V
= 0 when i knows nothing about j
= 1 while i knows j only as a neighbor of another node
= 2 while i knows j directly (i.e. MSGj(Λ) has been received)

Initialization

if a node receives at least one message C, then

- just before the time it receives the first one holds mi = 0
- after receiving the first MSG, node i discards and disregards messages not sent in the present instance
of the protocol

Algorithm for node i

A1 receives C from l ∈ Gi ∪ {nil}
A2 { if (mi = 0){
A3 mi ← 1; /* enter protocol */
A4 initialize();

}
A5 if (∃j ∈ V | cj = 2 > cji ) update();
A6 if (cji = 0 or 2,∀j ∈ V ) connectivity known;

}
B1 update()
B2 { for (j ∈ V ) cji ← max(cji , c

j);
B3 for (k ∈ Gi) send Ci to k;

}
C1 initialize()
C2 { for (j ∈ V ) cji ← 0;
C3 cii ← 2;
C4 for (k ∈ Gi) c

k
i ← 1;

}
Note that Finn’s protocol [Fin79] requires a node to send messages every time its table is updated, while

here messages are sent only when relevant new information is received (see <A5>). In this sense, the present

version is more efficient than [Fin79]. The properties of the protocol are summarized in

Theorem 4.5 (CT4) Suppose at least one node in V receives START . Then

a) no more than | V | messages C traverse each link in each direction

b) every node i will perform <A6> in finite time and when this happens, it will have cji = 2 for all connected

nodes j ∈ V and cji = 0 for all nodes j 6∈ V .

Proof: The event mi ← 1 propagates as in MPI1. From the algorithm it is clear that cji can only increase

and that a message can be sent by i only when some cji is increased from 0 or 1 to 2 and this can happen

only once for each j. Hence a). Finally b) follows in the same way as in Theorem 4.4.

Communication cost: Each message contains 2 | V | bits and hence at most 2 | V || V | bits will travel

on each link in each direction.
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Protocol CT3 can be improved in another way, resulting in the more efficient protocol CT54.

4Roskind????
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4.5 Protocol CT5

Consider protocol CT3 with the following variation: Upon receiving MSGj(Λ) in <A1>, a node i consults

its table containing {cki }. If cji = 2, the MSG is discarded, since such a MSG has been previously received

and forwarded to all neighbors; this part is the same as in CT3. If cji < 2, then cji ← 2 and the MSG is sent

to all neighbors, but now, before sending MSGj(Λ), the following pruning operation is performed: For all

k ∈ Λ, if cki ≥ 1, then k is deleted from Λ; otherwise k is not deleted from Λ and the variable cki takes value

1. Then MSGj(Λ) is sent to all neighbors.

Node k can indeed be deleted when cki ≥ 1 because in this case k has been sent before by i to its neighbors,

either as a neighbor of some node, in which case, cki = 1 or in MSGk, in which case cki = 2. One way or the

other, there is no need to send k again. All properties of CT3 hold here as well, but the pruning operation

assures that the identity of each node k travels no more than twice on each link in each direction, once as a

neighbor of some node and once in MSGk. Hence the communication cost is bounded by 2 | V | log2 | V |
bits per link in each direction.

Problems

Problem 4.5.1 Give an example of a CT5 run, where a node sends MSGj(Φ) to a neighbor.

Problem 4.5.2 Suppose that in CT5, nodes send messages MSG only if their list of nodes is nonempty.

Will CT5 still work? Explain or give counterexample.
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4.6 Extending CT to changing topologies - sequence numbers

(ECT)

check Lamport, Time,Clocks,.. 1978 The CT Protocols require specific initial conditions and therefore their

extension to handle topological changes must include reinitialization after every such change. This can be

implemented by restarting a new cycle of the protocol after every topological event. In order to distinguish

between messages and node states belonging to different cycles, we employ global sequence numbers [Seg83],

[Fin79], [Gal76]. The cycles of the protocol will be labeled with increasing numbers, every node remembers

the highest cycle number known to it so far and each of the cycles corresponds now to the original (nonex-

tended) protocol. When a node wants to trigger a new cycle due to an adjacent topological event, it resets

its variables, increments the cycle number and acts as if it has received START for a new cycle with this

number. Here resetting variables means to adjust the appropriate variables to their required initial value as

stated in each of the protocols. The number of the new cycle will be carried by all messages belonging to this

cycle. A node disregards and discards messages whose cycle number is lower than the highest cycle number

known to the node so far. A node that receives a message with cycle number larger than the highest known

to it, resets its own variables, increases its registered maximal cycle number accordingly and acts as if it

enters the protocol now (i.e. the corresponding cycle of the extended protocol). In this way the cycle with

higher number will cover the lower-number cycles, in the sense that when a higher cycle reaches any node,

the node will forget the previous knowledge and will participate only in the most recent cycle. Observe that

several nodes may start the same new cycle independently because of multiple topological events, but the

protocol allows this situation to happen, considering it in the same way as if several nodes receive START

in the nonextended protocol.

Connectivity Test protocols require that following a topological change, all nodes discard their previous

knowledge and restart the protocol from scratch. We shall see in the following sections that other protocols

can work more smoothly, whereby only the information affected by the topological change is renewed, whereas

the rest of the network adapts smoothly to the new situation.

As an example, we shall write exactly the extended CT3 protocol.

Protocol ECT3

Messages

MSGj(R,Λ) - control messages with identity j and Λ = list Gj of neighbors of j

Variables

Gi - set of neighbors of node i
cji - designates knowledge at i about connectivity to j (values 0,1,2), for all j ∈ V

= 0 when i knows nothing about j
= 1 while i knows j only as a neighbor of another node
= 2 while i knows j directly (i.e. MSGj(Λ) has been received)

Ri - highest sequence number known to i (values: 0,1, . . . );
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Algorithm for node i
A1 node i becomes operational
A2 { Ri ← 0;

}
B1 link (i, l) enters Connected state or Initialization Mode
B2 { update Gi;
B3 Ri ← Ri + 1; /* enter protocol, replaces mi ← 1 */
B4 initialize();
B5 phase1i(Gi);

}
C1 receives MSGj(R,Λ) from l ∈ Gi
C2 { if (R ≥ Ri){
C3 if (R > Ri){
C4 Ri ← R; /* enter protocol, replaces mi ← 1*/
C5 initialize();
C6 phase1i(Gi);

}
C7 if (cji 6= 2) phase1j(Λ);
C8 if (cji = 0 or 2,∀j ∈ V ) connectivity known;

}
}

D1 phase1j(Λ)
D2 { cji ← 2;
D3 for (k ∈ Λ) cki ← max(cki , 1);
D4 for (k ∈ Gi) send MSGj(Ri,Λ) to k;

}
E1 initialize()
E2 { for (j ∈ V ) cji ← 0;

}
Note that <B3> and <C4> here correspond to <A3> in CT3. Clearly, similar extended protocols can

be given for the other protocols. Their properties are similar to the ones of ECT3, as summarized in:

Theorem 4.6 (ECT3) Consider an arbitrary finite sequence of topological events with arbitrary timing and

location and let (E, V ) denote a connected subnetwork in the final topology within each at least one node has

entered the protocol. Then there is a finite time after the sequence is completed after which no messages

travel in (V,E) and all nodes i ∈ V will have the same cycle number Ri, with cki = 2 for all k ∈ V and with

cki = 0 for all k 6∈ V .

Proof: Consider the topology of the network after all topological changes cease. Consider in this topology

a given connected subnetwork (V,E). From <B3>, each topological event adjacent to a node i ∈ V

increments the cycle counter Ri at node i. Let {in} be the collection of nodes in V that register change

of status of an adjacent link, and let {tn} be the corresponding collection of times when the status change

is registered. Since there is a finite number of topological events, the collections {in}, {tn} are finite. Let

R = max{Rin(tn+)} over all n. Then R is the highest cycle number ever known in network (V,E) and the

cycle with number R is started by (one or more) nodes i ∈ {in} ∈ V that increment their Ri to R as a

result of a topological event. These nodes can be considered as if they receive START in the CT3 protocol

and, indeed, the network covered by the cycle with number R registers no more topological events, since

no counter number Ri is ever increased to (R + 1). Also, the initial conditions of CT3 hold for the R cycle

as follows. A node with Ri < R is considered as having mi = 0, a node i with Ri = R is considered as

having mi = 1. what about protocols where mi returns to 0??? Since Ri is nondecreasing, the

first MSG(R) that arrives at a node i finds Ri < R, namely mi = 0. Also, after <C4>, a node disregards

all messages with sequence number less than R, so that the condition that nodes receive only messages of

the present protocol is also satisfied.
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Moreover, from the Follow-up property of DLC follows that in the final topology, l ∈ Gi if and only if

i ∈ Gl, so that the assumption of bi-directionality (Assumption a) in Sec. 3.1) holds in the final topology.

Consequently, the evolution of the cycle with sequence number R is the same as in protocol CT3 on (V,E)

and therefore Theorem 4.4 holds here, completing the proof.

Here we can see for the first time the reason for requiring asynchronous Initial Conditions in the Fixed

Topology algorithms as opposed to synchronous ones: there is a time t0 when all mi = 0 and there are no

messages on the links. One can attempt to find such a time t0, for example the time when the first message

with Ri = R is received by any node in (V,E). However, there is no guarantee that at that time there are

no messages on the links. Some links may even have messages with Ri = R.

Problems

Problem 4.6.1 Consider each of the 4 properties of ensuring synchronization of LI Procedures (see Sec. 2.4).

For each property, check whether ECT3 still works in case that property doesn’t hold.

Problem 4.6.2 Does ECT3 work if we change line <A2> to Ri ← 50 ?
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Chapter 5

TOPOLOGY and PARAMETER

BROADCAST

Link state routing protocols [MRR80] ,[Per83], [Ros80], [Hui95], like OSPF in the Internet, are based on

the principle that every node contains a map of the entire network topology, as well as of various fixed

and varying parameters of the links and nodes. These parameters may include link speeds, error rates,

congestion, etc. In order to make this information available at each node, it is necessary to broadcast it in

the network.

5.1 Broadcasting topology and parameters (TPB)

One way to proceed is to use Protocol CT3, where a node j includes in MSGj not only the list of neighbors

Gi, but also the parameters of interest about itself and the adjacent links. For brevity, we shall denote the

collection of these parameters at node j by ∆j
j . The other change compared with CT3 is that a node i keeps

not only identities of nodes known to it, but the entire information received in MSGj . Consequently, when

a node completes the CT3, it has the entire topological and parameter information of the network. The

protocol is as follows:
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Protocol TPB1

Messages

MSGj(Λ,∆) - control messages with identity j, containing Λ = Gj and ∆ = ∆j
j

Variables

Gi - set of neighbors of node i
mi - shows whether i has already entered the algorithm (values 0,1 )

cji - designates knowledge at i about connectivity to j (values 0,1,2), for all j ∈ V

= 0 when i knows nothing about j
= 1 while i knows j only as a neighbor of another node
= 2 while i knows j directly (i.e. MSGj(Λ,∆) has been received)

∆i
i - the local parameters at i

Λj
i - list that will contain the identities of neighbors of j ∈ V

∆j
i - will contain the parameters of j ∈ V as known by i

Initialization

if a node receives at least one MSG, then

- just before the time it receives the first one holds mi = 0
- after receiving the first MSG, node i discards and disregards messages not sent in the present instance
of the protocol

Algorithm for node i

A1 receive MSGj(Λ,∆) from l ∈ Gi ∪ {nil}
A2 { if (mi = 0){
A3 mi ← 1; /* enter protocol */
A4 initialize();
A5 phase1i(Gi,∆

i
i);

}
A6 if (cji 6= 2) phase1j(Λ,∆);
A7 if (cji = 0 or 2,∀j ∈ V ) topology and parameters known;

}
B1 phase1j(Λ,∆)
B2 { cji ← 2;
B3 Λj

i ← Λ;
B4 ∆j

i ← ∆;
B5 for (k ∈ Λ) cki ← max(cki , 1);
B6 for (k ∈ Gi) send MSGj(Λ,∆) to k;

}
C1 initialize()

C2 { for (j′ ∈ V ) cj
′

i ← 0;
}

Theorem 5.1 (TPB1) Suppose that at least one node in V receives START . Then:

a) For every i ∈ V , the variables cji will become 2 in finite time for all j ∈ V and will remain 0 forever for

all j 6∈ V .

b) If cji = 2, then Λj
i = Gj and ∆j

i = ∆j
j, in other words, node i knows the topology and parameters at and

adjacent to j. Every i ∈ V will perform <A7>i in finite time and when this happens for the first time, it

will have cji = 2 for all j ∈ V and cji = 0 for all j 6∈ V .

Proof: The event mk ← 1 propagates as in MPI1 and hence will happen in finite time at all nodes k ∈ V .

For a given j ∈ V , after mj becomes 1, the event cjk ← 2 propagates again as in PI1 and hence will happen

in finite time at every node i ∈ V . The fact that cji remains 0 forever for j 6∈ V is obvious. Hence a).

For each j, propagation of MSGj(Λ,∆) happens as in protocol PI1 except that it is triggered by <A6>

instead of by START . The message carries Λ = Gj and ∆ = ∆j
j . When a node i receives for the first
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time a message MSGj(Λ,∆), it copies those lists into its local topological database Λj
i ,∆

j
i . The rest of b)

is identical to Theorem 4.4b). qed

Communication Cost: If we count each set of parameters as Di elementary entities, where Di is the

number of links adjacent to i, then we send on each link in each direction | V | (2D+ 1) elementary entities.

Here D is the average degree of the nodes (average number of neighbors). Clearly D = 2 | E | / | V | and

hence the communication cost over the entire network is 2 | E | (2 | E | + | V |) elementary quantities1.

5.2 Fixed Topology, changing parameters

In many cases, parameters at various nodes change, while the network topology remains fixed. These

changes must be broadcast to all nodes in the network. Since the topology is known to every node when it

completes the TPB1 protocol, there is no need to repeat the protocol. All that is needed is to have every

node broadcast the new parameters when they change. Any of the protocols introduced in Sec. 3.4 for

repeated propagation of information can be used. The most commonly used protocol is RPI1, the repeated

PI1 protocol with increasing sequence numbers. Each node in the network runs a separate RPI1 Protocol,

with its own sequence numbers. The protocols for different nodes are completely independent, and we shall

describe the protocol for a given node s. As long as the topology remains fixed, this protocol achieves the

goal of correctly broadcasting the information. In Sec. 5.4, we shall deal with the difficulties encoutered by

this protocol when topology may change.
Protocol TPB2

Messages

MSG(r,∆) - message with sequence number r carrying the local topology and the local parameters at
s (r = 0, 1, 2, . . .)

Variables

Gi - set of neighbors of node i
ri - largest sequence number received by i ( values 0, 1, 2, . . .)
∆s - the local parameters at s
∆i - will contain the parameters at s as known by i

Initialization

* just before the first message is sent by s, holds rs = −1
* if i receives a MSG, then

- just before receiving the first MSG, holds ri = −1

- after receiving the first MSG, node i discards and disregards messages not sent in the present instance
of the protocol

Algorithm for node i
A1 when ∆s changes
A2 { deliver MSG(rs + 1,∆s) from nil to yourself;

}
B1 receive MSG(r,∆) from l ∈ Gi ∪ {nil}
B2 { if (r > ri) phase1(r);

}
C1 phase1(r) /* similar to PI1 */
C2 { ri ← r ;
C3 ∆i ← ∆;
C4 for (k ∈ Gi) send MSG(r,∆) to k;

}

Note: In <C4>, a node i may send MSG(r,∆) to all k ∈ Gi − {l}.
1time, computation,???
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Theorem 5.2 (TPB2) Suppose that parameter changes at s stop. If s ∈ V , then a finite time afterwards,

every node i ∈ V will have ∆i = ∆s and this information will never change afterwards.

Proof: Protocol TPB2 is exactly RPI1, therefore all information sent out by s is accepted by each node in

V in order and in finite time. Hence, the last information is accepted last, causing ∆i to contain the list of

neighbors and the parameters of s respectively. qed

Another protocol that can be used for the same purpose is RPIF combined with CT2. Its advantages

over RPI1 are that it uses bounded sequence numbers and a node i ∈ V has positive acknowledgement

when it knows the topology of V . Although there is no positive acknowledgement about knowledge of the

parameters at all nodes, topology is more critical in most cases, since routing through a congested area is

not as bad as routing into a nonexistent link. The main disadvantage of RPIF is that it is somewhat more

complicated than RPI1. It is interesting to note though that the speed of information dissemination is

identical for both protocols. The protocol is essentially a CT2 protocol with repeated PIF ’s and MSGj

carrying the topology and parameters adjacent to j. The PIF started by node j with instance number r, will

be denoted by PIF j(r). Here 0 ≤ r ≤W − 1, where W is determined by the number of bits allocated to the

instance number. Since a CT2 protocol is performed here, the specification cannot be provided separately

for each node2.

Protocol TPB3

Messages

MSGj(r,Λ,∆) - message of PIF j(r)

Variables

Gi - set of neighbors of node i
mi - shows if node i is in the protocol (values 0,1)

mj
i (r) - shows if node i is in PIF j(r), r = 0, 1, . . . ,W − 1

pji (r) - preferred neighbor of node i for PIF j(r)

eji (l)(r) = number of MSGj(r) sent to l - number of MSGj(r) received from l, for all l ∈ Gi

cji - designates knowledge at i about connectivity to j (values 0,1), for all j ∈ V
∆i

i - the local parameters at i

Λj
i - list that will contain the identities of neighbors of j ∈ V

∆j
i - will contain the parameters of j ∈ V as known by i

Initialization

if a node receives at least one MSG, then

- just before the time it receives the first one holds mi = 0
- after receiving the first MSG, node i discards and disregards messages not sent in the present instance
of the protocol

2Is it possible to design a protocol with one of the MPI or MPIF to ensure that routing tables are calculated at times that

will allow no loops in the routing tables. In other words can one know when topology and parameter info. is consistent???
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Algorithm for node i

A1 parameters ∆i
i change

A2 { while (mi
i(r
′) = 1 ∀r′) {}; /* same is in RPIF1 */

A3 deliver MSGi(r,Gi,∆
i
i) from nil to yourself with some r | mi

i(r) = 0;
}

B1 receive MSGj(r,Λ,∆) from l ∈ Gi ∪ {nil}
B2 { if (mi = 0){
B3 mi ← 1 ; /* enter protocol */
B4 initialize();
B5 phase1i(0, Gi,∆

i
i);

}
B6 if (cji = 0) updatej();
B7 if (mj

i (r) = 0) phase1j(r,Λ,∆);
B8 eji (l)(r)← eji (l)(r)− 1;
B9 if (eji (k)(r) = 0 ∀k ∈ Gi − {pji (r)}) phase2j(r);

}
C1 updatej()
C2 { cji ← 1;
C3 Λj

i ← Λ;
}

D1 phase1j(r,Λj ,∆j) /* same as in CT2 */
D2 { mj

i (r)← 1;
D3 if (i 6= j) pji (r)← l else pji (r)← nil;
D4 ∆j

i ← ∆;
D5 for (k ∈ Gi − {pji (r)}){
D6 send MSGj(r,Λj ,∆j) to k;
D7 eji (k)(r)← eji (k)(r) + 1;

}
}

E1 phase2j(r) /* same as in CT2 */
E2 send MSGj(r,Λ,∆) to pji (r);
E3 eji (p

j
i (r))(r)← eji (p

j
i (r))(r) + 1;

E4 mj
i (r)← 0;

}
F1 initialize()
F2 { for (j′ ∈ V ) {
F3 cj

′

i ← 0;
F4 for (all r′) {
F5 mk

i (r′)← 0;

F6 for (k ∈ Gi) e
j′

i (k)(r′)← 0;
}

}
}

Note that broadcast of the adjacent topology Gi is required only in the first PIF started at node i.

Nodes disregard this information in all subsequent PIF ’s. Therefore the protocol may be altered to save

communication by using two types of MSG’s, one type containing both topology Λ and parameters ∆ and

the other type containing parameters only. The first type will be used by each node when starting its first

PIF and then all subsequent PIF ’s will use MSG’s of the second type.

Theorem 5.3 (TPB3) Suppose that at least one node in V receives START . Then:

a) for every i ∈ V , the variables cji will become 1 in finite time for all j ∈ V and will remain 0 forever for all

j 6∈ V .

b) if cji = 1, then Λj
i = Gj, namely node i knows the topology adjacent to j; every i ∈ V will perform

phase2()ii(r) for some r in finite time, and after the first time when it does that, holds cji = 1 for all j ∈ V
and cji = 0 for all j 6∈ V .
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c) suppose parameter changes at a node j ∈ V stop; a finite time afterwards every node i ∈ V will have

∆j
i = ∆j

j, i.e. every node in the network will know the parameters at j and this information will never

change afterwards.

Proof: Part a) follows from the fact that nodes update the variables cji exactly as in Protocol CT2. To

prove b), observe that a node i sets cji ← 1 at the same time when it sets Λj
i ← Gj . The rest follows from

Theorem 4.3.

Now c) follows from the fact that after entering the protocol, every node acts as the source s in the

RPIF Protocol, where the packets to be propagated are the local parameters. Since Theorem 3.9b) says

that packets are accepted by each node in V in the same order as generated and every packet is eventually

accepted by each node, the last generated packet containing the final value of the parameters is accepted

last by each node. qed

Communication Cost:

????

In Protocols TPB1 and TPB2, every node i ∈ V must start propagation of adjacent topology and

parameters in the form of PI or PIF when it enters the protocol. It is natural to inquire whether it is

possible to indicate an initialization situation such that certain, hopefully most, nodes will be absolved from

doing so. The reason is that presumably, this is not the first time the protocol is run in the network and

most nodes have already sent out their local information. If this information has not changed since the last

time when it was sent out, why is there need to send it out again. However it turns out that no initialization

assumption is sufficient, short of assuming that all nodes in V have the information. This is because if some

nodes have some incorrect old information about j and now are receiving the correct one, they have no

means of distinguishing the old ?????

have been required to start a new broadcast. The knowledge in the network could have been possible

maybe if previous to the entrance in the TPB protocol, node j has propagated the local information, after

which the information has not changed. However, maybe information from some node may already be

available at all nodes in V , maybe from previous One may ask if this is necessary if, say from previous

propagations, one can make sure that all nodes in V have .

????

Problems

Problem 5.2.1 TPB1 is based on CT3. Can CT5 be used in the same way for implementing TPB? If not,

explain why, if yes, write the code of the corresponding protocol.

Problem 5.2.2 Repeat the above question for CT4.
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5.3 Topology and Parameter Broadcast - Topological Changes

(ETPB)

Similarly to the protocol of Sec. 4.6, one can define a Protocol for the topological changes version of the

Topology and Parameter Broadcast Protocol, that will be called the Extended Topology and Parameter

Broadcast (ETPB3) protocol. This protocol uses global sequence numbers similar to the ones of Sec. 4.63.

Protocol ETPB3

Messages

MSGj(R, r,Λ,∆) - message of PIF j(r) with global sequence number R

Variables

Gi - set of neighbors of i, i.e. k ∈ Gi if (i, k) is in Connected state at i
Ri - highest sequence number known to i (values: 0,1, . . . )
mi - shows if node i is in the protocol (values 0,1)

mj
i (r) - shows if node i is in PIF j(r), r = 0, 1, . . . ,W − 1

pji (r) - preferred neighbor of node i for PIF j(r)

eji (l)(r) = number of MSGj(r) sent to l - number of MSGj(r) received from l

cji - designates knowledge at i about connectivity to j (values 0,1), for all j ∈ V
∆i

i - the local parameters at i

Λj
i - list that will contain the identities of neighbors of j ∈ V

∆j
i - will contain the parameters of j ∈ V as known by i

3Is it possible to design a protocol with one of the MPI or MPIF to ensure that routing tables are calculated at times that

will allow no loops in the routing tables. In other words can one know when topology and parameter info. is consistent???
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Algorithm for node i
A1 Node i becomes operational
A2 { Ri ← 0;

}
B1 Link (i, l) enters Connected state or Initialization Mode
B2 { Ri ← Ri + 1; /* enter protocol, replaces mi ← 1 */
B3 initialize();
B4 phase1i(0, Gi,∆

i
i);

}
C1 parameters ∆i

i change
C2 { while (mi

i(r
′) = 1 ∀r′) {};

C3 deliver MSGi(Ri, r,Gi,∆
i
i) from nil to yourself with some r | mi

i(r) = 0;
}

D1 receives MSGj(R, r,Λ,∆) from l ∈ Gi
D2 { if (R ≥ Ri){
D3 if (R > Ri){
D4 Ri ← R; /* enter protocol, replaces mi ← 1 */
D5 initialize();
D6 phase1i(0, Gi,∆

i
i);

}
D7 if (cji = 0) updatej();
D8 if (mj

i (r) = 0) phase1j(r,Λ,∆);
D9 eji (l)(r)← eji (l)(r)− 1;
D10 if (eji (k)(r) = 0 ∀k ∈ Gi − {pji (r)}) phase2j(r);

}
E1 updatej() /* same as in TPB3 */
E2 { cji ← 1;
E3 Λj

i ← Λ;
}

F1 phase1j(r,Λj ,∆j) /* same as in TPB3 */
F2 { mj

i (r)← 1;
F3 if (i 6= j) pji (r)← l else pji (r)← nil;
F4 ∆j

i ← ∆j ;
F5 for (k ∈ Gi − {pji (r)}){
F6 send MSGj(Ri, r,Λ

j ,∆j) to k;
F7 eji (k)(r)← eji (k)(r) + 1;

}
}

G1 phase2j(r) /* same as in TPB3 */
G2 { send MSGj(Ri, r,Λ,∆) to pji (r);
G3 eji (p

j
i (r))(r)← eji (p

j
i (r))(r) + 1;

G4 mj
i (r)← 0;

}
H1 initialize() /* same as in TPB3 */
H2 { for (j′ ∈ V ){
H3 cj

′

i ← 0;
H4 for (all r′){
H5 mk

i (r′)← 0;

H6 for (k ∈ Gi) e
j′

i (k)(r′)← 0;
}

}
}

Theorem 5.4 (ETPB3) Consider an arbitrary finite sequence of topological events with arbitrary timing

and location and let (V,E) denote a connected subnetwork in the final topology. Then there is a finite time

after the sequence is completed after which:

a) for every i ∈ V , the variables cji are 1 for all j ∈ V and will remain 0 forever for all j 6∈ V .
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b) every i ∈ V will perform <D10>i in finite time and after the first time when it does that holds cji = 1 and

Λj
i = Gj for all j ∈ V and cji = 0 for all j 6∈ V .

c) suppose parameter changes at a node j ∈ V stop; a finite time afterwards every node i ∈ V will have

∆j
i = ∆j

j, i.e. every node in the network will know the parameters at j and this information will never

change afterwards.

Proof: Consider the topology of the network after all topological changes cease. Consider in this topology a

given connected subnetwork (V,E). From <B2>, each topological event adjacent to a node i ∈ V increments

the cycle counter Ri at the node i adjacent to the change. Let {in} be the collection of nodes in V that

register change of status of an adjacent link, and let {tn} be the corresponding collection of times when the

status change is registered. Since there is a finite number of topological events, the collections {in}, {tn}
are finite. Let R = max{Rin(tn+)} over all n. Then R is the highest cycle number ever known by nodes in

V and the cycle with number R is started by (one or more) nodes i ∈ {in} ∈ V that increment their Ri to

R as a result of a topological event. These nodes can be considered as if they receive START in the TPB3

protocol and, indeed, the network (V,E) covered by the cycle with number R registers no more topological

events, since no counter number Ri is ever increased to (R + 1). Moreover, from the Follow-up property of

DLC follows that in the final topology, l ∈ Gi if and only if i ∈ Gl, so that the assumption of bidirectionality

(Assumption a) in Sec. 3.1) holds in the final topology. Moreover, the initialization conditions for protocol

TPB3 hold why??? . Consequently, the evolution of the cycle with sequence number R is the same as in

protocol TPB3 and therefore Theorem 5.3 holds here, completing the proof. qed

Delete !!! In Protocol ETPB3, every node i ∈ V must start propagation of adjacent topology and

parameters in a PIF when it enters a new cycle of the protocol. The question is whether nodes for which

the local information has not changed since the last update was sent out, can be absolved from doing so.

The intuitive reasoning is that if the local information has not changed, then why is it necessary to send it

out again. The problem with this is however that the previous

The reason is that presumably, this is not the first time the protocol is run in the network and most

nodes have already sent out their local information. If this information has not changed since the last time it

was sent out, why is there need to send it out again. However it turns out that no initialization assumption

is sufficient, short of assuming that all nodes in V have the information. This is because if some nodes

have some incorrect old information about j and now are receiving the correct one, they have no means of

distinguishing the old ?????

have been required to start a new broadcast. The knowledge in the network could have been possible

maybe if previous to the entrance in the TPB protocol, node j has propagated the local information, after

which the information has not changed. However, maybe information from some node may already be

available at all nodes in V , maybe from previous One may ask if this is necessary if, say from previous

propagations, one can make sure that all nodes in V have

5.4 Topology and Parameter Broadcast with node-associated se-

quence numbers - Topological Changes

The protocol ETPB3 of Sec. 5.3 uses global sequence numbers R, as well as node-associated instance numbers

r. The main advantage of this method, is that, as seen in Theorem 5.4, it works under any sequence of

topological changes, including network separations and node crashes without non-volatile memory. However

the communication price to be paid to achieve this is too high: every time there is a topological change in the
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network, all nodes re-broadcast their local information, even if the latter has not changed. As a result, the

more commonly used method is to employ node-associated sequence numbers only, namely to use the RPI1

protocol as described in Sec. 5.2, except that both topology and parameter information are broadcasted.

The simplistic protocol is identical to protocol TPB2 of Sec. 5.2, except that it is started by the source

node s whenever adjacent topology Gs changes as well as when adjacent parameters ∆s change and the PI1

protocol broadcasts both topology and parameter information. To recapitulate, the protocol consists of each

node incrementing its sequence number and starting a new PI1 protocol with the new sequence number,

whenever the local topology or parameters change. As in TPB2, the protocol evolves independently from

source to source and thus the superscript s is suppressed in the pseudo-code.
Protocol ETPB2

Messages

MSG(r,Λ,∆) - message with sequence number r carrying the local topology and the local parameters
at s (r = 0, 1, 2, . . .)

Variables

Gi - set of neighbors of node i
ri - largest sequence number received by i ( values 0, 1, 2, . . .)
∆s - the local parameters at s
Λi - list that will contain the identities of neighbors of s
∆i - will contain the parameters at s as known by i

Initialization

* just before the first message is sent by s, holds rs = −1
* if i receives a MSG, then

- just before receiving the first MSG, holds ri = −1

- after receiving the first MSG, node i discards and disregards messages not sent in the present instance
of the protocol

Algorithm for node i
A1 node i becomes operational
A2 { ri ← 0;

}
B1 when Gs or ∆s changes
B2 { deliver MSG(rs + 1, Gs,∆s) from nil to yourself;

}
C1 receive MSG(r,Λ,∆) from l ∈ Gi ∪ {nil}
C2 { if (r > ri) phase1(r);

}
D1 phase1(r) /* similar to PI1 */
D2 { ri ← r ;
D3 Λi ← Λ;
D4 ∆i ← ∆;
D5 for (k ∈ Gi) send MSG(r,Λ,∆) to k;

}

Note: In <D5>, a node i may send MSG(r,Λ,∆) to all k ∈ Gi − {l}.
However, in a changing topology network, this simplistic protocol does not operate correctly. For example,

if a node fails, when it recovers, it will set its sequence number to 0. Its updates will be disregarded by other

nodes whose stored information about this node appears with a higher sequence number because of previous

updates. Only when the sequence number reaches the value that was last used before the failure will the

updates be registered.

Incorrect operation may also occur due to network disconnections and reconnections. Suppose the network

is split into two non-connected parts V ′ and V ′′. Updates initiated by nodes in V ′ do not reach nodes in V ′′.

Then, if a link connecting the two parts comes up, there is no trigger for updating nodes in V ” regarding those
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updates. The solution in existing networks, like the Internet, that uses link-state protocols in OSPF [Hui95]

is to employ periodic updates. Nodes start broadcast of topology and parameter values on a periodic basis,

even if there are no adjacent changes. This solves the disconnection problem, but does not solve the problem

of sequence number reset to 0 after a node failure. One solution for the latter problem is to use a timer

associated with each table entry and to delete entries for which updates have not been received for a long

time [Hui95],[BG92]. Moreover, messages carry an age field, and messages that are too old are discarded by

nodes.

5.5 SPTA - Topology Broadcast without sequence numbers - Topo-

logical Changes

The following protocol Shortest Path Topology Algorithm (SPTA) [BG92] allows broadcast of topology with-

out sequence numbers. The main idea is that a node believes the status of a distant link as received from

the neighbor that is on the shortest path from the node to that link.

Protocol SPTA

Messages

MSG(C) - message of the protocol (C is list of nodes whose status has changed)

Variables

Ti - main topology of node i.
Ti(j) - port topology of i for neighbor node j

S
(m,n)
i (j) - status of link (m,n) according to port topology Ti(j) ( values up, down)

S
(m,n)
i - status of link (m,n) according to main topology Ti ( values up, down)
Pi - a temporary group of nodes, that holds at the k-th iteration all nodes whose distance from i is no
more than k links
Pi,old - the temporary group Pi from last iteration
Mlabeled - the group of nodes that are labeled in each iteration.
Gi - set of neighbors of i, i.e. l ∈ Gi if (i, l) is in Connected state at i
Labeli(j) - label of node j at node i
Ci - set of nodes whose status has changed

Initialization

not clear

-
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Algorithm for node i
A1 node i becomes operational
A2 { do nothing;

}
B1 link (i, l) enters Initialization Mode;

B2 { S
(i,l)
i ← down; S

(i,l)
i (l)← down;Ci ← {((i, l), down)};

B3 for (k ∈ Gi) send MSG(Ci) to k;
B4 update();

}
C1 link (i, l) enters Connected State

C2 { S
(i,l)
i ← up; S

(i,l)
i (l)← up;

C3 for (k ∈ Gi) send MSG({(i, l), up}) to k;
C4 send MSG(Ti) to l;
C5 update();

}
D1 receives MSG(C) from l ∈ Gi
D2 { enter information in C into Ti(l);

D3 S
(l,i)
i ← up; S

(l,i)
i (l)← up;

D4 update();
}

E1 update()
E2 { Pi,old ← i; Pi ← i; Ci ← ∅;
E3 for (j ∈ Gi) {
E4 Pi ← Pi ∪ {j};
E5 Labeli(j) = j;

}
E6 while (Mlabeled 6= ∅) {
E7 Mlabeled ← ∅;
E8 for (m ∈ Pi − Pi,old) {
E9 for ((m,n) ∈ Ti) and (n 6∈ Pi,old)) {
E10 j ← Labeli(m);

E11 if (S
(m,n)
i 6= S

(m,n)
i (j)) Ci ← Ci ∪ ((m,n), Si(m,n));

E12 S
(m,n)
i ← S

(m,n)
i (j);

E13 if (S
(m,n)
i = up) and (n 6∈ Pi)) {

E14 Labeli(n)← j;
E15 Mlabeled ←Mlabeled ∪ {n};

}
}

}
E16 Pi,old ← Pi;
E17 Pi ← Pi ∪Mlabeled;

}
}
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DISTRIBUTED

DEPTH-FIRST-SEARCH

PROTOCOLS

Here we study Distributed Depth-First-Search Protocols. The basic protocol appears in [Che83].

Protocol DFS1

Messages

MSG - message trying to find new tree nodes
REPLY - reply to MSG

Variables

Gi - set of neighbors of i
mi - shows if node i has already entered the protocol
pi - parent of i, i.e.neighbor from which MSG was received first.
vi(l) = 1 if node i knows that l has been visited; = 0 otherwise ( ∀l ∈ Gi )

Initialization

if a node i receives a MSG, then

- just before it receives the first MSG, holds mi = 0 and ci(k) = 0 for all k ∈ Gi

- after receiving the first MSG, node i discards and disregards messages not sent in the present instance
of the protocol
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Algorithm for node i

A1 receive MSG from l ∈ Gi ∪ {nil}
A2 { if (mi = 0){
A3 phase1();
A4 continue();

}
A5 else {
A6 vi(l)← 1;
A7 send REPLY to l;

}
}

B1 receive REPLY from l
B2 { vi(l)← 1;
B3 continue();

}
C1 phase1()
C2 { mi ← 1;
C3 pi ← l; vi(pi)← 1 ;

}
D1 phase2()
D2 { send REPLY to pi;

}
E1 continue()
E2 { if (vi(k) = 1 ∀k ∈ Gi − {pi}) phase2();
E3 else {
E4 select any m ∈ Gi − {pi} with vi(m) = 0;
E5 send MSG to m ;

}
}

The properties of the DFS1 protocol are given in Theorem 6.2. Note that although the main properties

are similar to PI/PIF type protocols, the steps of the proof are somewhat different.

First note that at any given time, exactly one message travels in the network. This is because whenever

a node receives a message, it sends a message.

Lemma 6.1

a) If a node i sends a MSG to l, then from l it can receive only REPLY .

b) After a node i sends a MSG to l, the next REPLY it receives is from l.

c) No node can send two messages on the same link.

Proof: If i sends MSG to l, when the MSG arrives, then l sets vl(i) = 1, and no MSG’s are sent on

links with v = 1, hence a).

We prove b) and c) by a common induction. Let i be the first node that either receives a REPLY on a

link (i, k) on which it hasn’t last sent a MSG or that sends a second message on some link (i, j), at time t

say.

Suppose that the first kind of event happens at time t. If the message sent by i to k found mk = 1,

then k would have sent REPLY to i and the next event at i would have been to receive REPLY from k.

Therefore mk = 0 when it receives the MSG and therefore i is the parent of k. Let m be the neighbor from

which i receives REPLY at time t−. REPLY can be sent by m either in <A7> or <D2>. In both cases,

m must have previously received a MSG from i and, by the induction hypothesis, i must have received a

REPLY from m. This means that the REPLY received at time t− is a second message sent by m to i,

contradicting the second hypothesis of the common induction.

Suppose now that at time t, node i sends a second message on the same link (i, j) say. First we argue

that this message cannot be MSG. If the first message that i has sent to j was REPLY , then vi(j) was set

to 1, either at the time REPLY was sent, in <A6>, or beforehand, in <C3>. Therefore the second message
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cannot be a MSG, since such messages are sent only on links with v = 0. If on the other hand, the first

message that was sent by i to j was MSG, then by b) a REPLY was received from j before t−, which has

set vi(j)← 1 and again the second message could not be a MSG.

Therefore the message sent by i at t is a REPLY . This cannot happen as a result of i receiving at time

t− a MSG from j, since when j has received the first message from i, it has set vj(i) = 1 and nodes do not

send MSG’s on links with v = 1. Therefore j is the parent of i. When the first REPLY was sent to j, all

vi(l), l ∈ Gi − {pi} were 1, namely i has received a message on each of these links. Therefore the message

at time t is sent upon i receiving a second message on some link (i,m), meaning that m has sent a second

message on some link before time t, contradiction. qed

Lemma 6.1 implies that the protocol terminates in finite time. It can terminate only at s, since only the

parent of s is nil. It remains to show that it covers the entire network and it produces a (spanning) tree.

Theorem 6.2 (DFS1) Suppose that a node s ∈ V receives START . Recall that this is defined as the event

when s receives MSG from nil. Then:

a) all nodes i ∈ V will perform the event phase1()i in finite time and exactly once ; after this happens, the

links {(i, pi),∀i ∈ V } will form a directed spanning tree rooted at s;

b) all nodes i ∈ V will perform phase2()i in finite time and exactly once; moreover t(phase2()i) < t(phase2()pi
);

node i receives no messages after time t(phase2()i); also, at the time when node s performs phase2()s, all

nodes in V have completed the algorithm, i.e. have performed phase2() and there are no messages traveling

in the network

c) exactly one message MSG or REPLY travels on each link in (V,E) in each direction.

Proof: Since this protocol simulates Tremaux’s algorithm for DFS [Eve79], all properties follow from

the properties of DFS. qed

The above protocol has 2 | E | message and time complexities. The reason is that the links are explored

serially. An improved protocol was proposed by B. Awerbuch [Awe85b]. When a node enters the protocol,

it first informs its neighbors that it has been visited. Upon receiving acknowledgment to these messages, it

continues the DFS. In this way, only the tree links are explored serially, leading to O(| V |) time complexity,

while the message complexity is only doubled to 4 | E |.
Protocol DFS2

Messages

MSG - message trying to find new tree nodes
REPLY - reply to MSG, or when delivered to itself, indicates that all ACK’s have been received
V ISITED - informs neighbor that the sending node has been visited
ACK - ack to V ISITED

Variables

Gi - set of neighbors of i
pi - neighbor from which MSG is received
ei(k) - number of V ISITED sent - number of ACK’s received on link (i, k) ( ∀k ∈ Gi )
vi(k) = 1 when i knows that neighbor k has been visited, = 0 beforehand ( ∀k ∈ Gi )

Initialization

if a node i receives MSG, then

- just before it receives the MSG, holds ei(k) = vi(k) = 0 for all k ∈ Gi

- after receiving the first MSG, node i discards and disregards messages not sent in the present instance
of the protocol

c©Adrian Segall 133



March 13, 2013

Algorithm for node i

A1 receives MSG from l ∈ Gi ∪ {nil}
A2 { phase1();
A3 if (Gi = {pi}) phase2();

}
B1 receives REPLY from l
B2 { vi(l)← 1;
B3 continue();

}
C1 receives V ISITED from l
C2 { vi(l)← 1;
C3 send ACK to l;

}
D1 receives ACK from l
D2 { ei(l)← ei(l)− 1
D3 if (ei(k) = 0 ∀k ∈ Gi − {pi}) continue();

}
E1 phase1()
E2 { pi ← l;
E3 for (k ∈ Gi − {pi}){
E4 send V ISITED to k;
E5 ei(k)← ei(k) + 1;

}
}

F1 phase2()
F2 { send REPLY to pi;

}
G1 continue()
G2 { if (vi(k) = 1 ∀k ∈ Gi − {pi}) phase2();
G3 else {
G4 select any m ∈ Gi − {pi} with vi(m) = 0;
G5 send MSG to m ;

}
}

The time complexity of DFS2 is 4 | V | −2, the message complexity is 4 | E |.

The V ISITED messages informing neighbors that a node enters the protocol are distributed in DFS2

in parallel to all neighbors. However, this is perfomed in series with the rest of the protocol. A node waits

to receive ACK’s to the V ISITED messages before proceeding to advance the protocol. The protocol

can be further improved as follows. Instead of sending V ISITED, waiting for ACK’s and then sending

MSG, a node i will send MSG to one of its neighbors, l say, and, at the same time, V ISITED to all

other non-parent neighbors. From each of the neighbors except l and pi, node i may receive V ISITED

or nothing. The response from l can be either REPLY , meaning that the parent of l is i, or V ISITED,

meaning that l has been visited before the time when l receives the MSG from i. Note that in fact node i

needs not distinguish between the two cases, since the protocol does not require nodes to know their sons.

Therefore the two types of messages can be collapsed into one, which we call V ISITED. When this message

is received, node i will send MSG to one of the neighbors from which it has received nothing, if any. If there

are no such nodes, it will send V ISITED to its parent pi. Note that with this protocol, there is no need

for ACK messages.
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Protocol DFS3

Messages

MSG - message trying to find new tree nodes
V ISITED - informs neighbor that the sending node has been visited

Variables

Gi - set of neighbors of i
mi - shows if node i is already in the protocol
pi - neighbor from which MSG is first received
ci - neighbor of i currently being investigated
vi(k) = 1 when i knows that neighbor k has been visited, = 0 beforehand ( ∀k ∈ Gi )

Initialization

if a node i receives a MSG message, then

- just before it receives the first MSG, holds mi = 0 and vi(k) = 0 for all k ∈ Gi

- after receiving the first MSG, node i discards and disregards messages not sent in the present instance
of the protocol

Algorithm for node i

A1 receives MSG from l ∈ Gi ∪ {nil}
A2 { if (mi = 0) {
A3 phase1();

}
}

B1 receives V ISITED from l
B2 { vi(l)← 1;
B3 if (l = ci) { /* replaces REPLY */
B4 if (current() = nil) phase2();
B5 else {
B6 ci ← current();
B7 send MSG to ci;

}
}

}
C1 phase1()
C2 { mi ← 1;
C3 pi ← l;
C4 if (current() = nil) phase2();
C5 else {
C6 ci ← current();
C7 send MSG to ci
C8 for (k ∈ Gi − {pi} − {ci}) send V ISITED to k;

}
}

D1 phase2()
D2 { send V ISITED to pi;

}
E1 function current()
E2 { if (vi(k) = 1 ∀k ∈ Gi − {pi}) current()← nil;
E3 else {
E4 select any m ∈ Gi − {pi} with vi(m) = 0;
E5 current()← m;

}
}

If all link propagation delays are the same, the time complexity of DFS3 is 2 | V | and the message

complexity is 2 | E |, the minimum possible. We don’t know the complexities for varying propagation delays.

I think it can be shown that the performance in better than DFS2.

Problems

Problem 6.0.1 Why isn’t one type of messages sufficient in DFS1?
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Chapter 7

MINIMUM-WEIGHT SPANNING

TREE PROTOCOLS

In this chapter we investigate the Minimum Spanning Tree protocol of Gallager, Humblet and Spira [GHS83].

Protocol MST

Messages
Connect(Z) -
Initiate(Z,F, S) -
Test(Z, S) -
Accept -
Report(w) -
ChangeRoot -

Variables
GSH notation

si - state of node i SN
- Sleeping = initial state
- Find = participating in search for minimum outgoing edge
- Found = at other times

si(l) - state of link (i, l) as seen by i SE(m)
- Basic = unknown yet
- Branch = edge is branch in MST
- Rejected= edge is non-branch connecting two tree nodes

Fi - fragment identity
Zi - fragment level LN
BestEdgei - edge pointing towards minimum-weight outgoing edge
BestWti - weight of minimum-weight outgoing edge
TestEdgei - adjacent edge currently being tested
pi - branch pointing towards core in− branch
FindCounti - Number of Report messages to be received
wi(l) - weight of link (i, l) w(j)

Initialization

In the beginning :
si = Sleeping
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Algorithm for node i
A1 Node i wakes up
A2 { wakeup()

}
B1 wakeup()
B2 { ∀ adjacent l, set si(l)← Basic;
B3 BestEdgei ← adjacent edge of minimum weight;
B4 BestWti ← w(BestEdgei) ; Zi ← 0 ; si ← Found ;
B5 FindCounti ← 0 ; pi ← nil; @
B6 ChangeRoot() ; @

}
C1 receives Connect(Z) on edge j
C2 { if (si = Sleeping) wakeup() ;
C3 if (Z < Zi) { Z ≤ Zi, see item 3) below
C4 si(j)← Branch;
C5 send Initiate(Zi, Fi, si) on edge j;
C6 if (si = Find)FindCounti ← FindCounti + 1;

}
C7 elseif (si(j) = Basic) place message on end of queue ;wait for until i completes building the tree and changes si(j) to Branch
C8 else {
C9 send Initiate(Zi + 1, w(j), F ind) on edge j;

}
}

D1 receives Initiate(Z,F, s) on edge j Z > Zi
D2 { Zi ← Z ; Fi ← F ; si ← s; pi ← j ;
D3 BestEdgei ← nil; BestWti ←∞ ;
D4 ∀m 6= j such that si(m) = Branch {
D5 send Initiate(Z,F, s) on edge m ;
D6 if (s = Find) FindCounti ← FindCounti + 1 ;

}
D7 if (s = Find) test() ;

}
E1 test()
E2 { TestEdgei ← minimum-weight adjacent edge in state Basic ;
E3 send Test(Zi, Fi) on TestEdgei ;
E4 report() ;

}
F1 receives Test(Z,F ) on edge j
F2 { if (si = Sleeping) wakeup() ;
F3 if (Z > Zi) place message on end of queue ; wait to get to higher level
F4 elseif (F 6= Fi) send Accept on edge j ; what if Z < Zi ??
F5 else { same fragment
F6 if (si(j) = Basic) si(j)← Rejected;
F7 if (TestEdgei 6= j) send Reject on edge j ;
F8 else test() ; check this

}
}
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Figure 7.1: The MST protocol

G1 receives Accept on edge j
G2 { TestEdgei ← nil;
G3 if (w(j) < BestWti) {BestEdgei ← j;BestWti ← w(j)}
G4 report();

}
H1 receives Reject on edge j
H2 { if (si(j) = Basic) si(j)← Rejected;
H3 test();

}
I1 report()
I2 { if (FindCounti = 0 and TestEdgei = nil) {
I3 si ← Found ;
I4 send Report(BestWti) on pi ;

}
}

J1 receives Report(w) on edge j do we need to distinguish pi = nil vs. pi 6= nil ???
J2 { if (j 6= pi){ my fragment
J3 FindCounti ← FindCounti − 1;
J4 if (w < BestWti) {BestEdgei ← j;BestWti ← w};
J5 report();

}
J6 elseif (si = Find) place message on end of queue;

at core, wait to get to Found state
J7 elseif (w > BestWti)ChangeRoot();
J8 elseif (w = BestWti =∞) halt;

}
K1 ChangeRoot()
K2 { if (si(BestEdgei) = Branch) {
K3 send ChangeRoot on BestEdgei; towards new core

}
K4 else { at new core
K5 send Connect(Zi) on BestEdgei ;
K6 si(BestEdgei) ← Branch ;}

}
L1 receives ChangeRoot
L2 { ChangeRoot();

}
* critical changes

@ cosmetic changes

Initial properties:

1. For every i and adjacent l , si(l) is initialized to Basic <B2> and can change at most once, either to

Rejected <F6>,<H2> or to Branch <C4>,<K6>.( the latter is not easy to prove, one must prove that

the state was not Rejected beforehand).

Description of the Protocol

1. Sleeping node awakens <B1>:

(a) minimum-weight adjacent edge is marked as Branch <B6>

(b) message Connect is sent over it <B6>

(c) node goes to state Found <B4>

2. Determining minimum-weight outgoing edge from a level Z fragment:
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(a) Core nodes start broadcasting Initiate(Z,F, s) messages <C8>

(b) Initiate(Z,F, F ind) messages are sent outward on the fragment branches <D5> and to lower level

fragments <C5> (in the paper it says layer (L − 1), but it’s not clear that indeed this is the case

in <C3> ). For every Initiate message sent, a node expects a Report message back. The variable

FindCounti keeps track of the number of Initiate’s sent minus the number of Report’s received.

(c) A node finds its minimum-weight outgoing edge via Test/Reject/Accept messages (see 6) below).

(d) Nodes collaborate via Report messages converging to the core node <I4> to find the minimum-weight

fragment outgoing edge. BestEdge is saved and nodes go into Found state.

3. Receipt of Connect

(a) A sleeping node i can receive Connect only if the sending node k has sent it upon its own wakeup,

otherwise k has previously sent Test to i, which would have woken i up.

(b) Upon entering <C3> holds Z ≤ Zi. This is because of the following:

• If Zi = 0, then Z = 0 as explained above.

• If Zi > 0, then Z cannot be larger than Zi because the sending node k has previously sent Test

to i and that Test would have been placed on the end of queue in <F3> until Zi would reach the

level of Z.

4. Changing the core

(a) The two core nodes exchange Report <I4>. When a core node receives Report, it waits, if necessary,

to get into state Found <J6>. The core node with the lower BestWt, starts <J7> propagation of

ChangeRoot towards minimum-weight edge <K3>.

(b) When the ChangeRoot message reaches the node adjacent to the minimum-weight outgoing edge, the

(i, pi) edges form a rooted tree, rooted at this node.

(c) When the ChangeRoot message reaches the node adjacent to the minimum-weight outgoing edge, the

node with the minimum-weight outgoing edge sends a Connect(Z) message over this edge <K5>.

(d) If two fragments at level Z have the same minimum-weight outgoing edge, each sends Connect(Z) over

the edge, which causes the edge to become a Z + 1-level core <C9>

5. Connecting a low-level fragment to a high-level one <C3>

(a) Suppose node i in fragment Fi with level Zi sends a Connect message to node i′ in fragment F ′ with

level Zi′ , where Zi′ > Zi. When it receives the Connect message, node i′ responds with an Initiate

message <C5>.

(b) If i′ is in state Find, the low-level fragment joins the search for the minimum-weight outgoing edge <

C6>. If i′ is in state Found, we can deduce that an outgoing edge from node n′ has a lower weight

than the minimum-weight outgoing edge from Fi. Thus there is no need for fragment Fi to join the

search. (??? Is it possible that edge (i, i′) is the minimum-weight outgoing edge from Fi ? Is there a

problem in this case ? Maybe it works, but it is not the normal operation as described in the paper.)

6. Finding minimum-weight outgoing edge at a node (test() procedure, <E1>)

(a) starts when node i receives Initiate in state Find, <D7>, at which time node i sends Test(Zi, Fi) on

its minimum-weight adjacent edge in state Basic
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(b) At the receiving node, if the node’s level Zi is less than the received level Z, the node delays making

any response <F3>.

(c) Otherwise, if the receiving node is not in the same fragment as the sending node, Accept is sent back

to the sending node <F4>.

(d) Otherwise, the link is put in Rejected state and, if Test was not previously sent on this link by the

receiving node, the latter sends Reject back. (Note: Probably the Test and Reject messages can be

combined in one, in <F7>, the node can send Test(Zi, Fi) and the procedure for Reject can be deleted.
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Chapter 8

MINIMUM-HOP-PATH

PROTOCOLS

In previous chapters, we have presented protocols for propagation of information in networks. In particular,

we developed in Chap. 5 protocols like Topology and Parameter Broadcast, which require nodes to distibute

to all network nodes their local topology and adjacent parameters. The result is that all nodes maintain

a map of the entire network, allowing them to participate in routing protocols of the link state type, like

the Internet OSPF [Hui95]. Another method for routing in communication networks, including the Internet,

is Distance Vector [Hui95]. With this method, nodes do not maintain the entire network topology. They

keep only a table of the estimated next-hop and estimated shortest distance to each other destination in the

network. By exchanging these table with the neighbors, nodes update their own tables. In the present and

the following chapters, we shall discuss such protocols. The present chapter assumes unity-weights on all

links, so that we are looking for minimum-hop protocols, while Chapter 9 deals with protocols for networks

with variable link weights.

8.1 Protocol MH1

The problem considered next is to obtain the paths with smallest number of links (hops) from each node to

each other node. As before, at the beginning of the algorithm a node knows only its own identity and the

adjacent links. When the algorithm is completed at a node i, we want the node to know its distance dki in

terms of number of links to all other nodes to which it is connected and a preferred neighbor pki through which

it has the minimum-hop path to k. Observe that we do not require nodes to know the entire minimum-hop

path.

If the travel time of control messages were identical on all links, then we could have accomplished

the minimum-hop-path by using protocol PI1 (see Theorem 3.1c)). However, as stated before, such an

assumption is not practical, and the problem is to design a Distributed Network Protocol where nodes will

receive the first message with a given identity from the neighbor providing the shortest path, even if link

delays are arbitrary. Such a protocol has been proposed by Gallager [Gal76], [Gal82].

A node enters the algorithm in the same way as in the CT protocols, namely when receiving START or

the first control message, at which time it knows its own identity and the identity of all its neighbors, i.e.

all nodes that are at distance 0 and 1 from itself. At that time it sends the identity of its neighbors to all

neighbors. After having received the identity of the neighbors of all its neighbors, node i knows all nodes

143



March 13, 2013

that are at distance 2 from it. Node i keeps the information, sends it to all neighbors and then waits to

receive the lists of all nodes that are at distance 2 from each of its neighbors. The union of these lists minus

the set of nodes already known to i, i.e. those that are at distance 0,1 or 2 from it, is exactly the set of nodes

that is at distance 3 from i. This information is kept again at i and also distributed to neighbors, and the

procedure is repeated. If at some level, the union of the lists received from all neighbors contains no nodes

that are unknown to i, then node i has completed the algorithm. It sends to all neighbors a message saying

that it has no new node identities to send and stops. Any further message it may receive is disregarded.

Protocol MH1

Messages

MSG(LISTi) - message sent by node i
START - MSG(∅) from nil

Variables

dki - distance from i to k; set initially to | V | for all k (values 0, 1, . . . | V |)
pki - preferred neighbor of i for k, for all k
Zi - state of node i showing distance covered by the protocol up to now (values 0, 1, . . . , | V | −1)
mi - shows if node i is currently participating in the protocol (values 0, 1)
Ni(l) - level of last message received on link (i, l) (values 0, . . . , | V | −1), for l ∈ Gi

Initialization

- just before node i enters the protocol, it has Zi = 0.
- after entering the protocol, node i discards and disregards messages not sent in the present instance
of the protocol
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Algorithm for node i

A1 receive MSG(LIST ) from l ∈ Gi ∪ {nil}
A2 { if (Zi = 0){
A3 initialize();
A4 level();

}
A5 if (mi = 1){
A6 update();
A7 if (Zi ≤ Ni(l

′) ∀l′ ∈ Gi) level();
}

}
B1 initialize()
B2 { for (k ∈ V ){
B3 dki ←| V |;
B4 pki ← nil;

}
B5 for (l′ ∈ Gi) Ni(l

′)← 0;
B6 mi ← 1;
B7 dii ← 0;
B8 for (k ∈ Gi){
B9 dki ← 1;
B10 pki ← k;

}
}

C1 update()
C2 { Ni(l)← Ni(l) + 1;
C3 for (k ∈ LIST ){
C4 if (dki > Ni(l) + 1){
C5 dki ← Ni(l) + 1;
C6 pki ← l;

}
}

}
D1 level()
D2 { Zi ← Zi + 1;
D3 LISTi ← {k | dki = Zi};
D4 for (k ∈ Gi) send MSG(LISTi) to k;
D5 if (LISTi = ∅) mi ← 0;

}

Note: Observe that the variable pki is not needed by the algorithm, and only designates the neighbor
corresponding to the minimum hop path to k.
At first glance it seems that we could use the concept of synchronizers of [Awe85a] to prove the properties

of Protocol MH1. The time when Zi ← n, n = 1, 2, . . . could be taken as the synchronizer time ti(n). The

MSG sent by i to all neighbors at that time could be taken as SY NCHn in synchronizer α given in

[Awe85a]. However, as seen in Lemma 8.2, these sequences of instances do not satisfy a basic property

required in [Awe85a], that a MSG sent by i at ti(n) can arrive at a neighbor k before tk(n). Therefore

there is no synchronizer for this protocol and hence the proof must be carried out directly.

The following definition and theorem summarize the main properties of the protocol.

Definition: The number of links on the minimum-hop path from i to k is called the hop-distance from

i to k.

Theorem 8.1 (MH1) Suppose START is delivered to a node (or several nodes) in V . Then every node

i ∈ V :

a) will enter the protocol (i.e. perform <A2>) in finite time;

b) will complete the protocol (i.e. perform <D5>) in finite time, with dki , pki corresponding to the minimum-

hop path from i to k for all nodes k ∈ V and with dki =| V |, pki = nil for all nodes k 6∈ V .

c©Adrian Segall 145



March 13, 2013

Proof: The proof is given in the following two lemmas. The first indicates several preliminary properties of

protocol MH1 connected to message exchanges and variable updates, while in the second we use Lemma 8.2

to validate the basic properties of the protocol.

Lemma 8.2 Suppose START is delivered to a node (or several nodes) in V . Then for any i ∈ V holds:

a) i will enter the protocol in finite time;

b) messages are sent by node i if and only if Zi is incremented at the same time; if MSG is sent by i while

Zi ← Z, receipt of the MSG at neighbor l will cause Nl(i)← Z;

c) Zi and Ni(m) for each m ∈ Gi change only by increments of +1;

d) for each m ∈ Gi, holds Ni(m) = Zi or Zi ± 1 and there is at least one m for which Ni(m) = Zi − 1 (note:

this implies Zi = minmNi(m) + 1);

e) no message can arrive on links (i,m) for which Ni(m) = Zi + 1;

f) if Zi is incremented at time t, then for all m ∈ Gi holds Ni(m)(t+) = Zi(t+) or Zi(t+)− 1.

Proof: Part a) holds since propagation of <A2> happens as /phase1/ in PI1. Assertion b) holds since Zi

is incremented whenever MSG is sent (<D2>,<D4>), Ni(l) is incremented whenever MSG is received from

l(<C2>) and both are initialized to 0. In addition, c) follows from <D2>. Property d) is true immediately

after the time when node i enters the algorithm, at which time either Zi = 1 and minmNi(m) = 0, or Zi = 2

and minmNi(m) = 1, the latter if i has only one neighbor and enters the algorithm by receiving MSG from

it. Suppose now that the property is true at node i up to time t− and we want to show that it will hold at

time t+ as well. The variables Ni(•) or Zi can change at time t only if a MSG is received, from neighbor l

say. Let Zi(t−) = Z. We have several cases:

i) Ni(l)(t−) = Z − 1 and ∃m 6= l with Ni(m)(t−) = Z − 1; then Ni(l)(t+) = Zi(t+) = Z and all other

Ni(•) do not change, hence d) continues to hold at time t+.

ii) Ni(l)(t−) = Z − 1 and 6 ∃m 6= l with Ni(m)(t−) = Z − 1; then Ni(l)(t+) = Z and Zi(t+) = Z + 1, since

<A7> holds at t, and d) continues to hold at t+.

iii) Ni(l)(t−) = Z, in which case Ni(l)(t+) = Z+ 1 and Zi(t+) = Z, hence d) continues to hold at time t+.

iv) We claim that Ni(l)(t−) cannot be Z+1. Suppose Ni(l)(t−) = Z+1. Then Ni(l)(t+) = Z+2, and from

b) follows that at time t1 < t, node l has sent MSG(LISTl) while Zl = Z + 2. From <A7>, <D2>,<D4>

we have Zl(t1−) = Z + 1 and Nl(i)(t1+) ≥ Z + 1. This means that ∃t2 < t1 when i has sent MSG(LIST )

to l, while Zi(t2+) = Z + 1. But the latter and Zi(t−) = Z contradicts the monotonicity of Zi (see c)).

This completes the proof of d). Observe now that e) is exactly case iv) in d). Finally, observe that

scanning cases i)-iv) of d), we see that Zi is incremented only in case ii) and f) clearly holds in this case,

completing the proof of the lemma. qed

Lemma 8.3 Recall the definition of the term hop-distance just before Theorem 8.1. Under the same

conditions as in Lemma 8.2 holds:

a) If a node i has nodes at hop-distance r, then it sets Zi ← r in finite time and then sends MSG(LISTi),

where LISTi contains exactly all nodes k that are at hop-distance r; for all those nodes holds dki = r and pki
= first link on minimum-hop path to k and these dki , pki are final.
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b) Let Si be the largest hop-distance from node i in the network, i.e. node i does have nodes at hop-distance

Si, but has no nodes at hop-distance (Si + 1); then node i will set Zi ← (Si + 1) in finite time, at which time

it sends MSG(LISTi) with LISTi = ∅ and performs <D5>; node i will not increase Zi any further.

Proof: Setting of Zi ← 1 while sending MSG(LISTi) with LISTi = {Gi} propagates as in PI1 and hence

will happen at all nodes in finite time. Now suppose a) holds for all nodes that have nodes at hop-distance

(r − 1). Consider a node i that has nodes at hop-distance r. Then itself and all its neighbors m have nodes

at hop-distance (r − 1) and by the induction hypothesis, they set Zm ← (r − 1) and send MSG(LISTm).

When such a message arrives at i, it sets Ni(m) ← (r − 1) and after all such messages arrive, <A7> will

hold with Zi = (r − 1). This causes Zi ← r. At this time we have from Lemma 8.2f), Ni(m) = r or (r − 1)

for all m.

Now suppose k is at hop-distance r from i. Then there is a neighbor m of i such that k is at hop-distance

(r−1) from m and there is no neighbor m of i such that k is at hop-distance strictly less than (r−1) from m.

By the induction hypothesis, k was sent by m in MSG(LISTm) while Zi ← (r − 1) and hence was received

at i while Ni(m) ← (r − 1), but was sent by no neighbor m′ while Zm′ ← Z < (r − 1). Hence at the time

Zi ← r we have dki = r, and therefore k is sent in MSG(LISTi). From <C5>,<C6> it is clear that this dki
and the corresponding pki are final and correct. A similar argument shows that nodes at hop-distance other

than r cannot be included in the LISTi considered above. This completes the proof of a).

First consider a node i s.t. Si = min{Sj} where the min is over all nodes in the network. All its

neighbors m have nodes at distance Si and by a) they send MSG(LISTm) while Zm ← Si. When all these

messages arrive to i, Zi will become Si + 1, but since i has no nodes at hop-distance Si + 1, holds LISTi = ∅
and hence i performs <D5>. Now suppose by induction that b) holds for all nodes i for which Si ≤ S − 1.

Consider a node j with Sj = S. Node j has a node k at hop-distance S and k is included in LISTj when j

sends MSG(LISTj) while Zj ← S. We need to show that Zj will eventually take on value (S + 1). First

we show that for all neighbors m of j, Zm will become S. For an arbitrary neighbor m of j, node k is at

hop-distance (S − 1), S or (S + 1) from m and hence Sm ≥ S − 1. If Sm ≥ S, then a) implies that Zm will

become S in finite time. If Sm = S− 1, then Zm will become S in finite time from the induction hypothesis.

Hence from Lemma 8.2b), Nj(m) will become S in finite time for all neighbors m of j and hence Zj will

become (S + 1). Since j has no nodes at hop-distance (S + 1), <D5> will hold and this completes the proof

of the lemma. qed

Now, Lemma 8.2a) and Lemma 8.3a),b) are exactly Theorem 8.1 and this completes the proof of the

Theorem.

Communication cost: From the proof of Theorem 8.1 follows that the identity of every node travels

exactly once on each link, and hence we need | V | log2 | V | bits on each link in each direction, for a total

of 2 | E || V | log2 | V | bits.

Time complexity = O(| V |2)

Computation ????

Problems

Problem 8.1.1 * Wrong Initial Conditions

Problem 8.1.2 Consider a network with nodes a, b, c, d, s and links and delays (in both directions) as

follows:
Link a,b a,c a,s b,c b,d c,d c,s d,s

Delay 3 5 3 3 2 2 1 6
The nodes in this network perform MH1. Node s

receives START at t = 0.

1. Give the sequence of messages received at s, and the sequence of messages sent by s.
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2. When does the protocol complete?

3. Give the tables at each node when the protocol completes?

Problem 8.1.3 Suppose that after an execution of the MH1 protocol is completed at all nodes, a new link

goes up between nodes i and j (the network was connected before this event).

a) Explain and prove how can i and j exchange only one message to update their tables (namely, to update

pki , d
k
i , p

k
j , d

k
j for all k ∈ V .

b) Under what condition on the new and old tables of i and j are the tables of all other nodes correct in

spite of the link addition?

Problem 8.1.4 a) Give an upper bound on the number of messages a node can receive after performing

<D5>. What can be said on their contents? Are the LIST’s of those messages necessarily empty?

b) Prove or give counterexample: Every node receives at least one MSG after performing <D5>.
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8.2 Extending MH1 to changing topologies

change section name check Lamport, Time,Clocks,.. 1978 As with CT protocols, MH1 requires spec-

ified initial conditions and therefore its extension to handle topological changes must include reinitialization

after every such change. This is implemented as in Sec. 4.6 by restarting a new cycle of the protocol after

every topological event. The cycles of the protocol will be labeled with increasing numbers, every node re-

members the highest cycle number known to it so far and each of the cycles corresponds now to the original

(nonextended) protocol. When a node wants to trigger a new cycle due to an adjacent topological event, it

resets its variables, increments the cycle number and acts as if it has received START for a new cycle with

this number. Here resetting variables means to adjust the appropriate variables to their required initial value

as stated in the corresponding assumption in each of the protocols (e.g. in MH1, pki ← nil, dki ←| V | for all

k and Zi ← −1, Ni(m)← −1 for all m ∈ Gi). The number of the new cycle will be carried by all messages

belonging to this cycle and now, any node receiving a message with cycle numbers lower than the one known

to it so far discards this message. A node receiving a message with higher cycle number than the highest

known to it, resets its own variables, increases its registered maximal cycle number accordingly and acts as if

it enters the protocol now (i.e. the corresponding cycle of the extended protocol). In this way the cycle with

higher number will cover the lower-number cycles, in the sense that when a higher cycle reaches any node,

the node will forget the previous knowledge and will participate only in the most recent cycle. Observe that

several nodes may start the same new cycle independently because of multiple topological events, but the

protocol allows this situation to happen, considering it in the same way as if several nodes receive START

in the nonextended protocol.

???? There is a question, whether it is indeed necessary for all nodes to forget their entire previous

knowledge, as opposed to protocols where only the information affected by the topological change is discarded,

while the rest of the network adapts smoothly to the new situation. For the PU protocol, such a protocol

appears in [xxx], [yyy], [zzz], but for the others this is still an open question. ?????

As an example, we shall write exactly the extended MH1 protocol.

Protocol EMH1

Messages

MSG(R,LIST ) message

Variables

Gi - set of neighbors of i, i.e. k ∈ Gi if (i, k) is in Connected state at i
dki - distance from i to k
pki - preferred neighbor from i to k for all k
Zi - state of node i showing distance covered by the protocol up to now (values 0, 1, . . . , | V | −1)
mi - shows if node i is currently participating in the protocol (values 0,1)
Ni(l) - level of last message received on link (i, l) (values 0, . . . , | V | −1), for l ∈ Gi

Ri - highest sequence number known to i (values: 0,1, . . . );
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Algorithm for node i
A1 node i becomes operational
A2 { Ri ← 0;

}
B1 link (i, l) enters Connected state or Initialization Mode
B2 { Ri ← Ri + 1; /* enter protocol */
B3 Zi ← 0;
B4 initialize();
B5 level();

}
C1 receives MSGj(R,Λ) from l ∈ Gi
C2 { if (R ≥ Ri){
C3 if (R > Ri){
C4 Ri ← R; /* enter protocol */
C5 Zi ← 0;
C6 initialize();
C7 level;

}
C8 if (mi = 1){
C9 update();
C10 if (Zi ≤ Ni(l

′) ∀l′ ∈ Gi) level();
}

}
}

D1 initialize()
D2 { for (k ∈ V ){
D3 dki ←| V |;
D4 pki ← nil;

}
D5 for (l′ ∈ Gi) Ni(l

′)← 0;
D6 mi ← 1;
D7 dii ← 0;
D8 for (k ∈ Gi){
D9 dki ← 1;
D10 pki ← k;

}
}

E1 update()
E2 { Ni(l)← Ni(l) + 1;
E3 for (k ∈ LIST ){
E4 if (dki > Ni(l) + 1){
E5 dki ← Ni(l) + 1;
E6 pki ← l;

}
}

}
F1 level()
F2 { Zi ← Zi + 1;
F3 LISTi ← {k | dki = Zi};
F4 for (k ∈ Gi) send MSG(Ri, LISTi) to k;
F5 if (LISTi = ∅) mi ← 0;

}
Note that <B1> and <C3> here correspond to <A2> in MH1. The properties of EMH1 are:

Theorem 8.4 (EMH1) Consider an arbitrary finite sequence of topological events with arbitrary timing

and location and let (E, V ) denote a connected subnetwork in the final topology. Then there is a finite time

after the sequence is completed after which no messages travel in (V,E) and all nodes i ∈ V will have mi = 1

with the same cycle number Ri, with correct dki and pki for all k ∈ V and with dki =| V |, pki = nil for all

k 6∈ V .

Proof: From <B2>, each topological event increments the cycle counter Ri at the node i adjacent to the
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change. Let {in} be the collection of nodes that register change of status of an adjacent link, and let {tn}
be the corresponding collection of times when the status change is registered. Since there is a finite number

of topological events, the collections {in}, {tn} are finite. Let R = max{Rin(tn+)} over all n. Then R is the

highest cycle number ever known in the network and the cycle with number R is started by (one or more)

nodes i ∈ {in} that increment their Ri to R as a result of a topological event. These nodes can be considered

as if they receive START in the MH protocol and, indeed, the network covered by the cycle with number

R registers no more topological events, since no counter number Ri is ever increased to (R + 1). Moreover,

from the Follow-up property of DLC follows that in the final topology, l ∈ Gi if and only if i ∈ Gl, so that

the assumption of bidirectionality (Assumption a) in Sec. 3.1) holds in the final topology. Consequently, the

evolution of the cycle with sequence number R is the same as in protocol MH1 and therefore Theorem 8.1

holds here, completing the proof.

Problems

Problem 8.2.1 In a network with all delays constant and equal to 1, can we use bounded sequence numbers

in EMH1?

Problem 8.2.2 Does EMH1 work in a network where all parts of data reliability properties, except for

crossing , hold?

Problem 8.2.3 Consider a network with nodes a, b, c, d, e, links and delays (in both directions) as follows:

a,b - 3

a,c - 5

a,e - 3

b,c - 3

c,d - 2

c,e - 4

d,e - 2

Suppose all nodes come up and all links enter connected state at time t = 0, and afterwards the following

happen :

At time t = 5 link (a, b) fails and both ends enter Initialization state.

At time t = 9 link (e, c) enters Initialization state at node e.

At time t = 10 link (e, c) enters Initialization state at node c, and link (a, b) enters connected state at node

a.

At time t = 12 link (e, c) enters connected state at node c, and link (a, b) enters connected state at node b.

At time t = 15 link (e, c) enters connected state at node e and no more topological changes happen afterwards.

The nodes perform EMH1:

1. Indicate the values of the variables (Gi, d
k
i , p

k
i , Zi, Ri) as a function of time at each node.

2. At what time are there no messages traveling in the network?

3. What is the highest sequence number reached by the network? Suggest other timings for the same topological

changes in order to get a higher maximal sequence number, suggest timings to get a lower maximal sequence

number.

Problem 8.2.4 Specify the code of ECT5 (protocol CT5 extended to handle topological changes using

sequence numbers).
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8.3 Another Version (MH2)

A slight change in Protocol MH1 [Gal82] reduces the time complexity from O(| V |2) to O(| V |), without

affecting the communication cost. Instead of collecting the identities of all nodes at a given distance and

send them in one message, we send the identities in separate messages as they become available. To enable

neighbors to distinguish between levels, after having sent all identities of nodes at a given distance, a node

sends a SY NCH message to all neighbors.

Protocol MH2

Messages

MSG(k) - message sent by node i with identity of node k
SY NCH - message designating beginning of new level
START - SY NCH from nil

Variables

dki - distance from i to k; set initially to | V | for all k (values 0, 1, . . . | V |)
pki - preferred neighbor of i for k for all k
Zi - state of node i showing distance covered by the protocol up to now (values −1, 0, 1, . . . , | V | −1)
mi - shows if node i is currently participating in the protocol (values 0, 1)
Ni(l) - level of last message received on link (i, l) (values −1, 0, . . . , | V | −1), for l ∈ Gi

L - shows if messages MSG have been sent since Zi was last incremented

Initialization

- just before node i enters algorithm, holds Zi = −1
- after entering the protocol, node i discards and disregards messages not sent in the present instance
of the protocol
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Algorithm for node i

A1 receive SY NCH from l ∈ Gi ∪ {nil}
A2 { if (Zi = −1){
A3 initialize();
A4 level();

}
A5 if (mi = 1){
A6 Ni(l)← Ni(l) + 1;
A7 if (Zi ≤ Ni(l

′) ∀l′ ∈ Gi) level();
}

}
B1 receive MSG(k) from l ∈ Gi ∪ {nil}
B2 if (mi = 1) update();

}
C1 initialize()
C2 { for (k ∈ V ){
C3 dki ←| V |;
C4 pki ← nil;

}
C5 for (l′ ∈ Gi) Ni(l

′)← −1;
C6 mi ← 1;
C7 L← 1;
C8 dii ← 0;
C9 for (k ∈ Gi){
C10 dki ← 1;
C11 pki ← k;

}
}

D1 update()
D2 { if (dki > Ni(l) + 1){
D3 dki ← Ni(l) + 1;
D4 pki ← l;

}
D5 if (dki = Zi + 1){
D6 for (l′ ∈ Gi) send MSG(k) to l′;
D7 L← 1;

}
}

E1 level()
E2 { Zi ← Zi + 1;
E3 for (k ∈ Gi) send SY NCH to k;
E4 if (L = 0) mi ← 0;
E5 else L← 0;
E6 for (k′ | dk′i = Zi + 1){
E7 for (l′ ∈ Gi) send MSG(k′) to l′;
E8 L← 1;

}
}

Problems

Problem 8.3.1 How do Lemmas 8.2 and 8.3 change when proving MH2?
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8.4 The Fixed Topology Distributed Bellman-Ford Minimum Hop

Protocol (MH3)

This protocol establishes minimum hop paths from all nodes in the network to a given destination s. A

node i keeps an estimate di of its shortest path to the destination and estimates Di(l) of the shortest path

via each neighbor l. When the estimate di changes, i sends a message containing the new estimate to all

neighbors. When i receives a message from a neighbor l, it updates its estimate Di(l) of the shortest path

via that neighbor and its estimate di of its shortest path to the destination. If the new di is different from

the old one, a message containing the new value is sent to all neighbors. The distance from a node i to s

can be no larger than | V | −1, where | V | is the maximum number of nodes potentially in the network.

It is shown that a finite time after the protocol is started, it terminates. At that time, all nodes in V have

correct estimated distances: if s ∈ V , then all di ≤| V | −1 and are correct; if s 6∈ V , then all di =| V |. In

practice, the protocol is repeated independently for every destination s. Also, to save overhead, messages

belonging to several protocols (for different destinations) may be combined in one message.

This is the ARPA-1 routing protocol [MW77], specialized to the case when link weights are 1, except that

the updates are performed on an event driven basis rather than periodically. It is also the fixed topology

part of the 1 MERIT network routing protocol [Taj77].
Protocol MH3

Messages

MSG(d) - message sent by node i, containing i’s estimated distance to s, (values 0, 1, . . . , | V |)

Variables

di - estimated distance from i to s (values 0, 1, . . . , | V |)
pi - preferred neighbor of i
Di(l) - estimated distance from i to s via neighbor l, (values 0, 1, . . . , | V |)

Initialization

holds ds = 0 and for all i 6= s and l ∈ Gi, the variables di and Di(l) satisfy:

a) di = min Di(l
′) over l′ ∈ Gi

b) Di(l) = min (dl + 1, | V |) or there is at least one MSG on (l, i) and the last MSG(d) on (l, i)
contains d = dl

Note: an example of a set of variables and messages that satisfy the above is: di = Di(l) =| V | for all
i 6= s and all l ∈ Gi, there is a MSG(0) on all links (s, l), for all l ∈ Gs and there is no MSG after it.

Algorithm for node s
A1 do nothing

Algorithm for node i 6= s

B1 receive MSG(d) from l ∈ Gi

B2 { Di(l)← min(d+ 1, | V |);
B3 update();

}
C1 update()
C2 { k∗ ← node that achieves minDi(l

′) over l′ ∈ Gi;
C3 if (di 6= Di(k∗)) {
C4 pi ← k∗;
C5 di ← Di(k∗);
C6 for (k ∈ Gi) send MSG(di) to k;

}
}

1introduce periodical updates
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Lemma 8.5 At all times holds ds = 0 and for all i 6= s and l ∈ Gi, the variables di and Di(l) satisfy:

a) di = min Di(l
′) over l′ ∈ Gi

b) Di(l) = min (dl + 1, | V |) or there is at least one MSG on (l, i) and the last MSG(d) on (l, i) contains

d = dl

c) all variables di, Di(k) take on values between 0 and | V |; all messages MSG(d) contain 0 ≤ d ≤| V |

Proof: Note that ds stays 0 forever and a) and c) are obviously correct. To prove part b), consider a node i

and some l ∈ Gi. Recall from assumption a) in Sec. 3.1 that l ∈ Gi if and only if i ∈ Gl. Then b) is correct

at initialization by assumption and if l changes its estimated distance dl, it sends a MSG(dl) to all nodes in

Gl, and in particular on (l, i). By FIFO, unless l changes again its dl, this is the last MSG on (l, i), until it

arrives at i, in which case the latter sets Di(l) = min (dl + 1, | V |). qed

Theorem 8.6 (MH3) There is a finite time after which no messages travel in (V,E) and: i) if s ∈ V , then

all nodes i ∈ V have di = shortest hop distance to s and pi = first link on the minimum hop path to s; ii) if

s 6∈ V , then all nodes i ∈ V have di =| V |.

Proof: We prove the theorem via several lemmas.

Lemma 8.7 If all message activity ceases, then the di, Di(l), pi entries are correct for all i ∈ V and all

l ∈ Gi.

Proof: Suppose first that s ∈ V . For i ∈ V , let

d∗i = shortest hop distance from i to s

K = set of nodes in V for which di < d∗i

j = node in K with minimum di, i.e. holds dj ≤ di,∀i ∈ K

Since there are no messages on the links, Lemma 8.5 implies that dj = Dj(pj) = dpj
+ 1, hence pj 6∈ K,

so dpj
≥ d∗pj

. But since j and pj are neighbors, the triangle inequality implies that d∗j ≤ d∗pj
+ 1. Hence,

dj = dpj
+ 1 ≥ d∗pj

+ 1 ≥ d∗j , contradicting the fact that j ∈ K. Therefore K is empty.

Now let

K ′ = set of nodes in V for which di > d∗i

j = node in K ′ closest to s, i.e. holds d∗j ≤ d∗i ,∀i ∈ K ′

j∗ = the next neighbor of j on the minimum hop path to s.

Holds d∗j = d∗j∗ + 1. Since j∗ is closer to s than j and hence j∗ 6∈ K ′, holds dj∗ ≤ d∗j∗ (in fact, since

we have shown already that K is empty, the latter holds with equality). Moreover, dj is selected as the

minimum of Dj(l) over all neighbors l of j and Dj(j∗) = dj∗ + 1. Therefore, holds dj ≤ dj∗ + 1. Hence

dj ≤ dj∗ + 1 ≤ d∗j∗ + 1 = d∗j , contradicting the fact that j ∈ K ′. Therefore K ′ is also empty and therefore

all nodes have correct entries.

Now suppose that s 6∈ V . Suppose that message activity had ceased and ∃i ∈ V such that di <| V |. Let

j be the node in V with minimum di, i.e. dj ≤ di ∀i ∈ V . From Lemma 8.5 follows that there is a neighbor

k of j, such that dk + 1 = Dj(k) = dj <| V |. This means that dk < dj , contradicting the fact that j is the

node with minimum di. qed
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Lemma 8.8 Let MSG(d′i), MSG(di) be two consecutive messages sent out by node i, the second as a

result of receiving MSG(d). Then either di = d+ 1 or di > d′i (or both).

Proof: Message MSG(di) is sent out only if at the same time di changes. If di is decreased, then the new

minimum is d+ 1. If it is increased, then d′i is the value just before the increase. qed

Lemma 8.9 Message activity ceases in finite time.

Proof: Messages MSG(d) with d = 0 can only exist on links at initialization. Hence there is only a

finite number of such messages. Suppose a node i sends out an infinite number of messages MSG(1). By

Lemma 8.8, every time it does that except maybe for the first time, it either receives a message MSG(0) or

the previous message sent out by i had d < 1, i.e. it had d = 0. Hence, node i either sends or receives an

infinite number of messages with d = 0, contradiction. It is shown in the same way by induction that there

are only a finite number of messages with d = 2, 3, ..., | V |. Since there is only a finite number of possible

values of d, there is only a finite number of messages in the network2. qed

Theorem 8.6 follows from Lemmas 8.7 and 8.9. qed

Problems

Problem 8.4.1 The proof of Lemma 8.7 consists of two steps : in the first step, the node j that is used to

prove that K is empty is defined as the node in K with minimum di; in the second step, the node j′ that is

used to show that K ′ is empty is defined as the node in K ′ closest to s. Explain why we cannot use for j′

the same definition as in the first step, namely j′ = the node in K ′ with minimum di.

Problem 8.4.2 Does MH3 still work properly if the FIFO property of DLC does not hold?

Problem 8.4.3 Give examples where if the required initial conditions of MH3, do not hold, the protocol

does not work.

2Message complexity????

Time complexity????
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8.5 The Changing Topology Distributed Bellman-Ford Minimum-

Hop Protocol (EMH3)

One of the attractive properties of the Bellman-Ford minimum hop distributed protocol is that the changing

topology version needs no reinitialization after every topological event, as other protocols, like MH1 and

the Dijkstra distributed protocols do. This is due to the fact that the fixed topology versions work with

quite general initial conditions. The only requirements are that at initialization, di minimizes the entries

Di(l) and, in addition, either Di(l) reflects the minimum distance dl or there is a message on the link (l, i)

that reflects that distance and that is the the last message on (l, i). Therefore, proper operation of the

changing topology version is ensured if the latter preserves those properties after every topological event

and operates identically to the fixed topology version in a fixed topology network. As in the fixed topology

version, we specify the algorithm for each destination separately. In practice, the algorithm is performed for

all destinations in parallel.

Protocol EMH3

Messages

MSG(d) - message sent by node i, containing i’s estimated distance to s

Variables

Gi - set of neighbors, i.e. l ∈ Gi if (l, i) is in Connected state at i
di - estimated distance from i to s (values 0, 1, . . . | V |)
pi - preferred neighbor of i
Di(l) - estimated distance from i to s via neighbor l, ( all l ∈ Gi)

Algorithm for node s
A1 Node s becomes operational
A2 { ds ← 0;

}
B1 Link (s, l) enters Connected state
B2 { send MSG(0) to l;

}
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Algorithm for node i 6= s
C1 Node i becomes operational
C2 { di ←| V |;

}
D1 Link (i, l) enters Connected state
D2 { Di(l)←| V |;
D3 send MSG(di) to l;

}
E1 Link (i, l) enters Initialization mode
E2 { if (l = pi) update fail();

}
F1 receives MSG(d) from l ∈ Gi

F2 { Di(l)← min(d+ 1, | V |);
F3 update();

}
G1 update() /* same as in MH3 */
G2 { k∗ ← node that achieves minDi(l

′) over l′ ∈ Gi;
G3 if (di 6= Di(k∗)) {
G4 pi ← k∗;
G5 di ← Di(k∗);
G6 for (k ∈ Gi) send MSG(di) to k;

}
}

H1 update fail()
H2 { k∗ ← node that achieves minDi(l

′) over l′ ∈ Gi;
H3 pi ← k∗;
H4 if (di 6= Di(k∗)) {
H5 di ← Di(k∗);
H6 for (k ∈ Gi) send MSG(di) to k;

}
}

Lemma 8.10 At all times holds ds = 0 and for all i 6= s and l such that l ∈ Gi and i ∈ Gl (i.e. (i, l) ∈ E),

the variables di and Di(l) satisfy:

a) di = minDi(l
′) over l′ ∈ Gi

b) Di(l) = min(dl + 1, | V |) or there is at least one MSG on (l, i) and the last MSG(d) on (l, i) has d = dl.

c) messages MSG(d) always contain 0 ≤ d ≤| V |

Proof: Note that ds stays 0 forever and that a) and c) are obviously correct. To prove part b), consider

a node i and some l such that l ∈ Gi and i ∈ Gl, at some time t. Let tl, ti denote the last time before

t when respectively i joined Gl and l joined Gi, namely the last time when (i, l) entered Connected state

at l and i respectively. At time tl, node l sends to i a message MSG(dl) (see Fig. 8.1). If tl > ti, then at

time max(tl+, ti+) = tl+, this is the last and only MSG on (l, i), therefore b) holds at that time. On the

other hand, if ti > tl, then by the Crossing property of DLC, (i, l) was in Initialization Mode at i on the

entire interval (tl, ti), so that the MSG sent by l to i at time tl and all possible subsequent MSG’s due

to possible changes of dl have not been delivered to i by time ti. Therefore, by the Confirm property of

DLC, those MSG’s have not yet been acknowledged and thus are still on the link (l, i). Therefore b) holds

at max(tl+, ti+) = ti+. If subsequently, l changes its estimated distance dl, it sends a MSG(dl) to all its

neighbors, and in particular on (l, i). By FIFO, the last MSG on (l, i) carries dl, until it arrives at i, in

which case the latter sets Di(l) = min(dl + 1, | V |). qed

Theorem 8.11 (EMH3) Consider an arbitrary finite sequence of topological events with arbitrary timing

and location and let (V,E) denote a connected subnetwork in the final topology. Then there is a finite time

after the sequence is completed after which no messages travel in (V,E) and:
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Figure 8.1: Diagram for proof

a) if s ∈ V , then all nodes i ∈ V have di = shortest hop distance to s and pi = first link on the minimum

hop path to s;

b) if s 6∈ V , then all nodes i ∈ V have di =| V |.

Proof: The properties of Lemma 8.10 hold at all times and in particular immediately after the last time

t̂ when <A1>,<B1>,<C1>, <D1> or <E1> occur. After that time only <F1>-<G6> are operational,

which is exactly Protocol MH3, on a fixed topology network. From the Follow-up property of DLC follows

that in the final topology, l ∈ Gi if and only if i ∈ Gl, so that the bidirectionality assumption 3.1 in Sec. 3.1

holds in the final topology. Since by Lemma 8.10, the initialization conditions are as required in Sec. 8.4,

Protocol EMH3 behaves after time t̂ exactly as MH3 and therefore has the same convergence properties.

qed

We have here the opportunity to demonstrate for the first time for a nontrivial case that the DLC

properties are essential for ensuring proper operation of the higher-level protocols. It is trivial to indicate

here, as well as in the fixed topology protocols of the previous chapters, situations where if FIFO or Delivery

do not hold, the Network Protocol does not work. The following example shows that the same is true for the

Crossing property. Consider the network of Fig. 8.2 and assume that the protocol has converged. Suppose

that link (b, a) enters Initialization Mode at b at time t1, returns to Connected state at b at time t2 and node

a never enters Initialization Mode for link (b, a). At time t1 node b sets db = 3 and sends MSG(3) to c. At

t2 it sets Db(a) =| V | and sends MSG(3) to a. During the entire protocol, node a sends nothing to node

b. When node a receives the message, it sets Da(b) = 4, and since da does not change, it sends no message.

Consequently, in steady state, node b will have Db(a) =| V |, db = 3 and pb = c, which is incorrect.

Problems

Problem 8.5.1 Give an example to show that Protocol EMH3 with line <D3> removed does not work.
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Figure 8.2: Example for Crossing

Problem 8.5.2 We gave above an example where Crossing is necessary in order for EMH3 to work. Give

examples where other DLC properties are necessary in order for EMH3 to work.

Problem 8.5.3 Describe a situation where if FIFO of DLC does not hold, a Network Protocol does not

work after some topological change.
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Chapter 9

PATH-UPDATING PROTOCOLS

In the protocol of [SMG78], [MS79b], each node maintains a path to each other node in the network and

updating cycles allow these paths to be changed so that they are improved in each cycle and, in addition,

the collection of paths to any given node form at any given time a loop-free pattern (i.e. a tree). Here we

present first the fixed-topology part of the path-updating protocol and then show that protocol CT2 can be

used to initialize it.

9.1 Protocol PU1

The protocol updates paths from all nodes in the network to a given node s in terms of some possibly time

varying link weights {dil} and can be repeated independently to update paths to each of the other nodes.

Therefore, we can present only the protocol for a given destination node s. The protocol is very similar to

the PIF protocol, except for two features: first, a tree is initially available and the protocol moves first up

and then down on that tree, and second, when moving downtree, the protocol updates the initial tree, so

that the resulting paths provide an improvement over the old ones.
Protocol PU1

Messages

MSG(di) - message carrying the estimated distance from i to s, MSG from nil to s contains ds = 0

Variables

Gi - set of neighbors of i
mi = 1 after performing phase1()i and before performing phase2()i; = 0 otherwise
ei(l) - number of MSG’s sent to l - number of MSG’s received from l, for all l ∈ Gi

dil - distance from node i to neighbor l as measured at the time it is needed by the algorithm; can be
time-varying (values: any strictly positive real number), l ∈ Gi; ds,nil ≡ 0
di - estimated distance from i to s on the preferred path
pi - preferred neighbor of i for s
Di(l) - storage for dl + dil, for l ∈ Gi

Initialization

We use superscript 0 to denote values of variables just before START is delivered to s. Then all
connected nodes i have:

a) p0i , d
0
i with the property that the collection of links (i, p0i ) form a directed tree rooted at s and also

d0i > d0
p0
i
, i.e. d0i is strictly decreasing while moving downtree.

b) m0
i = 0, e0i (l) = 0 for all l ∈ Gi.
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Algorithm for node i

A1 receive MSG(d) from l ∈ Gi ∪ {nil}
A2 { ei(l)← ei(l)− 1;
A3 Di(l)← d+ dil;
A4 if (l = pi) phase1();
A5 if (ei(k) = 0 ∀k ∈ Gi − {pi}) phase2();

}
B1 phase1()
B2 { mi ← 1;
B3 di ← minDi(l

′) over {l′ | ei(l′) = −1};
B4 for (k ∈ Gi − {pi}) {
B5 send MSG(di) to k;
B6 ei(k)← ei(k) + 1;

}
}

C1 phase2()
C2 { di ← minDi(l

′) over l′ ∈ Gi ;
C3 send MSG(di) to pi;
C4 ei(pi)← ei(pi) + 1;
C5 pi ← node that achieves minDi(l

′) over l′ ∈ Gi;
C6 mi ← 0;

}

Theorem 9.1 (PU1)

Suppose the Initialization assumptions a) and b) given in the protocol hold. Then:

a) all nodes i ∈ V will perform the event phase1()i in finite time and exactly once; in addition, for all i holds

t(phase1()i) > t(phase1()p0
i
).

b) all nodes i ∈ V will perform phase2()i in finite time and exactly once; moreover t(phase2()i) < t(phase2()p0
i
);

node i receives no messages after time t(phase2()i); also, at the time when node s performs phase2()s, all

nodes in V have completed the algorithm, i.e. have performed phase2(), and there are no messages traveling

in the network.

c) exactly one MSG travels on each link in (V,E) in each direction.

d) The collection of links {(i, pi)} forms at all times a tree rooted at s with the following properties:

(i) mi ≤ mpi

(ii) if mi = mpi = 0, then di > dpi .

e) For each link (i, l) the distance dil is measured exactly once by node i; at the end of the protocol, all nodes

will have paths to s that are no longer than before the protocol starts, where the length of a path is the sum

of the weights of the links in terms of the measured {dil} ; if the initial tree T 0 defined by {(i, pi)} is not

identical to the shortest-path-tree in terms of the measured {dil}, then there is a nonempty set of nodes that

did not have optimal paths in the initial tree and do have optimal paths in the new tree T 1.

Proof: Observe that the present protocol is identical to PIF2, except that phase1() is performed by a node

i only when MSG is received from pi (and not as soon as the first MSG is received, as in PIF2), the new

quantities di, Di(l), dil are introduced and the preferred neighbor pi is changed in phase2(). Now, phase1()

and phase2() propagate here exactly as in PIF2, provided that in that protocol a MSG traverses any link

in T 0 much faster than any other link. Since Theorem 3.5 holds for arbitrary link travel times, assertions

a), b), c) follow.

Before continuing, we introduce several definitions:

t0 - time when the protocol starts
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t′i = t(phase1()i)

t′′i = t(phase2()i)

T 0 - the initial tree

T 1 - the new tree

T ∗ - the shortest path tree in terms of the measured {dil}

T 0
i , T

1
i , T

∗
i - the corresponding tree paths from i to s

p0i = pi(t0) - the initial preferred neighbor

p1i - the new preferred neighbor

p∗i - the father of i in T ∗

B0
i =

∑
T 0
i
djk;B1

i =
∑

T 1
i
djk;B∗i =

∑
T∗i
djk.

Note that by a) and b), a node i calculates its estimated distance di exactly twice, when it performs

phase1()i and phase2()i respectively. Also, from c), for each neighbor l the estimated distance Di(l) through

l is calculated exactly once. From <C5>,<C2> and <B3>, holds

Di(p
1
i ) = di(t

′′
i +) ≤ di(t′i+) ≤ Di(p

0
i ) (9.1)

and from <C3> and <B5>,

Di(j) =

{
dj(t

′
j+) + dij if i 6= p0j

dj(t
′′
j +) + dij if i = p0j

(9.2)

In order to prove d), suppose the assertions in d) hold in the entire network up to time t− and we want

to show that if phase1() or phase2() happens at time t at some node i, the assertions continue to hold.

First suppose that phase1()i happens at time t, i.e. t = t′i. The preferred neighbor pi is not changed

in phase1()i and hence the tree property continues to hold. Also, d)ii) is not affected by phase1()i because

mi becomes 1, thus we only have to check that the ordering of m stated in d)i) continues to hold. Since

mi(t−) = 0, we have by the induction hypothesis mj(t) = 0 for any j for which pj(t) = i and hence d) i)

continues to hold for such j and i after time t. It remains to check that d)i) continues to hold for i and

pi(t) = p0i . When performing phase1()i, node i receives MSG from p0i , so that p0i must have performed

phase1() before t and has not performed yet phase2() since i has not yet sent any message. Thus, mp0
i
(t) = 1

and, since mi(t+) = 1, assertion d) i) continues to hold after t for i and p0i as well.

Now suppose phase2() happens at some node i at time t, i.e. t = t′′i . Observe that at that time, i had

already received MSG from all neighbors and it performs mi ← 0. Consider first any node j such that

pj(t) = i. If p0j = i, then receipt of MSG at i from j means that j had performed phase2() before time t, i.e.

t′′j < t. If p0j 6= i, then j has changed pj before time t and again this shows that it had performed phase2()

before time t. Consequently, mj(t) = 0 and hence d) i) continues to hold after time t for j and i. At time

t′′j , node j had selected pj ← i and had set dj ← Dj(i) ( see <C2>,<C5> ). Thus, from Eq. 9.1,

dj(t+) = dj(t
′′
j +) = Dj(i) = di(t

′
i+) + dji > di(t

′
i+) ≥ di(t′′i +) = di(t+)

where the third equality follows from the first part of Equation 9.1, because from b), the fact that t′′j < t′′i
implies j 6= p0i . Thus d)ii) continues to hold at time t+ for j and i. Now, consider the pair i and pi = pi(t

′′
i +).
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Assertion d) i) holds trivially after t for i and pi since mi ← 0 at time t, while assertion d) ii) holds because

di(t+) = Di(pi)(t+) ≥ dpi
(t) + dipi

> dpi
(t). Now (i, pi) cannot close a loop since by d) i), all nodes l in

such a loop must have ml = 0, and going around the loop this would imply by d) ii) that di > di.

Now we prove e). By induction on T 0, holds di(t
′
i+) ≤ B0

i , since di(t
′
i+) ≤ Di(p

0
i ) = dp0

i
(t′

p0
i
+) + dip0

i
≤

B0
p0
i

+ dip0
i

= B0
i (the first inequality follows from Eq. 9.1 and the first equality holds because p0

p0
i
6= i, i.e.

the preferred neighbour of the preferred neighbour of i cannot be i because of the tree property). Also, by

induction on T 1, holds di(t
′′
i +) ≥ B1

i , since di(t
′′
i +) = Di(pi) ≥ dpi(t

′′
pi

+) + dipi ≥ B1
pi

+ dipi = B1
i (see

Eq. 9.1). Thus, since di(t
′
i+) ≥ di(t

′′
i +), follows that B1

i ≤ B0
i , i.e. the new path for any i cannot be worse

than the old one. This is the first part of e).

To prove the second part, we first show that if for a node k holds T 0
k ≡ T ∗k , then dk(t′′k+) = dk(t′k+) =

B0
k = B1

k = B∗k and k does not change its preferred neighbor, namely p1k = p0k. We prove this by induction

on T ∗. Suppose the above holds for p∗k = p0k. Then

Dk(p∗k) = dp∗k(t′p∗k+) + dkp∗k = B∗p∗k + dkp∗k = B∗k

Also, ∀m ∈ Gk holds: Dk(m) ≥ dm(t′′m+) + dkm ≥ Bm + dkm ≥ B∗k . Hence dk = B∗k and p1k = p0k.

Now, let i be a node with the property p0i 6= p∗i and T 0
p∗i

= T ∗p∗i , namely, the father of i in the shortest

path tree already has the best path when the protocol starts, but i does not. There must be such an i if

T 0 6= T ∗. We have dp∗i = B∗p∗i , implying that Di(p
∗
i ) = dp∗i +dip∗i = B∗p∗i +dip∗i = B∗i . Also, as before, for any

m ∈ Gi holds Di(m) ≥ B∗i . Hence p1i = p∗i and thus B1
i = B∗i . But B0

i > B∗i because p0i 6= p∗i and therefore

B0
i > B1

i . Thus node i strictly improves its path and the new path is the best path from i to s, which is the

second part of e). qed

Problems

Problem 9.1.1 Consider Protocol PU1 with line <C2> deleted. Does this still work ? Prove or give

counter example. Which version is better ?

Problem 9.1.2 Alter the PU protocol such that the source node s will learn if the new tree is identical or

not to the old one. (This may possibly be used by s in order to reduce the frequency of updates). You may

use only one additional kind of message. Give a correctness proof, and explain how does your protocol affect

the communication and time cost.

Problem 9.1.3 Let G be the network graph described below, with the following values of pi, di :

...

...

...

What is the minimum number of cycles of PU1 in this graph until convergence to the optimal tree T ∗? What

is the maximum number of cycles of PU1 in this graph until convergence?
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9.2 Protocol Path-Updating Initialization

revise In order to allow proper evolution of the PU protocol, it is necessary to initialize it in the sense of

building the initial trees {(i, pji )} for all destinations j in the network. This can be done by using protocol

CT2 with some simple additions.

Protocol PUI

Messages

MSGj(d) - message carrying the estimated distance from i to j, MSG from nil to some node contains
d = 0

Variables

Gi - set of neighbors of node i
mi - indicates whether i has entered the protocol (values 0,1)

mj
i - indicates whether i has entered PIF j (values 0,1)

pji - preferred neighbor in PIF j

eji (l) - number of MSGj sent to l - number of MSGj ’s received from l, for all l ∈ Gi

Dj
i (l) - storage for djl + dil, for l ∈ Gi

Initialization

if a node receives at least one MSG, then

- just before the time it receives the first one holds mi = 0
- after receiving the first MSG, node i discards and disregards messages not sent in the present instance
of the protocol
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Algorithm for node i

A1 receives MSGj(d) from l ∈ Gi ∪ {nil}
A2 { Dj

i (l)← d+ dil
A3 if (mi = 0){
A4 mi ← 1; /* enter protocol */
A5 initialize();
A6 phase1i();

}
A7 if (mj

i = 0) phase1j();
A8 eji (l)← eji (l)− 1;
A9 if (eji (k) = 0 ∀k ∈ Gi − {pji}) phase2j();

}
B1 phase1j() /* same as PIF1 */
B2 { mj

i ← 1;
B3 if (i 6= j) pji ← l else pji ← nil;
B4 if (i 6= j) dji ← Dj

i (l) else dji ← 0;
B5 for (k ∈ Gi − {pji}){
B6 send MSGj(dj) to k;
B7 eji (k)← eji (k) + 1;

}
}

C1 phase2j() /* same as PIF1 */
C2 { dji ← minDj

i (l′) over l′ ∈ Gi;
C3 send MSGj to pji ;
C4 eji (p

j
i )← eji (p

j
i ) + 1;

C5 pji ← node that achieves minDj
i (l′) over l′ ∈ Gi;

C6 mj
i ← 0

}
D1 initialize()
D2 { for (j′ ∈ V ){
D3 mj′

i ← 0;

D4 for (k ∈ Gi) e
j′

i (k)← 0;
}

}

Theorem 9.2 (PUI) Suppose START is delivered to any node. Then any given node j will perform

phase2()jj in finite time and at that time the links {(i, pji )} will form a directed tree rooted at j, with the

property dji > dj
pj
i

for all i. In addition, at that time, all mj
i = 0, and all eji (l) = 0.

Proof: The protocol here evolves as CT2 and hence all properties of CT2 hold here. In particuler, every

node j performs phase2()jj in finite time. Also, for a given j, action phase1()j evolves as in PI2, so that

Theorem 3.2a) holds. Consequently, {(i, pji )} as considered after all nodes perform phase1()j form a tree

rooted at j. Also, by <A2>, <B4>, <C2> and the fact dil > 0, the quantities dji are strictly decreasing

going downtree. After phase1()j is performed at all nodes, the protocol for j behaves as in PU1, so that all

properties continue to hold until j performs phase2()jj .

Problems

Problem 9.2.1 When the delay on the links is constant and equals to the weight of these links, will PUI

end up finding the best routing tree to s, or will some iterations of PU be needed in some cases?
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9.3 The Fixed-Topology Arbitrary-Weight Distributed Bellman-

Ford Protocol (PU2)

This protocol establishes shortest paths from all nodes in the network to a given destination s in terms of

some link weights {dik}. In order to save communication overhead, in some applications messages belonging

to protocols corresponding to all destinations may be included in one message, but this is of no concern to us

here. A node i keeps an estimate di of its shortest path to the destination and estimates Di(l) of the shortest

path via each neighbor l. When the estimate di changes, i sends a message containing the new estimate to

all neighbors. When i receives a message from a neighbor l, it updates its estimate Di(l) of the shortest path

via that neighbor and its estimate di of its shortest path to the destination. If the new di is different from

the old one, a message containing the new value is sent to all neighbors. Similar actions are taken if a link

weight changes. It is shown that if link weight changes stop, a finite time afterwards the protocol terminates

at all nodes in the connected network component containing the destination s. At that time, all nodes in

that component have correct estimated distances. The protocol does not terminate at nodes disconnected

from s. At those nodes the estimated distance goes to infinity.
Protocol PU2

Messages

MSG(d) - message sent by node i, containing i’s estimated distance to s, d ≥ 0.

Variables

di - estimated distance from i to s (values [0,∞] )
pi - preferred neighbor of i
Di(l) - estimated distance from i to s via neighbor l (values (0,∞] )
dik - distance from i to neighbor k, possibly changing with time (values (0,∞) )

Initialization

Holds ds = 0 and for all i 6= s and l ∈ Gi, the variables di and Di(l) satisfy:

a) di = min Di(l
′) over l′ ∈ Gi

b) i) Di(l) = dl + dil or
ii) Di(l) ≥ dil and there is at least one MSG(d) on (l, i) and the last MSG(d) on (l, i) has d = dl

Note: an example of a set of variables and messages that satisfy the above is: di = Di(l) = ∞ for all
i 6= s and all l ∈ Gi, there is a MSG(0) on every link (s, l), all l ∈ Gs and this is the last message on
each such link.
Algorithm for node s
A1 do nothing

Algorithm for node i 6= s

B1 receive MSG(d) from l ∈ Gi
B2 { Di(l)← d+ dil;
B3 update();

}
C1 when dil changes by ∆
C2 { Di(l)← Di(l) + ∆;
C3 update();

}
D1 update()
D2 { k∗ ← node that achieves minDi(l

′) over l′ ∈ Gi;
D3 if (di 6= Di(k∗)) {
D4 pi ← k∗;
D5 di ← Di(k∗);
D6 for (k ∈ Gi) send MSG(di) to k;

}
}

This is the fixed topology part of the ARPA-1 routing protocol [MW77], except that the updates are
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performed on an event driven basis rather than periodically.1

Lemma 9.3 At all times holds ds = 0 and for all i 6= s and l ∈ Gi, the variables di and Di(l) satisfy:

a) di = min Di(l
′) over l′ ∈ Gi

b) Di(l) ≥ 0, di ≥ 0. The contents of a MSG is always nonnegative.

c) Di(l) = dl + dil or there is at least one MSG on (l, i) and the last message on (l, i) has d = dl

Proof: Note that ds stays 0 forever and a) is obviously correct. Part b) holds at initialization by assumption.

Since dil > 0 holds at all times, part b) is easily proved by a common induction. To prove part c), consider

a node i and some l ∈ Gi. Recall from assumption a in Sec. 3.1 that l ∈ Gi if and only if i ∈ Gl. Then c)

here is correct at initialization by assumption and if l changes its estimated distance dl, it sends a MSG(dl)

to all its neighbors, and in particular on (l, i). By FIFO, unless l changes again its dl, this is the last MSG

on (l, i), until it arrives at i, in which case the latter sets Di(l) = dl + dil. qed

Theorem 9.4 (PU2) Suppose weight changes stop. If s ∈ V , then there is a finite time after which no

messages travel in (V,E) and all nodes i ∈ V have di = shortest distance to s and pi = first link on the

shortest path to s. If s 6∈ V , then di →∞ for all i ∈ V .

Proof: We prove the theorem via several lemmas.

Lemma 9.5 If weight changes stop and message activity ceases, then the di, Di(l), pi entries are correct

for all i ∈ V and all l ∈ Gi.

Proof: If all di entries are correct, then obviously so are the Di(l) and pi entries. Therefore it is sufficient

to consider only the estimated distance entries di. For i ∈ V , let

d∗i = shortest distance from i to s ( may be ∞ )

K = set of nodes in V for which di < d∗i
j = node in K with minimum di, i.e. holds dj ≤ di,∀i ∈ K

Since there are no messages on the links, Lemma 9.3 implies that dpj
= dj−djpj

, hence pj 6∈ K, so dpj
≥ d∗pj

.

But since j and pj are neighbors, holds d∗j ≤ d∗pj
+djpj . Hence, dj = dpj +djpj ≥ d∗pj

+djpj ≥ d∗j , contradicting

the fact that j ∈ K. Therefore K is empty.

Now let

K ′ = set of nodes in V for which di > d∗i
j = node in K ′ closest to s, i.e. holds d∗j ≤ d∗i ,∀i ∈ K ′

j∗ = the next neighbor of j on the shortest path to s.

Note that a node i with d∗i = ∞ cannot be in K ′. In particular, this says that d∗j < ∞, i.e. j is connected

to s, and therefore j∗ is well defined. Holds d∗j = d∗j∗ + djj∗. Since j∗ is closer to s than j and hence

j∗ 6∈ K ′, holds dj∗ ≤ d∗j∗ (in fact, since we have shown already that K is empty, the latter holds with

equality). Moreover, dj is selected as the minimum of Dj(l) over all neighbors l of j and Dj(j∗) = dj∗+djj∗.

Therefore, holds dj ≤ dj∗+djj∗. Hence dj ≤ dj∗+djj∗ ≤ d∗j∗+djj∗ = d∗j , contradicting the fact that j ∈ K ′.
Therefore K ′ is also empty and therefore all nodes have correct entries. qed

Lemma 9.6 If link weight changes stop, then, for every node i ∈ V and every finite number z, there is a

finite number of events when i reduces its estimated distance di to a value ≤ z.

1periodical updates
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Proof: Note that after link changes stop, a node i reduces its estimated distance to the value d+i only as

a result of receiving a message MSG(d) from some neighbor k with d that satisfies d+i = d + dik < Di(k).

Therefore to every such event at a node i corresponds a similar event at some neighbor k, where the latter

decreases its estimated distance to d+k = d+i − dik. Denote by I the set of nodes that reduce their estimated

distance an infinite number of times to values d+i ≤ z. For i ∈ I, denote by δi the sequence of values d+i that

node i reduces its estimated distance to and by zi = lim inf δi. Clearly, zi ≤ z and let i∗ be the node that

achieves min zi over i ∈ I. To every decrease of di∗ to a value d+i∗ corresponds a decrease to a value d+i∗− dik
at some neighbor k. Since i∗ has only a finite number of neighbors, it must have a neighbor k∗ that has an

accumulation point of δk∗ at zi∗− di∗k∗. Therefore, k∗ ∈ I and zk∗ ≤ zi∗− di∗k∗, contradicting the fact that

zi∗ is minimal. qed

Lemma 9.7 If link weight changes stop, then, for every node i ∈ V and every finite number z, there is a

finite number of events when i increases its estimated distance di from a value ≤ z.

Proof: Note that after link changes stop, a node i increases its estimated distance from the value d−i only

as a result of receiving a message MSG(d) from its preferred neighbor pi with d that satisfies Di(pi) =

d−i < d+ dipi . Therefore to every such event at a node i corresponds a similar event at pi, where the latter

increases its estimated distance from the value d−pi
= d−i − dipi

. Denote by I the set of nodes that increase

their estimated distance an infinite number of times from values d−i ≤ z. For i ∈ I, denote by δi the sequence

of values d−i that node i increases its estimated distance from and by zi = lim inf δi. Clearly, zi ≤ z and let i∗
be the node that achieves min zi over i ∈ I. To every increase of di∗ from a value d−i∗ corresponds an increase

from a value d−i∗ − dik at some neighbor k. Since i∗ has only a finite number of neighbors, it must have a

neighbor k∗ that has an accumulation point of δk∗ at zi∗ − di∗k∗. Therefore, k∗ ∈ I and zk∗ ≤ zi∗ − di∗k∗,
contradicting the fact that zi∗ is minimal. qed

Lemma 9.8 If link weight changes stop, then for every node i, either di stops changing in finite time, or

di →∞.

Proof: Suppose that di never stops changing. Since there are a finite number of instances when a node i

increases its di from values ≤ z, for any finite z and the value after the increase is larger than before it,

there are a finite number of instances when the node increases its di to values ≤ z. Since every value of di is

either after an increase or after a decrease, there are only a finite number of values of di ≤ z, for every finite

z. Hence di →∞. qed

We now proceed with the proof of the Theorem. Clearly, there cannot be two neighbors i, k such that di

stops changing, but dk → ∞. This is because a finite time after di stops changing, holds Dk(i) = di + dki

and always holds dk ≤ Dk(i). Therefore, since ds ≡ 0, if s ∈ V , then di stop changing for all i ∈ V . Since

messages are sent only when di change, message activity stops also. By Lemma 9.5, all entries in V are

correct. Now suppose s 6∈ V and not for all nodes i ∈ V holds di → ∞. Then all di stop changing and

message activity ceases. This contradicts Lemma 9.5. This completes the proof of the Theorem. qed

From the above follows that Protocol PU2 does not provide a mechanism to detect that i is disconnected

from s. The solution in the ARPA-1 routing algorithm is to run in parallel an MH3 Protocol.

Problems

Problem 9.3.1 Prove or give a counterexample: If di →∞, then di cannot decrease after a finite time.

Problem 9.3.2 What is the communication complexity of the Bellman-Ford Arbitrary Weight protocol

when the delay on each link is constant and equals to the weight of the link?
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9.4 The Changing-Topology Bellman-Ford Arbitrary Weight Pro-

tocol (EPU2)

The extensions to the arbitrary weight Bellman-Ford protocol to a network with topological changes are

similar to the ones for the minimum hop case. For completeness we present here the protocol and state its

main properties without proof.

Protocol EPU2

Messages

MSG(d) - message sent by node i, containing i’s estimated distance to s

Variables

Gi - set of neighbors, i.e. l ∈ Gi if (l, i) is in Connected state at i
di - estimated distance from i to s (values [0,∞] )
pi - preferred neighbor of i
Di(l) - estimated distance from i to s via neighbor l (values [0,∞] )
dik - distance from i to neighbor k, possibly changing with time (values (0,∞) )

Initialization

none

Algorithm for node s
A1 Node s becomes operational
A2 { ds ← 0;

}
B1 Link (s, l) enters Connected state
B2 { send MSG(0) to l;

}
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Algorithm for node i 6= s
C1 Node i becomes operational
C2 { di ←∞;

}
D1 Link (i, l) enters Connected state
D2 { Di(l)←∞;
D3 send MSG(di) to l;

}
E1 Link (i, l) enters Initialization mode
E2 { if (l = pi) update fail();

}
F1 receives MSG(d) from l ∈ Gi
F2 { Di(l)← d+ dil;
F3 update();

}
G1 whenever dil changes by ∆
G2 { Di(l)← Di(l) + ∆;
G3 update();

}
H1 update() /* same as in PU2 */
H2 { k∗ ← node that achieves minDi(l

′) over l′ ∈ Gi
H3 if (di 6= Di(k∗)) {
H4 pi ← k∗;
H5 di ← Di(k∗);
H6 for (k ∈ Gi) send MSG(di) to k;

}
}

I1 update fail()
I2 { k∗ ← node that achieves minDi(l

′) over l′ ∈ Gi
I3 pi ← k∗
I4 if (di 6= Di(k∗)) {
I5 di ← Di(k∗);
I6 for (k ∈ Gi) send MSG(di) to k;

}
}

The main properties of Protocol EPU2 are stated in the following Lemma and Theorem whose proof is

similar to that of Lemma 8.10 and Theorem 8.11 in Sec. 8.5 and is therefore omitted.

Lemma 9.9 At all times holds ds = 0 and for all i 6= s and l such that (i, l) ∈ E the variables di and

Di(l) satisfy:

a) Di(l) = dl + dil or there is at least one MSG on (l, i) and the last MSG(d) on (l, i) has d = dl.

b) di = minDi(l
′) over l′ ∈ Gi

Theorem 9.10 (EPU2) Consider an arbitrary finite sequence of topological events with arbitrary timing

and location and let (E, V ) denote a connected subnetwork in the final topology. Then there is a finite time

after the sequence is completed after which : i) if s ∈ V , then no messages travel in (V,E) and all nodes

i ∈ V have di = shortest distance to s and pi = first link on the shortest path to s; ii) if s 6∈ V , then di →∞
for all nodes i ∈ V .
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9.5 Loop Reducing Protocols

Two main deficiencies of the Bellman-Ford Distributed protocol is formation of loops and slow convergence

due to link weight increases. For example, consider the simple network of Fig. 9.1, where the link weights

are indicated next to the links and are the same in both directions. Suppose now that the weight of link

(a, c) increases from 1 to 100 at time 0 and that the control message delay on each link is 1. Then at times

0,2,4, . . . ,18, the estimated distance da will take on values 4,6,8, . . . ,22 and at times 1,3,5, . . . ,17, the

estimated distance db will take on values 5,7,9, . . . ,21, and during all this time a and b will point to each

other as their preferred neighbors. Obviously this is not a desirable situation, since packets routed according

to preferred neighbors pi will loop around for a very long time, unnecessarily loading up the network. Several

protocols, like the split-horizon protocol [Ceg75], [Hag83] and the Predecessor Protocol [Sch81], [SY82] have

been designed with the goal of reducing two-link loops, while also speeding up protocol convergence. By

definition, two nodes i and l form a two-link loop if pi = l and pl = i. Those protocols reduce, but do not

eradicate, two-link loops and do not address the problem of multi-link loops.

Figure 9.1: check if 61

Tsai????

The main idea of the loop-reducing protocols is that a node i sends to its preferred neighbor j = pi a

value that is higher than i’s estimated distance di. The latter is still sent to the other neighbors. In the

predecessor protocol, this higher value is ∞, while in the split horizon protocol, it is the minimum of Di(l)

over l ∈ Gi−{pi}. The motivation for sending ∞ is to inhibit j from selecting i as its preferred neighbor, in

case the link from j to its own preferred neighbor suffers a serious degradation. After the time when i selects

a new preferred neighbor, j is free to select i as its preferred neighbor. The motivation behind sending to

j = pi the minimum taken over all links except the preferred one, is to give j an estimate of the expected

delay from i to s ( referred in [Ceg75] as the horizon ), on the best route that does not go through j. This

is the delay that i can offer to j in case the best route from j to s suffers a serious degradation, that will

make j desire to select i as its preferred neighbor.

In the predecessor protocol, if the network of Fig. 9.1 is in steady state before time 0, holds Da(b) =∞.

At time 0, node a sets da ← 101 and sends MSG(101) to b and MSG(∞) to c. This will set, at time 1,

the value Db(a) = 102, causing b to switch its preferred neighbor to c, set db ← 21 and send MSG(21) to a.

At time 2, node a will set da ← 22 and pa ← b, completing the protocol. One can see that in this case no

loop is formed. In the split-horizon protocol, before time 0 holds Da(b) = 22, so when dac becomes 100 at

time 0, node a will switch to pa = b, thereby forming a two-link loop. But this loop will be resolved after

a short duration, because at time 1, node b will receive MSG(101) from a, causing it to switch to pb ← c.

Note that, at least for this example, the predecessor protocol forms no loops, but converges slower than the

split-horizon protocol. The predecessor protocol is not free of two-link loops either. For example, if in Fig.
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9.1, the weight of (b, c) were 1, and at time 0, the weight dcs increased to 10, then at time 1, both a and b

will receive MSG(11) from c and will switch to each other as their preferred neighbor. At time 2, when they

receive from each other MSG(∞), they will switch back to c. Therefore a two-link loop will exist between

time 1 and time 2.

In the following we specify the split-horizon and the predecessor protocols and prove convergence of the

estimated distances to the correct values.

9.5.1 The split-horizon and the predecessor protocols

Protocol SH

Messages

MSG(d) - message

Variables

di - estimated distance from i to s (values [0,∞) )
pi - preferred neighbor of i
Di(l) - estimated distance from i to s via neighbor l (values (0,∞) )
dik - distance from i to neighbor k, possibly changing with time (values (0,∞) )

Initialization

For all i, denote Si = {l | pl = i} (node i does not know Si). Holds:

- ds = 0, ps = nil.
- for i 6= s, pi is arbitrary provided that pi ∈ Gi ∪ {nil}
- for all i 6= s and l ∈ Gi, the variables di and Di(l) satisfy:

a) di = minDi(l
′) over l′ ∈ Gi

b) if l 6∈ Si, then Di(l) = dl + dil or there is a MSG on (l, i) and the last MSG(d) on (l, i) has d = dl
c) if l ∈ Si, then Di(l) ≥ dl + dil or there is a MSG on (l, i) and the last MSG(d) on (l, i) has d ≥ dl
d) d′i = minl′∈Gi−pi

Di(l
′) ?????

Note: an example of a set of variables and messages that satisfy the above is:

(i) for all i 6= s and all l ∈ Gi, and there are no MSG’s on (i, l)
(ii) there is only one MSG on every link (s, l), for all l ∈ Gs and this is MSG(0).

Algorithm for node s
A1 do nothing
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Algorithm for node i 6= s

B1 receives MSG(d) from neighbor l
B2 { Di(l)← d+ dil;
B3 update();

}
C1 when dil changes by ∆
C2 { Di(l)← Di(l) + ∆;
C3 update();

}
D1 update()
D2 { k∗ ← node that achieves minDi(l

′) over l′ ∈ Gi;
D3 k′ ← node that achieves minDi(l

′) over l′ ∈ Gi − {k∗};
D4 if (di 6= Di(k∗)) {
D5 pi ← k∗;
D6 di ← Di(k∗);
D7 d′i ← Di(k

′);
D8 send MSG(d′i) to pi;
D9 for (k ∈ Gi − {pi}) send MSG(di) to k;

}
D10 else if (d′i 6= Di(k

′)) {
D11 d′i ← Di(k

′);
D12 send MSG(d′i) to pi;

}
}

Protocol PRED

Messages

MSG(d) - message

Variables

di - estimated distance from i to s (values [0,∞) )
pi - preferred neighbor of i
Di(l) - estimated distance from i to s via neighbor l (values (0,∞) )
dik - distance from i to neighbor k, possibly changing with time (values (0,∞) )

Initialization

For all i, denote Si = {l | pl = i} (node i does not know Si). Holds:

- ds = 0, ps = nil.
- for i 6= s, pi is arbitrary provided that pi ∈ Gi ∪ {nil}
- for all i 6= s and l ∈ Gi, the variables di and Di(l) satisfy:

a) di = min Di(l
′) over l′ ∈ Gi

b) if l 6∈ Si, then Di(l) = dl + dil or there is a MSG on (l, i) and the last MSG(d) on (l, i) has d = dl
c) if l ∈ Si, then Di(l) ≥ dl + dil or there is a MSG on (l, i) and the last MSG(d) on (l, i) has d ≥ dl
Note: an example of a set of variables and messages that satisfy the above is:

(i) for all i 6= s and all l ∈ Gi, and there are no MSG’s on (i, l)
(ii) there is only one MSG on every link (s, l), for all l ∈ Gs and this is MSG(0).

Algorithm for node s
A1 do nothing
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Algorithm for node i 6= s

B1 receive MSG(d) from l ∈ Gi
B2 { Di(l)← d+ dil;
B3 update();

}
C1 when dil changes by ∆
C2 { Di(l)← Di(l) + ∆;
C3 update();

}
D1 update()
D2 { k∗ ← node that achieves minDi(l

′) over l′ ∈ Gi;
D3 if (di 6= Di(k∗)) {
D4 pi ← k∗;
D5 di ← Di(k∗);
D6 send MSG(∞) to pi;
D7 for (k ∈ Gi − {pi}) send MSG(di) to k;

}
}

9.5.2 Proof of convergence of the split-horizon and predecessor protocols

Lemma 9.11 Recall the notation Si = {l | pl = i}. The following hold for both protocols. At all times

holds ds = 0 and for all i 6= s and l ∈ Gi, the variables di and Di(l) satisfy:

a) di = min Di(l
′) over l′ ∈ Gi and pi achieves minimum ????

b) If l 6∈ Si, then Di(l) = dl + dil or there is at least one MSG on (l, i) and the last MSG(d) on (l, i) has

d = dl

c) If l ∈ Si, then Di(l) ≥ dl + dil or there is at least one MSG on (l, i) and the last MSG(d) on (l, i) has

d ≥ dl

Proof: Note that ds stays 0 forever and that a) is obviously correct since di is always maintained as minDi(l
′)

over l′ ∈ Gi. To prove parts b) and c), consider a node i and some l ∈ Gi. Then b) and c) are correct at

initialization by assumption. Next note that a node l can change its preferred neighbor pl only if at the same

time it changes its estimated distance dl. Consequently, we need to look only at instances when l changes its

dl. Suppose b) or c) stops being correct at some time for some link (l, i). Since when node l changes its dl it

sends MSG(dl) to all k ∈ Gl−{pl} and MSG(d), d ≥ dl to pl, this can happen only when the last MSG(d)

on (l, i) arrives at i. But at that time i sets Di(l)→ d+ dil and dl or pl have not changed since that MSG

was sent, so Di(l) ≥ dl + dil with equality if pl 6= i. Therefore b) and c) hold. di = dl =∞ ???? qed

Corollary: Two nodes cannot form a two-link loop if there is no message on the link connecting them.

Proof: If pi = l and pl = i and there are no messages on the link (i, l) in either direction, then

di = Di(l) ≥ dl + dil > dl and by a similar argument dl > di, leading to a contradiction. qed

Lemma 9.12 If weight changes stop and message activity ceases, then in both protocols the di, pi entries

are correct for all i ∈ V .

Proof: For i ∈ V , let

d∗i = shortest distance from i to s ( may be ∞ )

K = set of nodes in V for which di < d∗i

j = node in K with minimum di, i.e. holds dj ≤ di,∀i ∈ K
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Since there are no messages on the links, the above Corollary implies that pj 6∈ Sj , so that Lemma 9.11b)

and c) implies that dpj
= dj − djpj

, hence pj 6∈ K, so dpj
≥ d∗pj

. But since j and pj are neighbors, holds

d∗j ≤ d∗pj
+ djpj

. Hence, dj = dpj
+ djpj

≥ d∗pj
+ djpj

≥ d∗j , contradicting the fact that j ∈ K. Therefore K

is empty.

Now let

K ′ = set of nodes in V for which di > d∗i

j = node in K ′ closest to s, i.e. holds d∗j ≤ d∗i ,∀i ∈ K ′

j∗ = the next neighbor of j on the shortest path to s.

Note that a node i with d∗i =∞ cannot be in K ′. In particular, since j ∈ K ′, this says that d∗j <∞, i.e. j is

connected to s, and therefore j∗ is well defined. Moreover d∗j = d∗j∗+ djj∗. Since j∗ is closer to s than j and

hence j∗ 6∈ K ′, holds dj∗ ≤ d∗j∗ (in fact, since we have shown already that K is empty, the latter holds with

equality). Note that Dj∗(j) ≥ dj + dj∗j > dj > d∗j = d∗j∗ + djj∗ ≥ dj∗ + djj∗ > dj∗. Consequently, j∗ 6∈ Sj ,

since that would require dj∗ = Dj∗(j), so Dj(j∗) = dj∗ + djj∗. Moreover, dj is selected as the minimum of

Dj(l) over all neighbors l of j, so dj ≤ dj∗+ djj∗. Hence dj ≤ dj∗+ djj∗ ≤ d∗j∗+ djj∗ = d∗j , contradicting the

fact that j ∈ K ′. Therefore K ′ is also empty and therefore all nodes have correct entries. m aybe change

notation for j∗ ????? qed

After link weight changes cease, an entry Di(k) can change only as a result of i receiving a message

MSG(d) from k, and the new value is d+ dik. In the predecessor protocol, this message was sent by k when

dk changes and this can happen only when some entry Dk(l) changes at k. In the split-horizon protocol,

that message was sent by k when dk or d′k changes, and this happens when some entry Dk(l) changes at k.

We shall say that the change in Di(k) is caused by the change in Dk(l).

Lemma 9.13

a) In the split-horizon protocol, a decrease of an entry Di(k) to a value α is caused by a decrease of an entry

at k to the value α− dik. An increase of Di(k) from a value α is caused by an increase at k from the value

α− dik.

b) In the predecessor protocol, a decrease of an entry Di(k) to a value α is caused by a decrease of an entry

at k to the value α− dik or by an increase at k from a value ≤ α− dik. An increase of Di(k) from a value

α is caused by an increase at k from the value α− dik or by a decrease to a value ≤ α− dik.

Proof: Instead of a hard to follow proof using general variables, we shall illustrate all possible changes in an

example. The general situation will be clear from the example. Consider a node i with 4 neighbors x, y, z, w,

and with estimated distances Di(•) as in Fig. 9.2. The preferred neighbor of i is x and di = 5. Assume that

all link weights are 1.

Consider first the split-horizon protocol. The last message sent by i to x was MSG(6) and to the others

was MSG(5).

After those messages arrive, since all link weights are 1, holds Dx(i) = 7 and Dy(i) = Dz(i) = Dw(i) = 6.

Table 9.1 includes all possible kinds of changes at i and their effects.

One can see that all decreases to some value α are caused by decreases to α− 1. Similarly, all increases

from some value α are caused by increases from α− 1.

Consider now the predecessor protocol. The last message sent by i to x was MSG(∞) and to the others

was MSG(5). After those messages arrive, holds Dx(i) =∞ and Dy(i) = Dz(i) = Dw(i) = 6. The following

table includes all possible kinds of changes at i and their effects.
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Figure 9.2: Example for the proofs.

Link Change Effect

Di(z) [7-9] –

[7-6.5] –

[7-5.5] Dx(i)[7-6.5]

[7-4] Dx(i)[7-5], Dy(i)[6-5], Dw(i)[6-5]

Di(y) [6-7.5] Dx(i)[7-8]

[6-6.5] Dx(i)[7-7.5]

[6-5.5] Dx(i)[7-6.5]

[6-4] Dx(i)[7-5], Dz(i)[6-5], Dw(i)[6-5]

Di(x) [5-7.5] Dy(i)[6-8], Dz(i)[6-7], Dw(i)[6-7]

[5-5.5] Dy(i)[6-6.5], Dz(i)[6-6.5], Dw(i)[6-6.5]

[5-4] Dy(i)[6-5], Dz(i)[6-5], Dw(i)[6-5]

Table 9.1: All possible changes and their effects for the split-horizon protocol

Link Change Effect

Di(z) [7-9] –

[7-6.5] –

[7-5.5] –

[7-4] Dz(i)[6-∞], Dy(i)[6-5], Dw(i)[6-5], Dx(i)[∞-5]

Di(x) [5-7.5] Dy(i)[6-∞], Dz(i)[6-7], Dw(i)[6-7], Dx(i)[∞-7]

[5-6.5] Dy(i)[6-∞], Dz(i)[6-7], Dw(i)[6-7], Dx(i)[∞-7]

[5-5.5] Dy(i)[6-6.5], Dz(i)[6-6.5], Dw(i)[6-6.5]

[5-4] Dy(i)[6-5], Dz(i)[6-5], Dw(i)[6-5]

Table 9.2: All changes and their effects for the predecessor protocol
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One can see that all decreases to some value α are caused either by a decrease to α− 1 or by an increase

from a value ≤ α− 1. Also, every increase from some value α is caused either by an increase from α− 1 or

by a decrease to some value ≤ α− 1.

Lemma 9.14 In both protocols, if link weight changes stop, then, for every node i and, every k ∈ Gi either

Di(k) stops changing in finite time or Di(k)→∞.

Proof: Denote by L the set of links (i, k) such that Di(k) never stops changing, but Di(k) 6→ ∞. Let

zik = liminfDi(k). For (i, k) ∈ L holds zik < ∞ and let (i∗, k∗) be the link that achieves minzik over

(i, k) ∈ L. For every ε > 0, there are an infinite number of instances when Di∗(k∗) is decreased to a value

≤ zi∗k∗ + ε or Di∗(k∗) is increased from a value ≤ zi∗k∗ + ε. By Lemma 9.13, to every decrease to a value

≤ z or increase from a value ≤ z of Di∗(k∗) corresponds a decrease to a value ≤ z − di∗k∗ or an increase

from a value ≤ z − di∗k∗ at k∗. Since k∗ has only a finite number of neighbors, it must have a neighbor l

such that Dk∗(l) takes on an infinite number of times values ≤ zi∗k∗ + ε− di∗k∗. Therefore, (k∗, l) ∈ L and

zk∗l ≤ zi∗k∗ − di∗k∗, contradicting the fact that zi∗k∗ is minimal in L. qed

Theorem 9.15 Suppose weight changes stop. In both the split-horizon and the predecessor protocols, if

s ∈ V , then there is a finite time after which no messages travel in (V,E) and all nodes i ∈ V have di =

shortest distance to s and pi = first link on the shortest path to s. If s 6∈ V , then di →∞ for all i ∈ V .

Proof: From Lemmas 9.14 and 9.11a) follows that for every node i, either di stops changing or di → ∞.

Now observe that there cannot be two neighbors i, k such that di stops changing, but dk →∞. di =∞??

This is because the latter implies Di(k) → ∞ or, in the predecessor protocol, Di(k) = ∞, so that a finite

time after di stops changing, pi 6= k and therefore Dk(i) = di + dki and therefore stops changing. However

this is a contradiction, since always holds dk ≤ Dk(i). Therefore, for two neighbors i, k either both di and

dk go to ∞ or both stop changing. Since ds ≡ 0, if s ∈ V , then di stops changing for all i ∈ V . Now suppose

s 6∈ V and not for all nodes i ∈ V holds di → ∞. Then all di stop changing and message activity ceases,

contradicting Lemma 9.12. qed

topology:believe first

weights:believe last

here we believe last update

in ct3 we believe first

example where without seq.nu. doesn’t work

example where without proper init. doesn’t work ???

.-----.------.------.------.

12 12 12 1

\lar \rar \rar \lar

Problems

Problem 9.5.1 Give an example of the split-horizon and predecessor protocols, in which a loop occurs.
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9.6 The Distributed Dijkstra Protocol

The distributed protocol here is based on the Dijkstra algorithm [Dij59] for obtaining shortest paths in a

network. An early version of the present distributed protocol was proposed by R.G. Gallager [Gal78] and

analyzed by D. Friedman [Fri79]. The version presented here was introduced in [ZS80] and has additional

features that produce savings in communication and protocol duration 2.

Update ???? The validation process is based on examination of the decentralized protocol vs. the

centralized algorithm, where in the first one we distinguish the communication process from the computation

part. The first one deals with the construction of a communication mechanism whose purpose is to enable

a node to obtain information that initially resides at other nodes. This mechanism is also designed in such

a way that nodes screen and summarize the information prior to its transmission to a neighbor. Once the

information is correctly transmitted, the computation part is able to construct shortest paths as in the

centralized algorithm. We show that, provided that the centralized algorithm is already known and proved

(as in the case of the Dijkstra algorithm), such a separation reduces the validation of the distributed protocol

to the proof of correctness of the communication mechanism.

9.6.1 Preliminaries

For our purpose, the nodes in the network are numbered and are referred to by their number. As before,

we associate to each direction (i, j) on a link from i to j a strictly positive constant weight dij , where the

weights of opposite directions may be different. A path is a sequence of distinct nodes {i0, i1, . . . , im} such

that there is a link connecting ik and ik+1. Given a path P , we define D(P ) as the sum of the weights along

the path. For the purpose of the algorithms of this section, it is convenient to define a total order ≺ on all

paths originating at a given node i, by using the following recursive definition:

Definition 1: We say that two paths P1, P2 that originate at a node i are such that D(P1) ≺ D(P2) if

one of the following holds:

a) D(P1) < D(P2)

b) D(P1) = D(P2) and x1 < x2 where x1, x2 are the end nodes of P1, P2 respectively.

c) D(P1) = D(P2) and x1 = x2 and D(P ′1) ≺ D(P ′2), where P ′1, P ′2 are subpaths of P1, P2 originating at i

and terminating at the nodes x′1, x′2 preceding x1 = x2 on each of the paths.

We say that P1 is shorter than P2 if D(P1) ≺ D(P2). For any two nonidentical paths P1, P2 originating

at a node i, either P1 is shorter than P2 or P2 is shorter than P1. Also, with this definition, there is a unique

path connecting two given nodes i and x that is shorter than all other paths connecting i and x, and this

will be called the shortest path. In addition, this definition ensures that if j is a node on the shortest path

P from node i to node x, then the shortest path from i to j and the shortest path from j to x are both

subpaths of P . This last property is of importance in the distributed protocol and its validation.

In each of the algorithms below, a node i holds variables dxi , fxi for each node x, that indicate respectively

D(P ), where P is a certain path from i to x, and the last node before x on P . Similarly to Definition 1, we

use:

Definition 2: We say that dx1
i ≺ d

x2
i , where x1 6= x2, if one of the following holds:

a) dx1
i < dx2

i

b) dx1
i = dx2

i and x1 < x2

2Check Humblet -Dijkstra [Hum88]
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Also, if y is a neighbor of x such that y 6= fxi , we say that dyi + dyx ≺ dxi if one of the relations below

holds:

c) dyi + dyx < dxi

d) dyi + dyx = dxi and y < fxi .

Throughout this section, all comparisons will be made according to the ≺ relation. For example, a node

that achieves minx d
x
i is the unique node x̂ for which dx̂i ≺ dxi for all x. Other notations are:

Gi = set of neighbors of node i

Π∗xi = shortest path from i to x (in the sense of Definition 1)

D∗xi = D(Π∗xi )

p∗xi = first node after i on Π∗xi
f∗xi = last node before x on Π∗xi ( father of x for i )

Π∗xi (cond) = shortest path from i to x under condition cond

D∗xi (cond) = D(Π∗xi (cond))

on U : let U ⊆ V and i0 ∈ U ; then a path {i0, i1, . . . , im−1, im} is on U if ik ∈ U for k = 0, 1, . . . ,m− 1 (but

not necessarily for k = m).

S∗i (x) = {y | f∗yi = x} = set of sons of x on the tree of shortest paths from i.

Note that Definition 1 ensures that for a given i, every node is the son of exactly one node. Note also

that if j = p∗xi , then S∗i (x) ⊆ S∗j (x).

9.6.2 The Centralized Dijkstra Algorithm (CDA)

The Dijkstra algorithm starts with knowledge at a node i of the topology of the graph and the weights of the

links, and computes shortest distances and paths from a given node i to all other nodes in the network. At

each stage, the algorithm divides the nodes in three categories: Pi - set of nodes to which i has permanent

distance, or in short, set of permanent nodes, Ti - set of nodes with tentative distance, or in short, set of

tentative nodes and the rest forms the set of nodes with unknown distance or unknown nodes. The tentative

nodes are the neighbors of permanent nodes that are not permanent themselves. At any given instant, the

algorithm knows the shortest path and distance from i to all permanent nodes x ∈ Pi and also the shortest

path and distance on Pi from node i to all tentative nodes. The Dijkstra algorithm is based on the following

observation: for the node x̂ ∈ Ti with shortest distance on Pi from i to x̂, it can be shown that this distance

is in fact the shortest (unconstrained ) distance. Therefore, x̂ can be made permanent, i.e. transferred to

Pi, its neighbors that are unknown can be made tentative, and the distance on Pi to all tentative neighbors

of x̂ can be updated to reflect the fact that x̂ was made permanent.

In order to facilitate comparison with the distributed protocol, we imagine a main processor at node i that

performs the main algorithm, helped by a slave (also located at node i) that has access to the topology and

weight database. Let Gx denote the set of neighbors of node x. For k ∈ Gx, recall that dxk denotes the weight

of link (x, k). An adjacency array of a node x is defined as (Λ,∆), where ∆ ⊆ Gx and ∆ = {dxk, k ∈ Λ}.
The role of the slave is to extract from the memory the adjacency array of a given node containing all its

neighbors and forward it to the main processor. ASKx denotes a request by the main processor to the slave

asking for the adjacency array of node x, containing all neighbors of x. The assumption is that whenever

such a request is submitted and only as a response to such a request, a message ANSx(Λ,∆) is returned by

the slave, in finite time, where Λ = Gx. The code of the Dijkstra algorithm is given below, except that all

references to the ORACLE should be disregarded and Assumption ii) should be changed to Λ = Gx. Also
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note that in the Centralized Dijkstra Algorithm no ASK is released before the ANS to the previous ASK

is received, so that only one node can be in state sxi = 2 at any given time.

The Dijkstra algorithm can be implemented without change in a distributed environment, but it turns

out that without much added computation complexity one can implement a slightly extended version that

saves considerably in communication and time complexity. It is convenient to describe this extended version

in a centralized situation first, although the centralized version is not implementable. The following two

changes will be made:

a) Suppose that i is informed by some ORACLE that the shortest path on Pi to some node x ∈ Ti is in

fact the shortest, unconstrained, path to x. Even if x does not minimize the distance on Pi over all x ∈ Ti,
node x can be made permanent. We denote the event of i being informed by the ORACLE that x can be

made permanent by ORACLEx.

b) The slave does not necessarily have to return the adjacency array with Λ = Gx. Any subset of the

neighbors of x containing all sons of x, i.e. S∗i (x) ⊆ Λ ⊆ Gx, is sufficient.

In a centralized environment, these two alterations seem mystical, and in fact they are, since there is no

obvious mechanism to implement them. However we shall see that in a decentralized protocol, where all

nodes collaborate to built their shortest path trees, such information often becomes available. The Dijkstra

algorithm with the above changes is:

Protocol CDA

Messages

ASKx = message to slave requesting the adjacency array of node x
ANSx(Λ,∆) = message from slave returning an adjacency array (Λ,∆) of x (recall that ∆ contains the
weights {dxk, k ∈ Λ})
START = command given to the main processor to start algorithm.

Variables

sxi - status of node x (all x ∈ V )

3 = permanent
2 = tentative for which ASK has been released, but ANS has not been returned yet
1 = other tentative
0 = unknown

dxi - estimated distance to x (all x ∈ V )
fxi - identity of predecessor (father) of x on the path from i to x (all x ∈ V )
x̂ - the node to be made permanent next.

Initialization

holds:

sxi = 0, dxi =∞, fxi = nil, for all x

Assumptions:

i) ANSx(Λ,∆) is returned in finite time after ASKx is released
ii) S∗i (x) ⊆ Λ ⊆ Gx

iii) ORACLEx can occur only if sxi = 1 and Πx
i = Π∗xi , where Πx

i = (i = i0, i1, . . . , im = x), where

in−1 = f ini
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Algorithm for node i
A1 When receiving START
A2 dii ← 0
A3 f ii ← nil
A4 sii ← 3
A5 ∀y ∈ Gi do
A6 syi ← 1
A7 dyi ← diy
A8 fyi ← i
A9 x̂ achieves min{dyi | s

y
i = 1}

A10 sx̂i ← 2
A11 ASK x̂

B1 When receiving ORACLEx /* sxi = 1 */
B2 sxi ← 2
B3 ASKx

C1 When receiving ANSx(Λ,∆)
C2 ∀y ∈ Λdo
C3 if syi < 2 and dxi + dxy ≺ dyi then
C4 syi ← 1
C5 dyi ← dxi + dxy
C6 fyi ← x
C7 sxi ← 3
C8 if syi = 0 or 3 ∀y then STOP
C9 else
C10 x̂ achieves min{dyi | s

y
i = 1 or 2}

C11 if sx̂i = 1 then
C12 sx̂i ← 2
C13 ASK x̂

9.6.3 The Distributed Dijkstra Protocol (DDP)

The Distributed Dijkstra Protocol works in principle as the centralized algorithm presented in the previous

subsection. The role of the slave to which a node i forwards the request ASKx for an adjacency array of x

is played by j = pxi . When it receives ANSx(Λ,∆) from j, Λ contains all nodes in S∗j (x), namely all sons

of x in the shortest path tree from j to all nodes. We shall show that this implies that Λ contains all nodes

in S∗i (x). Obviously, the fact that Λ need not contain all neighbors of x saves communication. The role

of the ORACLEx at node i is played by the event of i receiving ASKx while sxi = 1. We shall show that

in this case x is ready to be made permanent, although x does not necessarily minimize dyi , y ∈ Ti. Then

ASKx is sent, sxi ← 2 and when ANSx(Λ,∆) is received, x is made permanent. Obviously, this saves time

at individual nodes. For example, in the network of Fig. 9.3, with unity weights on all links, if link (3,4) is

slow, then nodes 5 and 6 can be made permanent at 3, without waiting for 4 to be made first permanent.

If we implement the Dijkstra algorithm without the ORACLE , then the order in which nodes are made

permanent at 3 must be 1,2,4,5,6.
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Figure 9.3: Dijkstra

Protocol DDP

Messages

ASKx = message requesting adjacency array of node x
ANSx(Λ,∆) = message returning adjacency array (Λ,∆) of node x
START = command given to node i to start protocol.

Variables

sxi - status of node x (all x ∈ V )

3 = permanent
2 = tentative for which ASK has been released, but ANS has not been returned yet
1 = other tentative
0 = unknown

dxi - estimated distance to x (all x ∈ V )
fxi - identity of predecessor (father) of x on the path from i to x (all x ∈ V )
pxi - identity of the neighbor from which ANSw(Λ,∆) has arrived, where w = f∗xi (all x ∈ V )
F x
i - set of nodes from which ASKx have been received and to which ANSx(Λ,∆) has not been returned

yet

Initialization

holds

sxi = 0, dxi =∞, fxi = nil, pxi = nil, F x
i = Φ, for all x ∈ V
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Algorithm for node i
A1 When receiving START or WAKE
A2 if sii = 0 then
A3 send WAKE to all k ∈ Gi
A4 dii ← 0
A5 f ii ← nil
A6 sii ← 3
A7 pii ← nil
A8 ∀y ∈ Gi do
A9 syi ← 1
A10 dyi ← diy
A11 fyi ← i
A12 pyi ← y
A13 x̂ achieves min{dyi | s

y
i = 1}

A14 send ASK x̂ to x̂
A15 sx̂i ← 2
A16 F x̂

i ← Φ
B1 When receiving ASKx from l /* Comment: sxi 6= 0 */
B2 if sxi = 3 then
B3 Λx ← {y | fyi = x}
B4 ∆x ← {dyi − dxi | y ∈ Λ}
B5 send ANSx(Λ,∆) to l
B6 else
B7 if sxi = 2 then
B8 F x

i ← F x
i ∪ {l}

B9 else
B10 sxi ← 2
B11 F x

i ← {l}
B12 send ASKx to pxi
C1 When receiving ANSx(Λ,∆), x 6= i from l
C2 ∀y ∈ Λdo
C3 if syi < 2 and dxi + dxy ≺ dyi then
C4 syi ← 1
C5 dyi ← di(x) + dxy
C6 fyi ← x
C7 pyi ← l
C8 sxi ← 3
C9 Λ← {y | fyi = x}
C10 ∆← {dyi − dxi | y ∈ Λ}
C11 send ANSx(Λ,∆) to all k ∈ F x

i
C12 if syi = 0 or 3,∀y then STOP
C13 else
C14 x̂ achieves min{dyi | s

y
i = 1 or 2}

C15 if sx̂i = 1 then
C16 send ASK x̂ to px̂i
C17 sx̂i ← 2
C18 F x̂

i ← Φ
For the proof of the Distributed Dijkstra Protocol, we need some preliminary notations and definitions.

Notations and definitions

Pi = {y | syi = 3}, set of permanent nodes

Ti = {y | syi = 1 or 2}, set of tentative nodes

Ai = {y | syi = 2}, ASKy has been sent, ANSy(Λ,∆) has not been returned yet

Πx
i = (i = i0, i1, . . . , im = x), where in−1 = f ini , path to x known by i ( for x ∈ Pi ∪ Ti )

V − (Pi ∪ Ti) = {y | syi = 0}, set of nodes unknown by i

x ∈ Pi ∪ Ti is strongly known different term? by i if Πx
i = Π∗xi
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Note that x can be strongly known by i without i being aware of this. Only when x ∈ Pi ∪ Ai is i aware

that it strongly knows x.

Lemma 9.16

a) For all x and i, if fxi 6= nil, then fxi ∈ Gx.

b) In any ANSx(Λ,∆), holds Λ ⊆ Gx.

Proof: We prove both parts by a common induction on the events in the entire network. When i enters

the protocol, it sets fxi ← i for all x ∈ Gi, and obviously holds i ∈ Gx. Suppose both a) and b) hold until

some time t−, where t is some time when either ANS is sent or fxi is changed for some i and some x, or

both. We show that a) and b) hold also after time t. If at time t, ANSx(Λ,∆) is sent in <B5>, then Λ

consists of nodes y, such that fyi (t−) = x ∈ Gy. But x ∈ Gy implies y ∈ Gx, so that Λ ⊆ Gx. If at time t,

node i executes <C1>, then, if fyi ← x, then y ∈ Λ(t−) ⊆ Gx, hence fyi (t+) = x ∈ Gy. Afterwards, when

ANSx(Λ(t+),∆(t+)) is sent, Λ(t+) consists of nodes y such that fyi = x and the same argument as before

shows that Λ(t+) ⊆ Gx.

Lemma 9.17

a) Node i can receive ANSx(Λ,∆) from node j only if i has previously sent ASKx to j.

b) For x 6= i, the status sxi can change only by increments of 1.

c) For all x ∈ Pi ∪ Ti (i.e. sxi > 0 ), holds fxi ∈ Pi and dxi = D(Πx
i ).

d) When ANSx(Λ,∆) is sent by a node i, holds ∆ = {dxy, y ∈ Λ}.

e) If x is strongly known by i at some time t, i.e. Πx
i = Π∗xi , then it is strongly known by i at any time after

t.

f) If x ∈ Ti −Ai (i.e. sxi = 1), then Πx
i = Π∗xi (on Pi), i.e. the path to x known by i is the shortest on Pi.

Proof:

a) ANSx(Λ,∆) is sent by j to i either in <B5> when it receives ASKx from i or in <C11> to nodes in

F x
j . A node enters F x

j only upon j receiving ASKx from it.

b) follows from the algorithm and the fact that ANSx(Λ,∆) can be returned only after ASKx is issued.

c) The fact that fxi ∈ Pi follows from the fact that fxi becomes y only if at the same time syi ← 3. The

rest of c) is proved by induction on the events in the network, since at any time when fxi ← y, and only

at those times, also dxi ← dyi + dyx. Hence, if b) holds in the entire network until before this event, then

dxi = D(Πy
i ) + dyx = D(Πx

i ), and therefore c) holds also after the event.

d) ANSx(Λ,∆) is sent in <C11>, and the entries in ∆ are dyi − dxi . But from c), dxi = D(Πx
i ) and

dyi = D(Πy
i ), and from <C6>, fyi = x, so that dyi − dxi = dxy.

e) In view of c), if x is strongly known by i, the inequality dyi +dyx ≺ dxi can never hold in the future, hence

fxi and dxi will never change.

f) If fxi ← i in <A11>, then Pi = {i}, and the statement is obvious. The only other event when Πy
i , for

some y, is changed is in <C6>, when fyi ← x, at time t say. We show now that if f) holds until time t−, it

also holds at time t+. If syi (t−) = 0, then Πy
i (t+) is the only path on Pi(t+) to y, hence f) holds trivially at
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time t+. If syi (t−) = 1, then Πy
i (t−) = Π∗yi (on Pi(t−)) and by c), dyi (t−) = D∗yi (on Pi(t−)). Since at time

t, node x enters Pi and dxi + dxy ≺ dyi (t−), the path to y via x is Π∗yi (on Pi(t+)), so that fyi ← x establishes

Πy
i (t+) = Π∗xi (on Pi(t+)).

qed

Theorem 9.18 (DDP)

a) ASKx can be received by i from j only if i = p∗xj and only if x is strongly known by i.

b) ANSx(Λ,∆) can be received by i from j only if j = p∗xi and then S∗i (x) ⊆ Λ.

c) At all times holds ∪y∈Pi
S∗i (y) ⊆ Pi ∪ Ti ⊆ ∪y∈Pi

Gy and if x ∈ Pi and y ∈ S∗i (x), then fyi = x.

d) If x ∈ Ai ∪ Pi (i.e. sxi = 2 or 3), then Πx
i = Π∗xi , i.e. x is strongly known by i.

e) If x is strongly known by i, then pxi = p∗xi and x is also strongly known by p∗xi .

f) At the time when ASKx is sent by i to j, holds j = p∗xi and both i and j know x strongly.

Proof: The proof proceeds by a common induction. We assume that a)-f) hold in the entire network until

time t− and proceed to show that they also hold at time t+, for any event that happens at time t.

a) If ASKx is received by i from j at time t, let t′ < t be the time when j has sent the message. By the

induction assumption, f) holds at time t′, hence i = p∗xj and x is strongly known by i. From Lemma 9.17e)

follows that x is strongly known by i at time t as well.

b) Let t′ < t be the time when j has sent the ANSx(Λ,∆) message. At time t′ holds sxj = 3 and Λ = {y |
fyj = x}. Hence c) applied at time t′ implies that S∗j (x) ⊆ Λ. Now Lemma 9.17a) implies that j receives

from i an ASK message at or before t′−, so that a) implies that j = p∗xi . Moreover, since j = p∗xi implies

S∗i (x) ⊆ S∗j (x), also holds S∗i (x) ⊆ Λ.

c) From <C1>, holds Pi ∪ Ti = ∪x∈Pi
Λ ∪ {i}, check this (Λ) and the first part of c) follows from Lemma

9.16b) and part b) above. Now, if y ∈ S∗i (x) and x ∈ Pi, then y was received in ANSx(Λ,∆) and since

D∗yi = dxi + dxy, at that time fyi ← x, dyi ← D∗yi , and these entries never change afterwards.

d) Suppose that x enters Ai (i.e. sxi ← 2 ) at time t. If this happens in <B10>, then Πx
i = Π∗xi because of

a). Suppose that at time t, x enters Ai in <C17>. Consider the situation just before sxi ← 2 is executed.

Suppose Πx
i 6= Π∗xi , i.e. D(Πx

i ) > D∗xi , and let z be the first node not in Pi on Π∗xi . Since f∗zi ∈ Pi and

z ∈ S∗i (f∗i (z)), part c) above implies z ∈ Ti. Therefore,

dzi = D∗zi (onPi) ≤ D∗xi < D(Πx
i ) = dxi

which implies z 6= x. But the above contradicts the fact that x minimizes {dyi , y ∈ Ti}. Hence d) holds for

x ∈ Ai. This completes the proof for x ∈ Ai. Since in the transition from Ai to Pi, the path Πx
i and the

preferred neighbor pxi do not change, d) holds also for x ∈ Pi.

e) Let t be the time when x becomes strongly known by i. If this happens in <A11>, then fxi ← i and

at the same time pxi ← x. Since this is the last time when fxi is set and at t node x becomes strongly

known by i, holds p∗xi = x. Therefore after time t holds pxi = p∗xi . If at t, node x becomes strongly known

in <C6>, at which time fxi is set to w say, then ANSw(Λ,∆) is received, from p∗wi ( by b)). Therefore

pxi ← p∗wi . But since fxi does not change after t and at t node x is strongly known by i, holds f∗xi = w and

therefore p∗wi = p∗xi , so that after t holds pxi = p∗xi . Next we show that at time t node x is strongly known
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by j = p∗xi as well. Since a node is strongly known by itself, we need consider only the case j 6= x. When

the ANSw(Λ,∆) received by i from j at time t was sent, held w ∈ Pj and fxj = w. This together with

w = f∗xi = f∗xj , implies that x was strongly known by j when ANS was sent, and from Lemma 9.17e), also

at time t.

f) If ASKx is sent by i at time t, to j say, then at the same time sxi ← 2, i.e. x enters Ai. The statement

therefore follows from d) and e) above.

qed

Theorem 9.19 (DDP)

a) If Ti 6= ∅, then Ai 6= ∅.

b) If a node enters Ai, it enters Pi a finite time afterwards. If ASKx is sent by i to j, then ANSx(Λ,∆) is

received in finite time by i from j.

c) At any node i, STOP occurs in finite time and when this happens Pi = V , Ti = Φ, V − V = {x | sxi = 0}.

Proof:

a) When Ti becomes for the first time nonempty, in <A9>, one of the nodes, x̂, enters also Ai. Later, Ai

can empty out only in <C8>, but if this happens and there are still nodes in Ti, then again one node, x̂ in

<C17>, enters Ai at the same time.

b) When a node x enters Ai, i.e. si ← 2, node i sends ASKx to j = p∗xi . From Theorem 9.18a) follows that

when ASKx arrives at j, then sxj > 0. If the ASKx finds j such that sxj = 3, then j sends ANSx(Λ,∆) back

to i and when this is received x enters Pi. If the ASKx finds sxj = 1, then j sends ASKx and sets sxj ← 2.

Continuing on Π∗xi , since sxx = 0 or 3, there must be a node k that receives ASKx while sxk = 3. That

node returns ANSx(Λ,∆), and when a node between i and k receives ANSx(Λ,∆), it sends ANSx(Λ,∆).

Consequently, i will also receive ANSx(Λ,∆).

c) Since any node in Ai eventually goes to Pi at least one node in Ti must be in Ai and there are only

a finite number of nodes in V , eventually Ti must empty out, so STOP occurs at i. Since obviously if

x ∈ V − V , then sxi = 0, we need to show that for all x ∈ V holds sxi = 3. Suppose this is not true and let

V ′ = {x ∈ V | sxi = 0}. Since both V ′ and Pi are nonempty, there exist two neighbors x and y such that

x ∈ Pi, y ∈ V ′ and f∗yi = x. When sxi ← 3, i has received ANSx(Λ,∆) and since y ∈ R∗(x), y was in the

received Λ. At that time, if syi was 0, it was set to 1, contradicting the fact that syi remains 0 forever.

qed

The communication complexity C of the Distributed Dijkstra Protocol can be calculated as follows. Each

node i sends exactly one ASKx message and one ANSx(Λ,∆) message, for each x 6= i in V . Those messages

travel on the tree of shortest paths to x. Therefore, the ASK messages are responsible for | V | (| V | −1)

elementary quantities (node identities). The list Λ(x) contains S∗xi and is contained in Gx. Therefore the

total number of elementary quantities (weights or node identities) sent in ANS messages bounded from

above by | V | (| V | −1)(2 | E | / | V | +1) elementary quantities. Similarly, if Λ = S∗i (x) in all ANS

messages, then each identity x travels exactly twice in ANS messages on each edge (i, k) of the shortest

paths tree to x, once in ANSx and once in Λ, where y = f∗xi . In the later case, ANS also carries the

weight dyx, hence the total number of elementary quantities in ANS messages is bounded from below by

3 | V | (| V | −1).

Problems
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Problem 9.6.1 What is the complexity of each one of the PU protocols (PU, Bellman-Ford, Dijkstra) when

the delay on the links is constant and equals to the weight of these links?
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Chapter 10

CONNECTION MANAGEMENT

10.1 Low speed networks

In this section, we present a reliable distributed protocol for management of connections in data networks,

that was introduced in [SJ86]. The protocol ensures that the connection is set up properly unless a failure

is encountered, data messages are delivered to their destinations unless they encounter a takedown process

and the connection is taken down and all used network resources are released after a failure or connection

completion.

10.1.1 Background

One of the common methods for routing messages in data-communication networks is virtual circuit-switching

[SBP72]. This method consists of first setting up a virtual channel (VC) for any given session between the

originating node and the destination node, routing all data messages corresponding to this session on the

VC and then cancelling the VC when the session is completed.

The simplest method to identify the VC’s at intermediate nodes is by using a unique “global path

identifier” (GPID) that includes the origin node, destination node and a number (see Fig. 10.1). If the origin

node assigns a different number to each new VC at set-up time, then the GPID identifies the VC uniquely

networkwide. If the routing tables at each node keep the next node of the path in both directions for any

active GPID and the data messages carry the GPID in their header, then the data can be appropriately

dispatched from node to node until it arrives at the terminal node. The GPID carried in the message is also

used by the destination node to assign the received data to the correct VC.

Figure 10.1: Routing tables for the GPID method

This method has, however, two serious drawbacks: the size of the GPID must be very large to guarantee

uniqueness, resulting in large tables and long headers. Moreover, the access into an unstructured routing
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table using a GPID is difficult. One solution to this is based on the observation that the number of active

VC’s traversing any given node at any given time is only a small portion of the total number of VCs existing

in the network and to use Local Path ID’s [MM81], also known as Path Number [SS80] or Logical Record

Number [Rin] or Virtual Channel Identifier (VCI) [Bou92]. In order to concur with the terminology of

modern ATM networks, we shall use the term Virtual Channel Identifier (VCI). Generally speaking, each

node along the VC assigns a local number (VCI), to be used in connection with the VC. Each node knows,

for every VCI entry in its VCI-Table, the next node on the VC and the VCI used by the next node for

this VC (see Fig. 10.2). When a data message is sent by node X to the next node Y, it carries the VCI of

node Y corresponding to the VC and when it is received by Y, the latter accesses the corresponding entry

in its VCI-Table. In this entry Y reads the identity and the VCI of the next node, replaces the received VCI

by the new one and forwards the message on the corresponding link. The advantages of this method are:

a) the number of bits required to specify an VCI is much smaller, resulting in smaller headers and routing

tables, and b) the access into the routing table does not require any search because the VCI may be used

to directly index into the entry in the table . The number of bits necessary to represent the VCI is log2 of

the maximum number of VCs that traverse a node at any given time. This follows from the fact that when

a VC is cancelled, the corresponding entry (VCI) in the node VCI-Table can be released for reuse for any

new VC that will traverse the given node.

Figure 10.2: Routing tables for the VCI method

Given the basic idea of routing using VCI, this section introduces a protocol that establishes and cancels

VC’s in the network in a distributed way and ensures their proper operation. The required properties of the

protocol are:

1) The VC set-up procedure completes in finite time unless it encounters a failure and permits transmission of

data on the VC by the end nodes.

2) All data sent by a node on a particular VC arrives at its destination on the same VC, unless a failure or VC

takedown occurs; in case of a failure or takedown, the data may be destroyed, but may not be accepted by

a different destination or by the same destination along a different VC; all data messages leave the network

in finite time after being sent.

3) All VCI table entries corresponding to a VC that has failed or has been cancelled are released in finite time.

The protocol must have the stated properties in presence of failures of nodes or links in the network.

10.1.2 The basic model and the protocol

In this subsection we shall describe the protocol for setting-up and cancelling a given VC connecting a source

node named ORIG to a destination node DEST. Although in ATM VC’s are unidirectional, we look at our
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VC’s in this section as bi-directional in the sense that data messages can be sent in either direction. Only

ORIG is allowed to establish it however. Takedown of the VC may be initiated asynchronously by either

end at the time of session completion and/or by intermediate nodes when failures occur.

The VC management protocol must be supported by a path determination protocol that determines

the path over which the VC is to be established. Two types of such protocols may be considered. In one

type, the entire path is available at ORIG before the set-up procedure is started. This may be the case if

the network uses static routing, as for example in SNA 4.2 [SS80], [Atk82], or centralized adaptive routing,

as in TYMNET [Rin], [Tym81]. The network may have one or more facilities that run centralized path

determination protocols and send the path to ORIG upon request or, alternatively, ORIG itself may be able

to determine the route to DEST based upon knowledge of the entire topology. The second type of protocols

that may be considered consists of distributed path determination protocols, where the entire path is not

available at any node, nodes maintain only next-node tables, and the path of the virtual circuit is built on

a node by node basis by the set-up message itself. Both types of protocols can be used, but it is convenient

for concreteness to first present the VC management protocol while assuming that the entire path of the

VC,denoted by VC-path is available at ORIG. We then show in Sec. 10.1.5 that certain protocols of the

second type can also be used. Henceforth, until otherwise said, we assume that the path is available at

ORIG and is carried in its entirety in the header of the SET-F message that sets up the VC.

The formal algorithm performed by each node to implement the protocol appears in Sec. 10.1.3. Next

we provide an informal description by first introducing the main ideas and then giving the details of the

algorithm. We use the notation F to indicate messages that travel “forward” on the path, namely from

ORIG to DEST and B to indicate those messages that travel in the opposite (“backward”) direction. A

basic assumption is that associated with each link there is a Data-Link Control protocol that ensures Data

Reliability (see Chap. 2).

The routing tables in the nodes on the path are dynamically created by the setup SET-F and SET-B

messages (see Fig. 10.3). The set-up message SET-F carries VC-path, travels from ORIG to DEST and is

also used by each node to record the next link on the path in the forward and backward direction, denoted

by Link-F and Link-B respectively. A reply message SET-B travels from DEST to ORIG to inform ORIG

that the path has been set up successfully. The SET-F and SET-B are also used by each node to set the

variables VCI-B and VCI-F respectively, that indicate the VCI selected by the backwards and forwards next

nodes for this VC (see Fig. 10.3). After SET-F is received at DEST, the latter may start using the VC for

data messages, denoted by data-B . Similarly, receipt of SET-B at ORIG is the green light for sending data

messages on the VC in the forward direction, denoted by data-F. In this way we comply with requirement

1) in Sec. 10.1.1.

Since Link-B, VCI-B and Link-F are available at each node after the time SET-F traverses it and VCI-F

is available after receipt of SET-B, all data messages will arrive safely at the corresponding end node as

long as they do not encounter a failed link or a VC takedown process. This is part of requirement 2) in

Sec. 10.1.1.

A takedown process may be initiated by any node on the path at any time. Takedown may be triggered

by a desire for session completion at either of the end nodes, by failures of elements along the path or if the

set-up procedure encounters a failed link or node. The VC is taken down by CNCL-F and CNCL-B messages

that propagate on the VC. Two basic problems exist with the naive method of blindly cancelling the VC

and propagating the cancelling messages in both directions after failure. The first is that data messages

belonging to the VC may still be in the network (see Fig. 10.3). If a node (node X in Fig. 10.3) takes down

the VC upon receipt of CNCL-B and then sets up a new VC using the same VCI, possibly to a different

destination, then the data message may get to the wrong destination, violating requirement 2) of Sec. 10.1.1.
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Figure 10.3: The setup, cancel and data message flow
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The second problem is that CNCL-F cannot be forwarded if SET-B has not arrived yet, since the latter sets

VCI-F, that is needed for CNCL-F (see Fig. 10.4). To handle the second problem, the algorithm requires

a node that is about to send a CNCL-F and has not yet received SET-B, to wait until the latter arrives.

To correct the first problem, nodes will send a response CNCL-F to a received CNCL-B and a CNCL-B in

response to CNCL-F, if such a message has not been sent before. As proved in Sec. 10.1.4, the VCI-Table

entry can be released upon receipt of the second CNCL, since it is guaranteed that no further messages

belonging to the old VC will arrive at the node. In this way we comply with the rest of requirement 2) and

with requirement 3) in Sec. 10.1.1.

The state diagram for each node is given in Sec. 10.1.3. The meaning of the states are given in State-

ment b) 1. FAIL-F is the message that is delivered by the Data-Link Control protocol to our protocol when

the link to Link-B fails, provided that no CNCL-F or FAIL-F has been received before (see Statement g)).

Similarly for FAIL-B. A message sent by a node carries its type, its direction F or B, and possibly two VCI’s

as indicated in Statement c). The variable sender-VCI is the sender’s VCI and is used to transmit this

variable to the receiving node, and the variable VCI is the receiver’s VCI and is used by the receiving node

to access the correct entry in its own routing table.

In the algorithm for an Arbitrary Node in Fig. 10.4, the Passive-Setup transition is the first step in the

set-up action and the Passive-Passive transition is the initialization of the Takedown process when a failed

link is encountered by SET-F (see Fig. 10.6). The Setup-Active transition is the propagation of SET-B, the

Setup-Passive transition is the propagation of CNCL-B or the initiation of takedown when the link to Link-F

fails (i.e. FAIL-B is received) and the Setup-TakedownP transition brings the algorithm into a state where

the node waits for SET-B before sending CNCL-F. Transitions Active-TakedownF and Active-TakedownB

are the propagation of CNCL while also sending a response message or initiation of CNCL when a failure

occurs and transition Active-Active is propagation of data. State TakedownB means that CNCL-B has been

sent and the node is waiting for CNCL-F. As said before and proved in Sec. 10.1.4, in this state any one of the

messages CNCL-F or FAIL-F is the last possible message belonging to the current VC that may arrive and

can be used to release the table entry. State TakedownF is similar to TakedownB in the opposite direction. In

state TakedownP, if SET-B comes, takedown is initiated in the forward direction, while CNCL-B or FAIL-B

signals that there is no need to initiate this takedown.

10.1.3 The Algorithm

The state diagram of the algorithm perfomed by a node on VC-path to implement the VC management

protocol is given in Fig 10.4. The state diagram is accompanied by the following statements.

Statements

a) An entry in the VCI-Table contains the variables VCI-F, VCI-B, Link-F, Link-B, state. The entry is selected

among entries with state = Passive upon arrival of SET-F.

b) The values of the variable state and their meaning are:

Passive unused (after the VCI has been released by the previous VC

and before it is assigned to a new VC)

Setup being setup (after (SET-F)

Active active (after SET-B)

TakedownF being taken down (waiting for CNCL-B)

TakedownB being taken down (waiting for CNCL-F)

TakedownP being taken down (waiting for SET-B)

1We write “Statement” as short for “Statement in Sec. 10.1.3”.
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Figure 10.4: The state transition diagrams for the algorithm
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The state transition diagram appears in Fig. 10.4.

c) The messages used by the algorithm and the variables carried by them are listed below. sender-VCI is set

as the VCI of the sending node. VCI is the entry in the VCI-Table to be accessed by the receiving node.

SET-F (sender-VCI ,VC-path)

SET-B (VCI, sender-VCI )

CNCL-F (VCI)

CNCL-B (VCI)

data-F (VCI)

data-B (VCI)

FAIL-B (VCI)

FAIL-F (VCI)

d) VCI-B is set as sender-VCI in the incoming SET-F message; VCI-F is set as sender-VCI in the incoming

SET-B message.

e) B messages are sent on the link to Link-B and F messages on the link to Link-F.

f) On each link there is DLC protocol that ensures data reliability (see Chap. 2).

g) FAIL-F is delivered to the algorithm if if failure notification is received from DLC on Link-B and the algorithm

is in state Setup, Active or TakedownB. FAIL-B is delivered to the algorithm if failure notification is received

on Link-F and the algorithm is in state Setup, Active, TakedownF or TakedownP.

10.1.4 Main Properties of the Protocol

The main properties of the protocol are given in Theorems 10.8 and 10.9 at the end of this subsection. The

rest of this subsection is devoted to the preparation of the proof of those theorems.

Before proceeding, observe at the outset that the Algorithm, as given in Sec. 10.1.3 is not completely

specified. This is because the Algorithm does not specify what should a node do when it receives a message

that is not specified for a given state in the state diagram. For example, what action should be taken when

a node receives a data message in state Setup? As part of the validation proof we shall show that in fact no

unspecified message can be received, but for now, in order to have a completely defined protocol, we shall

specify that every unspecified message is discarded without any processing .

Next, in order to be be able to refer to VC’s and messages, we need a unique identification for every

VC and for the messages belonging to it. To accomplish that, we temporarily define an additional variable,

named GPID, that appears in each entry in the VCI-Table and in each message. All entries and messages

belonging to a given VC will contain the same GPID. The GPID of a VC is selected by the higher level so

that it is unique networkwide and is delivered to ORIG in the VC setup request. The GPID is carried by the

SET-F message in addition to all other variables dictated by the algorithm, is entered at each node in the

selected VCI upon receiving SET-F and is erased when the VCI entry is released, namely when it reenters

state Passive. In this way all VCI entries assigned to a given VC are identified by the corresponding GPID.

Every message arriving at or departing from a node is associated with a certain VCI entry: some VCI

entry is accessed when a message arrives and every message that is sent draws its variables and direction

from an VCI entry. For conciceness, we shall say that the VCI entry is used by the message. However, we

want to identify messages by the VC they should belong to and not by the VC on which they happen to
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propagate. Later we shall prove that the two are the same, but for now we must proceed as if they were not

necessarily identical. Consequently, the GPID in messages other than SET-F is defined as follows: messages

of types FAIL-F and FAIL-B are received not as a result of being sent by a neighbor and their GPID is

defined as the GPID appearing in the VCI entry used by the message at the receiving node; all other types

of messages are sent by a node as a result of receiving a message and the GPID in the message to be sent

is set as the GPID in the received message. Observe that with this definition, until otherwise proved, a

received or sent message does not necessarily carry the GPID of the used VCI entry.

Now consider a given GPID, its corresponding VC-path and the messages carrying that GPID. All nodes

preceding a given node X in VC-path will be referred to as its predecessors and all those following X as its

successors. The immediate predecessor/successor is the node appearing just before/after X in VC-path. An

F or B message carrying the given GPID is said to be routed according to VC-path if it is sent on a link

corresponding to VC-path in the forward/backward direction respectively. In addition, if a message that is

received or sent by a node carries the same GPID as the VCI entry used by that message, we say that the

message is received/sent with the correct GPID. The basic property of our protocol, that implies most of

the statements of Theorems 10.8 and 10.9, is that all messages are routed on the VC to which they belong.

Formally, this means that they are routed according to VC-path and are sent and received with the correct

GPID. However, until this fact is proved, it will be useful to consider a second algorithm, that is the same

as the given algorithm, except that for every GPID, every message that is received with the incorrect GPID

is discarded . The second algorithm will be referred to as the altered algorithm as opposed to the original

algorithm and in the sequel we shall always mention explicitly the algorithm we refer to. Observe that the

GPID is not used in the original algorithm explicitly, while the altered algorithm needs the variable GPID

in order to discard messages received with incorrect GPID. The structure of the first part of the validation

proof will be to first prove certain facts about the altered algorithm, and then to show that due to these

facts, it is actually equivalent to the original algorithm.

The following definitions for a given VC in either of the two algorithms will be useful: A node is said

to enter the algorithm (for the given GPID) if and when it leaves state Passive and sets the given GPID; it

is said to leave the algorithm or to release the GPID when it reenters state Passive (and then it erases the

GPID); it is said to be in the algorithm for the given GPID in between those times. A node is said to set

VCI-B correctly if the immediate predecessor has previously entered the algorithm and VCI-B is set as the

VCI used by the immediate predecessor for the given VC. Similarly for VCI-F.

The validation of the original algorithm consists of two parts. In the first part it is shown that the

algorithm routes all messages on the VC they belong to. This corresponds to the so-called “safety” property,

that refers to the fact that “bad things do not happen”, or in our context, if messages are sent, they are

sent on the correct VC. The second part proves the “liveness” part, or “good things do happen”, which in

our context means that data messages arrive at their destination and, if a failure occurs, the VCI entries are

released in finite time.

In the first part, we show that in the altered algorithm all messages are routed according to VC-path

(Lemma 10.1) and are received with the correct GPID (Lemma 10.2). We then conclude in Lemma 10.3

that these properties also hold for the original algorithm and that in fact both algorithms are identical.

Lemma 10.1 The following statements are correct for the altered algorithm and refer to a given GPID

and the corresponding VC-path :

a) Only nodes in VC-path may enter the algorithm for the given GPID and not more than once. Upon

entering the algorithm, a node sets Link-F and Link-B as the immediate successor/predecessor respectively

and sets VCI-B correctly. If a node receives SET-F, all its predecessors have entered the algorithm. If a node

performs the Passive-Passive transition, it never enters the algorithm.
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b) A message with the given GPID may be sent by a node only if the node is in the algorithm for that GPID

and only with the correct GPID.

c) Every message with the given GPID sent by a node is routed according to VC-path.

d) If a node sets VCI-F in an entry with the given GPID, it sets it correctly. A node may send a B message

with the given GPID only after having set Link-B and VCI-B in the corresponding entry and may send an

F message only after having set Link-F and VCI-F.

Proof: The given GPID is unique networkwide, SET-F is sent according to VC-path and only once, the

variables Link-F and Link-B are set according to VC-path and VCI-B is set as sender-VCI in the incoming

SET-F message. If a node performs the Passive-Passive transition, it will never receive SET-F again with

the given GPID and hence will never enter the algorithm. Hence a) holds.

In the altered algorithm, a message may be sent by a node only when it receives a message with the

correct GPID, since messages received with incorrect GPID are discarded. Since a message that is sent

carries the same GPID as the received one, b) follows.

Since a B message is sent on the link to Link-B and an F message on the link to Link-F, a) and b) above

imply c).

To prove the first part of d), suppose a node sets VCI-F in an VCI entry with the given GPID. This

can happen only as a result of receiving a SET-B and since in the altered algorithm only messages with the

correct GPID are processed, the incoming message must carry the given GPID. From a) and b) above, the

message was sent by the immediate successor and the variable sender-VCI in the message was set as the

VCI entry selected by the successor for the given GPID. Hence VCI-F is set correctly. Finally, inspection of

the state diagram in Fig. 10.4 shows that the rest of d) holds. qed

Lemma 10.2 The following statements are correct for the altered algorithm and refer to a given GPID

and the messages carrying that GPID.

a) Except for data, any given type of message can be sent at most once by each node. A node sends no

messages after having sent CNCL-B or CNCL-F or both together. A node that performs the Passive-Passive

transition, sends no messages.

b) A node that receives a failure notification from Link-F after it has entered the algorithm sends no F

messages afterwards (even if the link comes up again). Similarly for B messages and Link-B.

c) No message can arrive at a node prior to SET-F.

d) No B message can arrive at a node after CNCL-B or FAIL-B and no F message can arrive after CNCL-F

or FAIL-F.

e) If the algorithm at a node is in state Setup, the algorithm at its immediate predecessor is and has been in

states Setup, TakedownP or Passive. If the algorithm at a node performs the Setup-Passive transition, it

receives no F message except for SET-F.

f) Every received message is received with the correct GPID.

Proof: A node can enter the algorithm for the given GPID at most once and can send messages with

the given GPID only when it is in the algorithm for that GPID (Lemma 10.1). All statements of a) follow

then by simply inspecting the state diagram of Fig. 10.4.

A failure notification from Link-F after the node has entered the algorithm, either finds the node in the

subset of states (TakedownF, Passive) or else a FAIL-B is delivered to the algorithm and this forces the
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algorithm into that subset. In either case, the algorithm remains in this subset forever and no F messages

can be sent in these states. A failure notification from Link-B after the node has entered the algorithm,

either finds the node in the subset of states (TakedownP, TakedownB, Passive) or else a FAIL-F is delivered

to the algorithm and this forces the algorithm into that subset. In either case, the algorithm remains in this

subset forever and no B messages can be sent in these states. Hence b) holds.

To prove c), observe that no message carrying the given GPID can travel on a link that does not belong

to VC-path (Lemma 10.1c)). Let X be the node in VC-path where c)) is violated for the first time. The

received message cannot be of type FAIL-F or FAIL-B because those can be delivered only when the node is

in the algorithm for the given GPID. Therefore the message was sent as a result of receiving a message with

the same GPID, either by the immediate successor, Y say, or by the immediate predecessor Z. In the first

case, Y violates c) before X, which is a contradiction. Consider now the second case. In the second case,

SET-F was sent by Z, at time t1 say, before the considered message was sent, at time t2 say. However by the

time the considered message arrives, the SET-F did not arrive. The FIFO property of the DLC procedure

(Sec. 2.3), implies that between t1 and t2 there was a failure notification at Z from Link-F ( and the DLC at

Z entered Initialization Mode, see Chap. 2). However this contradicts b), since the considered message was

sent after the failure notification was received. This completes the proof of c).

Next we prove d). Since FIFO holds, a) above shows that if CNCL-B arrives at a node, no other B

message sent by the immediate successor can arrive afterwards. The only B message that can arrive at a

node without being sent by the immediate successor is FAIL-B. But, receipt of CNCL-B forces the algorithm

into the set of states (TakedownB, Passive) if it is not in this set already, and this set cannot be ever left.

But by Statement g) in Sec. 10.1.3, FAIL-B cannot be delivered in these states. Thus FAIL-B cannot be

delivered to the node after CNCL-B has been received. The same proof works for CNCL-F, that forces the

algorithm in the subset (TakedownP, TakedownF, Passive) if it is not there already. To prove that no B

message can arrive after FAIL-B, let X and Y be two consecutive nodes in VC-path and suppose FAIL-B

arrives at X at time t1 (Fig. 10.5), in which case, by Statement g), a failure notification is delivered by the

DLC on link (X,Y) at X and X is in state Setup, Active, TakedownP or TakedownB. We want to show

that this is the last received B message with the given GPID. Suppose this is not the case and let t2 be the

later time when such a message arrives. Since the FAIL-B message forces X into (TakedownF, Passive), no

second FAIL-B can be received and thus the message was sent by Y, at time t3 say. At time t1, the DLC at

X entered Initialization Mode and at t2 it is in Connected Mode, hence the Crossing property of the DLC

(Sec. 2.3) dictates that there is a time t4 between t1 and t2 when the DLC at Y is also in Initialization Mode

and t4 < t3. Since X is in the algorithm at t1, it has sent SET-F to Y before that time. If the SET-F has not

arrived by time t4, it will never arrive by the Crossing property of DLC, hence Y never enters the algorithm

and thus it sends no messages with the given GPID to X. If the SET-F has arrived and Y performed the

Passive-Passive transition, then Y will never enter the algorithm. If Y did not perform that transition and

has entered the algorithm, it sends no B messages to X after t4 by b). A similar argument shows that no F

message can arrive after FAIL-F, completing the proof of d).

To prove the first part of e), note that if the algorithm in a node is in state Setup, it has sent no B

messages. Hence its immediate predecessor, that has entered Setup beforehand, could not have left the set of

states (Setup, TakedownP, Passive). The second statement of e) then follows since if the algorithm performs

the Setup-Passive transition, its predecessor will never leave the above-mentioned set of states and thus will

never send any other F message except for the SET-F. The algorithm also cannot receive FAIL-F since if it

does, it performs the Setup-TakedownP transition and not the Setup-Passive one.

Next we prove f). By inspecting Fig. 10.4, we observe that, except for the case when it performs the

Setup-Passive transition, a node that enters the algorithm leaves it after having received both (FAIL-F or
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Figure 10.5: Diagram for proof of d)

CNCL-F) and (FAIL-B or CNCL-B). Consequently, d)) above shows that no message carrying the given

GPID can arrive after the node has left the algorithm for that GPID. If the node does perform the Setup-

Passive transition, it leaves the algorithm without waiting for CNCL-F or FAIL-F, but by e) it cannot receive

afterwards any F message. Thus in this case too, it cannot receive any message with the given GPID after

leaving the algorithm. In addition, from c), no message carrying the given GPID can arrive before the node

enters the algorithm for that GPID. Consequently, every message carrying the given GPID that arrives at a

node, does so while the node is in the algorithm for that GPID. It remains to show that all such messages

use the entry in the VCI-Table that contains the given GPID. If the received message is of type FAIL-F or

FAIL-B, this holds by the definition of GPID. In all other cases, the received message has been sent by the

immediate successor or predecessor. Since VCI-B and VCI-F at these nodes have been set correctly before

that message was sent (Lemma 10.1a)), d)), the message carries the correct GPID and, upon receipt of the

message, the node will access the entry that contains the given GPID. This completes the proof of f). qed

Lemma 10.3

a) In the original algorithm, every message is routed according to VC-path and is sent and received with the

correct GPID.

b) The altered and the original algorithms operate identically and all properties of Lemmas 10.1, 10.2 hold

for the original algorithm as well.

Proof: Consider a network operating with the original algorithm and let X be the first node that receives

a message with incorrect GPID, at time t say. Recall that the altered algorithm differs from the original

only in instances when a message with incorrect GPID is received: the original algorithm processes such a

message, while the altered algorithm discards it. Consequently, if the network under consideration used the

altered algorithm, the operation up to time t− would have been identical. However this means that with the

altered algorithm, node X receives at time t a message with incorrect GPID, contradicting Lemma 10.2f).

Therefore, in the original algorithm all messages are received with the correct GPID and the two algorithms

are identical. In particular, in both algorithms, all messages are routed according to VC-path and all messages

that are sent by any node are sent with the correct GPID. This completes the proof of a) and b). qed

Because of Lemma 10.3b), from now on we need only consider the original algorithm. Observe that up

to now it was shown that all messages are routed on the correct VC, but we have not looked yet at the

internal operation of the protocol. The latter is treated in the next four lemmas. Lemma 10.4 indicates

the VC set-up procedure, Lemma 10.5 leads to the fact that in case of failure or session completion all VCI

entries are released in finite time and Lemma 10.6 refers to the propagation of data messages. Recall that
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we are still working under the requirement that a node receiving messages of types that are not listed in

the Algorithm, discards them. Lemma 10.7 shows that this requirement is superfluous and in fact no such

messages can arrive at a node.

From now on we consider a given VC with its associated GPID, VC-path and messages. The following

definition will be useful: A chain is a set of messages of a given type and with the given GPID that propagates

through the network, each message being sent as a result of receiving the previous message of the chain.

Each such node is said to propagate the chain, and the node that sends the first message in the chain is said

to initiate the chain. A node terminates the chain if it receives a message of the chain, but does not send

a message of the same type. A chain is interrupted on a link if one node adjacent to the link propagates

the chain, but the other node receives failure notification from that link before receiving the message of the

chain (in which case the message is lost).

Lemma 10.4

a) Exactly one chain of SET-F is initiated and only at ORIG. It is propagated along VC-path while nodes

set Link-F, Link-B, VCI-B and exactly one of the following happens: the chain is terminated at DEST, the

chain is terminated at a node with the link to the immediate successor being down or the chain is interrupted.

b) A chain of SET-B is initiated not more than once, only at DEST and only if SET-F arrives there. If

initiated, SET-B is propagated backwards along VC-path by nodes in state Setup while setting VCI-F and

exactly one of the following happens: the chain is terminated at ORIG, the chain is terminated at a node in

state TakedownP or the chain is interrupted on a link that fails.

c) If a node sends/receives SET-B, then this is the first B message that is sent/received by the node.

d) No B message can be received in TakedownB or Passive state and no F message can be received in Take-

downF, TakedownP or Passive state. No CNCL-F message can be received in Setup state.

e) If a node receives CNCL-B in Setup, then its immediate successor performed the Setup-Passive transition

when it has sent the CNCL-B message.

Proof: SET-F is initiated only in state Passive by ORIG and is propagated only while performing the

Passive-Setup transition. It is terminated by a node that performs the Passive-Passive transition or at DEST

in the Passive-Active transition, hence a).

SET-B can be initiated only at DEST in the Passive-Active transition and is propagated only in the

Setup-Active transition in the Arbitrary Node algorithm. It is terminated at ORIG or if it arrives at a

node not in Setup. It remains to show that the node not in Setup must be in state TakedownP. Observe

from a) that all nodes have entered Setup before SET-B is initiated, so that the node A that terminates

the SET-B chain must have left Setup before receiving SET-B. Now, the transition Setup-Active could not

have occured since SET-B could not have been sent twice by the immediate successor (Lemma 10.2a)) and

the transition Setup-Passive could not have occured because SET-B cannot arrive after CNCL-B or FAIL-B

(Lemma 10.2d)). Consequently, the transition to TakedownP must have occurred and the algorithm could

not have left TakedownP because of the same reasons as before, so that SET-B finds the node in TakedownP.

This proves b).

To prove c), observe that if SET-B is sent by a node, that happens in the Setup-Active transition and

this is the first B message sent. In addition, because of FIFO, if SET-B is received, no other B message sent

by the immediate successor can be received before SET-B. Also, FAIL-B cannot be received before SET-B

because of Lemma 10.2d), completing the proof of c).
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Finally, a node can be in (TakedownB, Passive) only after having received CNCL-B or FAIL-B and no

B message can arrive after these messages (Lemma 10.2d)). Similarly for states (TakedownF, TakedownP,

Passive) and F messages. Also, if a node is in Setup, it has sent no SET-B or CNCL-B before and its

immediate predecessor could not have been in Active. Therefore the possibility that the predecessor has sent

CNCL-F in the transitions out of Active state are ruled out. The only other possibility of sending CNCL-F

by the immediate predecessor is in the transition TakedownP-TakedownF and this requires receipt of SET-B,

which the node in Setup could not have sent. Hence d) follows.

To prove e), note that if the immediate successor Z of the node X that receives CNCL-B in Setup did

not send the CNCL-B in the Setup-Passive transition, Y must have sent it in one of the transitions out of

Active state. When it entered Active state, Z has sent SET-B, which did not arrive since X is in Setup.

By the Delivery property of DLC (Sec. 2.3), Z has received a failure notification from Link-B and thus, by

Lemma 10.2b), it cannot send CNCL-B afterwards. This results in a contradiction. qed

Part (d) of the next Lemma leads to the fact that all VCI entries corresponding to a given VC are released

in finite time after a failure or session completion (Theorem 10.9). The other parts are preparatory.

Lemma 10.5

a) Suppose DEST receives takedown request or a node receives FAIL-B. Then all its predecessors will receive

CNCL-B or FAIL-B in finite time.

b) If a node in state Setup receives CNCL-B or FAIL-B, its immediate predecessor will also receive CNCL-B

or FAIL-B in finite time.

c) A node in TakedownP leaves this state, i.e. receives SET-B, CNCL-B or FAIL-B, in finite time.

d) If a node X receives CNCL or FAIL in either direction in a state other than Setup, then in finite time its

immediate successor receives CNCL-F or FAIL-F if it has entered the algorithm, its immediate predecessor

receives CNCL-B or FAIL-B and node X receives CNCL or FAIL in the other direction. In this respect,

takedown request received at ORIG or DEST acts as CNCL-F and CNCL-B respectively.

Proof: To prove a), suppose DEST receives takedown request or or a node receives FAIL-B. Then all its

predecessors have entered the algorithm. Going backwards on VC-path , let X be the first node that receives

no CNCL-B or FAIL-B in finite time. Let Y be its immediate successor. When Y receives CNCL-B or

FAIL-B it must be in Setup, Active, TakedownF or TakedownP (by Lemma 10.4d)). If in Setup or Active, it

sends CNCL-B. If in TakedownP it has received FAIL-F and if in TakedownF it has either received FAIL-F

or sent CNCL-B in the Active-TakedownF transition. In all cases either CNCL-B will arrive at X or else a

failure notification will arrive at X (Crossing property in Sec. drefWindow). If the failure notification arrives

while X is in TakedownB or Passive state, it has received CNCL-B or FAIL-B beforehand. Otherwise, it

finds X is in (Setup, Active, TakedownF, TakedownP), resulting in FAIL-B, hence a).

Part b) follows from the proof of a).

To prove c), observe from Lemma 10.4b) that if SET-B is received at ORIG, all nodes enter Active

and therefore no node ever enters TakedownP. If the SET-B chain is terminated, no node that propagated

SET-B can ever enter TakedownP (because they enter Active) and by Lemma 10.4b), the terminating node

is in TakedownP and receives SET-B. Therefore c) holds for the node that terminates the SET-B chain and

does not apply to its successors. If the SET-B chain is interrupted, c) does not apply to the interruption

point and its successors. Regarding the predecessors of the termination or interruption point, observe that

FAIL-B is delivered to the immediate predecessor of the termination or interruption point, and by a) all its

predecessors receive either CNCL-B or FAIL-B, whether they are in TakedownP or not, hence c).
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To prove d), suppose first that CNCL-B or FAIL-B is received at a node X in a state other than Setup.

Then the proof of a) shows that CNCL-B or FAIL-B are received at its immediate predecessor Y. If FAIL-B

is received at Y, the corresponding failure notification is delivered to X, and the latter generates FAIL-F if

X has not received CNCL-F or FAIL-F before. If CNCL-B is received at Y, Lemma 10.4d) implies that the

latter must be in (Setup, Active, TakedownF, TakedownP) and Lemma 10.4e) shows that it cannot be in

Setup. If Y is in TakedownF, then CNCL-F was sent before and if it is in Active,then CNCL-F is sent now.

TAKEDOWNP????????

CNCL-F arrives correctly to X or else FAIL-F is delivered, proving that if CNCL-B or FAIL-B is received

at X, then CNCL-B or FAIL-B is received at Y and CNCL-F or FAIL-F is received at X. It remains to show

that receipt of CNCL-F or FAIL-F at X implies receipt of CNCL-F or FAIL-F at its immediate successor Z

and of CNCL-B or FAIL-B at X. By Lemma 10.4d), if X receives CNCL-F it must be in Active or TakedownB

and if it receives FAIL-F it must be in Setup, Active or TakedownB. Suppose first that X receives CNCL-F or

FAIL-F and is in Active or TakedownB. Then the proof is completely symmetric to the case when it receives

CNCL-B or FAIL-B in Active or TakedownF. Finally, suppose X receives FAIL-F in Setup. Then it enters

TakedownP and c) above applies, namely X receives SET-B, CNCL-B or FAIL-B. If it receives FAIL-B, then

FAIL-F is or has been received at Z. If it receives CNCL-B, then this message has been sent by Z and the

proof of the first part of d) applies with Z replacing X. If it receives SET-B, it acts as if it received FAIL-F

in Active state. Therefore the proof of d) is complete. qed

Lemma 10.6

a) A forwards chain of data can be initiated only at ORIG and only in state Active. If it is initiated, then all

nodes in VC-path have previously entered Active, the data messages are routed according to VC-path and

are sent/received at each node with the correct GPID. If and only if the chain is not interrupted and no node

has left Active state before the arrival of the data message, the chain is terminated at DEST.

b) A backwards chain of data can be initiated only at DEST and only in state Active. It propagates backwards

on VC-path and with the correct GPID. If and only if the chain is not interrupted and all nodes on VC-path

have entered Active and have not left it before the arrival of the data message, the chain is terminated at

ORIG.

Proof: Forward data can be initiated only by ORIG and only in state Active and hence only if the SET-B

chain was previously terminated at ORIG. This implies that all nodes in VC-path have previously entered

Active state (Lemma 10.4b)). Since all messages are routed according to VC-path and are sent/received

with the correct GPID (Lemma 10.3), the data propagates on VC-path as long as it meets nodes in Active.

Otherwise, it is discarded, hence a) holds.

Backward data can be initiated only by DEST and only in Active. This implies that the SET-F chain

was terminated at DEST and nodes in VC-path have previously entered Setup state, but not necessarily

Active state(Lemma 10.4a)). As before, data-B propagates backwards on VC-path as long as it meets nodes

in Active, otherwise it is discarded, hence b). qed

Lemma 10.7 In every state of the Algorithm of Fig. 10.4, only the specified types of messages can arrive.

Proof: The following is a list of states, unlisted messages and the reason why they cannot be received:

c©Adrian Segall 202



Sec. 10.1

state messages reason

Passive other than SET-F Lemma 10.2c)

Setup CNCL-F Lemma 10.4d)

Setup data-F Lemma 10.6a)

Setup data-B Lemma 10.4c)

TakedownB all B messages Lemma 10.4d)

TakedownF all F messages Lemma 10.4d)

TakedownF SET-B Lemma 10.2a)

TakedownP all F messages Lemma 10.4d)

qed

The following two theorems indicate that the VCI management protocol operates correctly. Theorem 10.8

corresponds to requirements 1) and the first part of 2) in Sec. 10.1.1 and Theorem 10.9 implies requirements

2) and 3).

Theorem 10.8

Suppose no failures or VC takedowns occur. Then if ORIG receives a VC setup request from the higher

level, the following will hold:

a) All nodes on VC-path will enter state Active in finite time.

b) Any data message delivered at ORIG or DEST will arrive at the other end in finite time and on the correct

VC.

Proof: Since there are no failures or cancellations, Lemma 10.4 implies that the SET-F chain is terminated

at DEST and the SET-B chain is initiated at DEST and terminated at ORIG. Therefore all nodes in VC-path

enter Active, hence a).

Since there are no failures or takedowns, all nodes remain in Active forever. If ORIG is in Active, all

nodes in VC-path are already in Active and if a data message is delivered, a data-F chain is initiated. By

Lemma 10.6a), the chain is propagated on VC-path and with the correct GPID (i.e. on the correct VC) and

is terminated at DEST. Hence every data message delivered to ORIG arrives at DEST in finite time and

on the correct VC. Now consider the case when a data message is delivered to DEST. As before, this can

happen only if DEST is in Active and in this case a data-B chain is initiated. By Lemma 10.4c), the SET-B

chain precedes the data chain, so that the latter finds every node in Active. Now Lemma 10.6b) and the

same reasoning as before show that the data message will arrive at ORIG in finite time and on the correct

VC. qed

Theorem 10.9 ?????????????????

a) If SET-F encounters a failed link or node or is lost in a failure of a link or node (see Fig. 10.6), then no

data messages will be sent and all corresponding entries in the VCI-Tables along the path will be released in

finite time.

b) If a failure occurs on a link or node after the SET-F, but before the SET-B message was propagated on this

link or node, no data message will be sent in the forward direction. Any data message sent in the backward

direction will be discarded and all corresponding entries in the VCI-Tables will be released in finite time (see

Fig. 10.7).
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c) If a VC takedown request is delivered to ORIG or DEST or a failure occurs on a link or node after the

SET-B message was propagated on this link or node, then a takedown process is initiated, all data messages

that encounter the takedown process are discarded, the other data messages arrive safely at the end node on

the correct VC and all corrresponding entries in the VCI-Tables are released in finite time (see Fig. 10.3).

Figure 10.6: SET-F encounters a failed link

Figure 10.7: Failure occurs before SET-B is received

Proof: First observe that Lemma 10.6a) implies, by induction, that if any node enters TakedownF,

TakedownB or TakedownP state, then all nodes that have entered the algorithm will enter Passive state in

finite time, at which time their VCI entries are respectively released. Now in case a) of this Theorem, the

node where SET-F encounters a failed link enters TakedownP or the node adjacent to the link that loses

SET-F enters TakedownF.?????????? In cases b) and c), if a failure occurs, the node immediately preceding

the failure in VC-path will enter TakedownB. If a takedown request is delivered to ORIG or DEST, the node

will enter TakedownF or TakedownB respectively. Consequently, in all cases the condition of Lemma 10.5d)
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holds and hence the VCI entries corresponding to the considered VC will be released at all nodes in finite

time. The statements concerning data messages follow similarly from Lemma 10.6, completing the proof.

qed

10.1.5 The Path Determination Protocol

The path determination protocol is normally referred to in the literature as the routing protocol and is

responsible for determining the path used for each session. In order to simplify the exposition of the algorithm,

we have assumed up to now that it provides the entire route, named VC-path , to ORIG, and VC-path is

carried in the SET-F message. However, we note here that these facts were not used explicitly in any of

the proofs. Consequently, all properties of Theorems 10.8 and 10.9 (and all Lemmas in Sec. 10.1.4) hold

for any path determination procedure as long as it ensures that the SET-F message arrives eventually at

DEST (except if it encounters a failure). Even if the established VC contains loops, as e.g. in the ARPA

algorithm [JM80], the correctness properties given in Theorems 10.8 and 10.9 still hold. From the point of

view of performance however, loops in established VCs are very non-appealing in circuit switching networks,

since the routes remain fixed for the duration of the session. This is in contrast to message switching,

where temporary message loops may sometimes be tolerated. Consequently, in circuit switching, the VC

set-up protocol should be used only in conjunction with route determination protocols that ensure that the

established path is loop-free. Observe that it is not sufficient that the routing tables are loop-free at any

given instant of time as in [Seg81], [MS79a], [JM82], since the tables may change during the propagation of

SET-F. The requirement is that if the SET-F message reaches DEST, then the established path is loop-free.

In [Seg81], Sec.IV it has been shown that the protocols of [Seg81], [MS79a] can be used in conjunction

with the VC set-up protocols to ensure the above requirement. Consider the following combined procedure:

1. Any version of the routing protocols of [Seg81], [MS79a] is used with the addition that a node sets a flag

when it loses its preferred neighbor (for a particular destination) and resets the flag when the next routing

update cycle (for that destination) is completed at the node (i.e. in the notation of [Seg81], [MS79a], when

T21 is performed).

2. SET-F carries only DEST instead of VC-path .

3. whenever SET-F arrives and the flag is reset for DEST, transition Passive-Setup is performed with Link-F

taken as the current preferred neighbor for DEST; if the flag is set, then the Passive-Passive transition is

performed.

4. on each link, SET-F has the same or higher priority than the control messages of the routing protocol.

5. all other operations of the VC management protocol remain unchanged.

Theorem 10.10 (see [Seg81,Thm.3])

The above combined procedure satisfies Theorems 10.8 and 10.9 and also guarantees that the established

routes are loop-free.

The advantages of this procedure over centralized route determination are that VC-path need not be

carried in SET-F and no nodes need to have global knowledge of network topology or to perform possibly

time-consuming centralized route determination algorithms.

Problems
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Problem 10.1.1 In an attempt to simplify the node algorithm, consider the algorithm of Fig. 10.8. Does

it work? (Hint : What happens if Link-B fails while the node is in Setup, comes up and fails again while the

node is in Takedown. (Two FAIL-F, the events take the node into Passive and then Set-B and data-B might

still come, and the data will be routed on the new VC, contradicting property .....)

Figure 10.8: A simplified algorithm

Problem 10.1.2 Another attempt appears in Fig. 10.9. Does this work? (Answer: NO, same problem as

above)
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Figure 10.9: Another simplified algorithm
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