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We investigate the dynamics of electrons counterpropagating along a radially polarized optical Bessel
beam (OBB). (i) It is shown that a significant fraction of the electrons can be transversally trapped by the
OBB even in the case of “unmatched” injection. Moreover, (ii) these transversally trapped particles (TTPs)
can be transported without loss along many thousands of wavelengths. As long as there is full longitudinal
overlap between the electrons and laser pulse, this transport distance is limited only by the length of the
OBB region. (iii) The unique profile of the transverse field components facilitates guiding either
azimuthally symmetric pencil beams or annular beams. Space charge tends to totally suppress the annular
beams, and it reduces the amount of charge trapped on axis for pencil beams. (iv) Assessment of the
emittance of the TTPs alone reveals typical values of 10–50 pm. In fact, our simulations indicate if we trace
the emittance of those particles that are trapped from the input to the output of the OBB, we find that this
emittance is conserved. (v) We developed an analytic model whereby we average over the fast oscillation
associated with the counterpropagating electrons and OBB. The resulting Hamiltonian has a Bessel
potential J21ðuÞ, which, when operated in the linear regime near equilibrium, causes rotation of the phase
space. A Kapchinskij-Vladimirskij beam-envelope equation is derived including space-charge and
emittance effects. Relying on conservation of the longitudinal canonical momentum, the energy spread
in the interaction region is determined in terms of the OBB intensity and the electron energy.
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I. INTRODUCTION

Guiding charged particles in vacuum along significant
distances plays a pivotal role in many systems such as
radiation sources, accelerators, and electron microscopes.
Essentially, there are three types of transport systems:
electrostatic systems are used primarily in electron micro-
scopes and magnetostatic elements are used in high-energy
accelerators. In a small, but by no means less important
fraction, radio-frequency quadrupoles are used to both
transport and accelerate either electrons or ions. In the
present study, we demonstrate that a laser Bessel beam can
transport efficiently a counterpropagating electron beam in
vacuum. This may provide a highly useful alternative
means for guiding electrons, especially for situations where
it may be undesirable or impractical to have relatively large
structures, such as magnets or metal components, near the
electron beam. An example might be ultracompact electron

beam applications where conventional magnetic or electro-
static focusing cannot be used.
The notion of using optical beams to manipulate the

trajectory of electrons is certainly not new. For example,
there are various ways high-energy electrons can be
focused with optical beams that rely on nearby structures
[1,2]. The fields created within two colliding laser pulse can
change the energy of subrelativistic electrons [3]. Optical
micromanipulation of micron-sized particles using Bessel
optical beams has been demonstrated [4]. What distin-
guishes our 8scheme from these other methods are (i) it
occurs in free space with no nearby structures, (ii) it is
designed to guide relativistic electrons, and (iii) it can be
easily scaled to long interaction lengths, e.g., many meters.
Before we investigate the dynamics of the transport by an

extended focus Bessel beam, it is useful to briefly review
the essentials of acceleration of electrons by a focused
beam in vacuum. The first hint regarding electron accel-
eration by a focused laser beam is in the work of Boivin and
Wolf [5], where they investigated the electromagnetic field
(Gaussian beam) in the vicinity of the focal point and found
that a significant longitudinal electric field develops. In
their words, “It seems plausible that such strong longi-
tudinal fields could be used for accelerating charged
particles. However, because of the considerable complexity
of the field in the focal region, the practical feasibility of
such a proposal must await a more detailed study.”
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The next important step in our context was the configu-
ration suggested by Steinhauer and Kimura [6]. Its essence
was threefold: (i) a radially polarized laser beam; (ii) an
aligned axicon focus that generates an extended focal region
(Bessel beam); and (iii) the approximate matching of
particle and laser phase velocities as both propagate
in the same direction. They showed that acceleration is
feasible provided the interaction region is terminated
abruptly at both ends. A similar conclusion for a
Gaussian beam was reached by Esarey, Sprangle, and
Krall [7]. A couple of years later, the same group published
another study [8] that is closely related to that presented by
us in this study. It proposes a laser Bessel beam as a
candidate to play a pivotal role in laser-driven accelerators.
Because of the apparent similarity between these two
studies, it is important to emphasize from the very beginning
the differences between these studies and thework presented
in this paper. The primary interest of these two studies was
on creating a longitudinal accelerating force; thus, they both
assumed copropagating electron and laser beams.
Our focus is on counterpropagating beams, where we are

not interested in utilizing the longitudinal force, but rather
we are using the fact that the particles will experience a
rapidly oscillating transverse force. As we will show, this
effective transverse force can guide the electron beam.
Contrary to Ref. [8], which employs the paraxial approxi-
mation, we employ the exact solutions of TM01 in vacuum,
although the finite cross section of the electron beam
(e-beam) implies that only a small number of transverse
Bessel “periods” are used in practice. In other words, we
employ an ideal Bessel beam.
A different approach was adopted by Hora et al. [9].

They considered the feasibility of acceleration of individual
electrons by Hermit-Gaussian laser beams, and it was
shown that the transition from elastic to inelastic scattering
occurs for a laser normalized amplitude a ¼ eE0λ0=
2πmc2 > 0.1 and very small incident angle θ ≪ π=4,
where e and m represent the charge and the rest mass,
respectively, of an electron, c is the speed of light in
vacuum, and λ0 and E represent the wavelength and the
amplitude, respectively, of the laser. Moreover, later it was
demonstrated in simulations [10] that, for an initial electron
energy of 26 MeV and some stringent initial conditions
(among them a ≥ 100), emerging 1.5 GeV electrons are
feasible. This is in comparison with 32 MeV electrons for
the case of inelastic scattering.
Further support of this result was provided 3 years later

by Wang et al. [11], whereby the characteristics and
essential conditions under which an electron in a vacuum
and a laser beam can undergo a capture and acceleration
scenario (CAS) were shown. They confirmed that, if
a ≃ 100, the electron can be captured, primarily longitu-
dinally, and violently accelerated to energies of the order of
1 GeV, corresponding to an effective acceleration gradient
1 TV=m. As in the case of Ref. [2], the net energy gain is

facilitated by the finite extent of the interaction and the
momentary capture of the electron over this extended
length. Implied in this work, as it pertains to this paper,
is that CAS is enabled by the fact that diffraction of the
focused laser beam leads to a significant component of its
spectrum having a phase velocity equal to or slower than c.
To conclude this brief overview, at the high laser

intensities involved, radiation-reaction effects on electron
beams were considered [12]. Provided a ≫ 1 and the initial
relativistic factor γini ≫ 1, the dynamics divides into three
regimes: (i) For relatively low-energy electrons, radiation
damping effects are negligible. (ii) At higher electron
energies, but still 2γini < a, the damping alters the final
displacement and the net energy change of the electron.
(iii) For 2γini > a, the radiation-reaction induces longi-
tudinal electron trapping. This trapping process is stable
with respect to the spatial properties of the electron beam
and results in a significant energy loss of the electrons. In
our case, we aim to transversally confine the beam with the
lowest possible laser power; therefore, we assume that the
radiation reaction is negligible.
Our idea stems from a previous concept [13] of gen-

erating x-ray radiation similar to channeling radiation in
crystals, but in vacuum, by counterpropagating a beam of
electrons through an optical Bessel beam (OBB). For the
proof of principle analysis, we initially imposed some very
stringent constraints on the model in order to facilitate the
analytic solution. Recently, after we alleviated most of the
constraints, rather than investigating the spontaneous radi-
ation emitted, we decided to examine more closely the
trajectories of the test particles ignoring the spontaneous
radiation. The essence of this investigation is presented
here: We found the OBB is able to transport electrons over
its entire extent (many thousands of laser wavelengths).
The diffraction-free character of Bessel beams [14] means
that Rayleigh range limits no longer apply and the length of
the Bessel beam can be made, in principle, as long as
desired by simply increasing the diameter of the laser beam
being focused by the axicon. We also found that typical
normalized transverse emittances of less than 100 pm were
calculated for the transversally trapped particles (TTPs). In
fact, we found that their emittance is preserved along the
interaction length.
To thoroughly investigate the processes involved, we

developed an analytic model whereby we average over
the fast oscillation associated with the counterpropagating
electron and Bessel laser beam. The resulting Hamiltonian
has a radial Bessel potential J21ðuÞ, which, when operated in
the linear regime near equilibrium, causes rotation of the
phase space. This allows us to show the analytic conditions
needed for the emittance to be conserved. A Kapchinskij-
Vladimirskij beam-envelope equation is derived including
space-charge and emittance effects. In the OBB, the beam
radius at equilibrium is reconfigured according to the
intensity of the OBB, electron energy, and space charge.
Relying on conservation of the longitudinal canonical
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momentum, the energy spread in the interaction region is
determined in terms of the OBB intensity and the electron
energy. We show that there is an inherent advantage to
using a counterpropagating electron beam.

II. DESCRIPTION OF ANALYSIS
CONFIGURATION

Let us first generate a clear picture of the configura-
tion we intend to investigate. We conceive a radially
polarized annular “plane wave,” which extends between
Rint ≤ r ≤ Rext, and is focused by an axicon lens such that
the Poynting vector crosses the axis at an angle θ0 ≪ π—
see Fig. 1. Before the axicon lens, the radial electric field
in vacuum is denoted by Er;0, such that the input power
flowing into the system is approximately given by Pin ¼
ð1=2η0ÞE2

r;0πðR2
ext − R2

intÞ and the net interaction length
is L ¼ ðRext − RintÞ= sin θ0 ≃ Rext=θ0. It is assumed that
the pulse duration τp is longer than the time it takes a
relativistic electron to traverse the interaction length
τp > L=c and, further, that the axicon lens is exposed to
a fluence Fmax below its damage threshold [15] F ¼ Pinτp=
πðR2

ext − R2
intÞ < Fmax. We should note that if larger inten-

sities are desired, then it is possible to form an azimuthally
symmetric OBB without using an axicon by coherently
combining a large number of linearly polarized laser beams
whose polarization directions are arranged in a radial
pattern. Furthermore, it is possible to create any order
Bessel beams using a kinoform phase plate [16] combined
with an axicon as experimentally demonstrated by Fan
et al. [17].
On axis, the longitudinal electric field has an amplitude

E0 ¼ Er;0 sin θ0 ≃ Er;0θ0 implying that, near the axis and
within the e-beam ð0 < r < RbÞ, the electromagnetic field
components can be derived from the magnetic vector
potential and the scalar electric potential, which together
satisfy the Lorentz gauge:

AðOBBÞ
z ¼− E0

ω0sin2θ0
J0

�
ω0

c
rsinθ0

�
sin

�
ω0

�
tþ z

c
cosθ0

��
;

ΦðOBBÞ ¼E0ccosθ0
ω0sin2θ0

J0

�
ω0

c
rsinθ0

�
sin

�
ω0

�
tþ z

c
cosθ0

��
:

ð1Þ

λ0 ¼ 2πc=ω0 is the laser’s wavelength in vacuum, and ω0 is
the laser frequency. This is an exact solution of the wave
equation up to radius r < Rmax, beyond which the radial
wave has to satisfy Sommerfeld’s radiation condition

½J0ðω0

c r sin θ0Þ → Hð2Þ
0 ðω0

c r sin θ0Þ�. Throughout this study,
we assume that the particles are much closer to the axis,
namely, ri ≤ rmax ≪ Rmax; ri is the radial coordinate of the
ith particle. Another aspect that is ignored is associated
with the axicon lens, which has a small central hole in order
to allow the electrons to traverse through the axicon without
scattering. (Since the radially polarized laser beam imping-
ing on the axicon is annular in shape, the central hole in the
axicon will not significantly affect the laser beam.)
Diffraction and Cerenkov radiation due to the passage of
the electrons via this vacuum tunnel are ignored in this
study. As clearly illustrated in Fig. 1, the OBB propagates
in the opposite direction to the particles.
The single-particle trajectory can be determined by

examining the equations of motion ignoring momentarily,
for simplicity sake, space-charge and radiative effects:

d
dτ

ðγi _̄xiÞ ¼ −ðcos θ0 þ _̄ziÞ x̄iŪi;

d
dτ

ðγi _̄yiÞ ¼ −ðcos θ0 þ _̄ziÞ ȳiŪi;

d
dτ

ðγi _̄ziÞ ¼
�
1

2

d
dτ

ðx̄2i þ ȳ2i Þ
�
Ūi − V̄i;

dγi
dτ

¼ − cos θ0

�
1

2

d
dτ

ðx̄2i þ ȳ2i Þ
�
Ūi − _̄ziV̄i;

dχi
dτ

¼ 2πð1þ _̄zi cos θ0Þ; ð2Þ

where the various normalized quantities are defined next:

τ ¼ ct=λ0; x̄i ¼ xi=λ0; ȳi ¼ yi=λ0; z̄i ¼ zi=λ0; ψ i ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̄2i þ ȳ2i

q
sin θ0;

Ūi ¼ πĒJcðψ iÞ sinðχiÞ; V̄i ¼ ĒJ0ðψ iÞ cosðχiÞ; Ē ¼ eE0λ0=mc2; JcðuÞ≡ 2J1ðuÞ=u:

FIG. 1. An axicon lens converts a radially polarized annular
ðRint < r < RextÞ laser beam to an OBB on axis. The electrons
counterpropagate against the Bessel beam. The laser beam
propagates at an angle θ0 relative to the axis; the radial electric
field before the axicon lens is Er;0, which translates on axis after
the axicon to an amplitude Ez;0 ≡ E0 ¼ Er;0 sin θ0. Not to scale.
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The first three equations represent the particles’ momen-
tum dynamics, the fourth the individual’s particle energy
dynamics, and the fifth the phase variation as experienced by
the particle along the wave. In the equations of motion as
formulated in Eq. (2), we omitted the fact that the force terms
are exerted only in the region where the OBB exists,
0 < zi < L; in the numerical simulations that follow, this
effect is accounted for. In Appendix A, we describe in detail
the steps that lead us to this set of equations. Before we
proceed, it is important to point out that while γi,
as well as the longitudinal momentum γiβz;i are affected
by the Bessel beam, the phase of the counterpropagating
relativistic electrons is virtually independent of the intensity
of the optical field—see the last expression in Eq. (2),
χiðτÞ ¼ χið0Þ þ 2πð1þ cosθ0Þτ≃ χið0Þ þ 4πτ. For this rea-
son, we focus our attention on the transverse phase space.

III. CONSTANTS OF MOTION

From the fact that both potentials are azimuthally
symmetric, we deduce that the angular momentum is
conserved. Explicitly, using the two transverse equations
of motion, we get

d
dτ

ðȳiγi _̄xi − x̄iγi _̄yiÞ ¼ 0; ð3Þ

which implies that the angular momentum is conserved;
thus, its value at the input sets the angular momentum
throughout the interaction region. Keeping in mind in
cylindrical coordinates x̄i ¼ r̄i cosϕi and ȳi ¼ r̄i sinϕi,
we get by accounting for the z component of the normal-
ized angular momentum, Li ≡ γiðx̄i _̄yi − ȳi _̄xiÞ, that the
azimuthal velocity is given by

_ϕi ¼
Li

γir̄2i
: ð4Þ

Further based on Eq. (4) and the definition of the
relativistic factor, γ−2i ≡ 1 − _̄r2i − r̄2i _ϕ

2
i − _̄z2i , we conclude

that the latter is explicitly given by

γ2i ¼
1þ L2

i r̄
−2
i

1 − _̄r2i − _̄z2i
: ð5Þ

In the simulations that follow, the angular momentum is
taken to be zero ðLi ¼ 0Þ, except if specified otherwise.
Another constant of motion is deduced from the other

two equations of motion (for γi _̄z and γi). In both cases, we
have the term _̄ri r̄iŪi on the right-hand side; therefore, after
some straightforward steps, we obtain conservation of the
canonical longitudinal momentum:

d
dτ

�
γið _̄zi þ cos θ0Þ þ

Ē
2π

sinðχiÞJ0ð2πr̄i sin θ0Þ
�
¼ 0: ð6Þ

At the end of the last section, we note that, for rela-
tivistic particles γi ≫ 1, the phase of the particles is not

affected by the intensity of the OBB. The conservation of
canonical longitudinal momentum, as reflected in Eq. (6),
indicates that, for a narrow pencil beam such that
J0ð2πr̄i sin θ0Þ ≃ 1, the energy of the particle can be solved
analytically. In Appendix B, we show that the initial energy
spread Δγ2ini increases in the interaction region according to
the intensity of the OBB:

Δγ2ini → Δγ2 ¼ Δγ2ini þ
�

eE0λ0=mc2

2πð1þ cos θ0Þ
�
2

; ð7Þ

however, as the interaction ends, since the canonical
longitudinal momentum is conserved, the energy spread
will return to its original value, Δγ2ini.
Let us now return to the main theme of this section,

constants of motion. The four equations of motion postu-
lated in Eq. (2) can be reduced to three if we multiply the
first three with the corresponding momentum, add all three,
and subtract the fourth after being multiplied by γi. The
result

d
dτ

�
1

2
ðγi _̄xiÞ2 þ

1

2
ðγi _̄yiÞ2 þ

1

2
ðγi _̄ziÞ2 − 1

2
γ2i

�
¼ 0 ð8Þ

is a manifestation of the fact that the magnitude of the
energy-momentum’s 4-vector is constant. Evidently, we
have the choice of using the fourth equation of motion to
determine γi or ignore the former and define γi based on
Eq. (8). As a result, the three degrees of freedom (three
momenta components) are reduced to one by the two
constants of motion specified above. With that in mind, the
dynamics are determined by the radial motion alone:

d
dτ

ðγi _̄riÞ − L2
i

γir̄3i
¼ − Ē

sin θ0
J1ð2πr̄i sin θ0Þðcos θ0 þ _̄ziÞ

× sinðχiÞ: ð9Þ
With the equations of motion simplified, one needs to

specify the important measure of transverse confinement,
namely, the emittance. Assuming that the radial coordinate
is based on Eq. (8), the transverse normalized emittance
may be assessed by adopting the definition originally
suggested by Lapostolle [18]:

εx ¼ 4πλ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h½x̄iðτÞ�2iih½ _̄xiðτÞ�2ii − hx̄iðτÞ _̄xiðτÞi2i

q
: ð10Þ

IV. LINEAR REGIME

For establishing the beam stability, we examine the case
of zero longitudinal angular momentum, Li ¼ 0, which
allows electrons to move on axis; otherwise, radially the
acceleration diverges—see Eq. (9). In this case, we observe
for certain values of r̄i that the radial force vanishes and the
particles’ dynamics in the radial direction is as if no OBB is
present. For this equilibrium state to happen, the radius r̄eq
has to satisfy

LEVI SCHÄCHTER and W. D. KIMURA PHYS. REV. ACCEL. BEAMS 23, 081301 (2020)

081301-4



2πr̄eq;s sin θ0 ¼ p1;s; ð11Þ
where p1;s are the relevant zeros of the first-order Bessel
function J1ðp1;sÞ≡ 0 and s is an integer s ¼ 0; 1; 2… with
its limit determined by the geometric radius of the electron
beam and the angle of the laser OBB, i.e., p1;0 ¼ 0,
p1;1 ¼ 3.832, p1;2 ¼ 7.016, p1;3 ¼ 10.173…. Note that
in the longitudinal direction, according to the conserva-
tion of the canonical longitudinal momentum in the z
direction, the electron oscillates. Furthermore, we can
assume that a small transverse oscillation ðδr̄s;iÞ around
the equilibrium does occur, namely, r̄i ¼ r̄eq;s þ δr̄s;i;
therefore, ignoring the longitudinal oscillation as well as
the energy modulation, γiðτÞ ¼ γið0Þ≡ γi;0, for relativistic
particles ðp̄z;i; γi ≫ 1Þ, the radial equation of motion
simplifies to read�

d2

du2
þ αs;i sinðχ0;i þ uÞ

�
δr̄s;i ¼ 0; ð12Þ

where αs;i ≡ ĒJ0ðp1;sÞ½4πγi;0cos2ðθ0=2Þ�−1 and u≡
4πcos2ðθ0=2Þct=λ0. This is the Mathieu equation that
can have periodic (thus stable) solutions. In Appendix C,
we show that a stable solution is possible for s ¼ 1 if α1;i ¼
½J0ðp1;0ÞĒ�½γ0;i4πcos2ðθ0=2Þ�−1 ≤ 0.454 or, explicitly,

γ0 ≥ 0.175
eE0λ0
mc2

: ð13Þ

For most practical regimes of interest, the right-hand side
of Eq. (12) is much smaller than one; therefore, for
relativistic electrons, this constraint is always satisfied.
This is the first important result of this study, since it
indicates that, within the framework of a linear approxi-
mation, electrons moving in an OBB can follow stable
trajectories which can form a pencil beam ðs ¼ 0Þ or
annular beam ðs > 0Þ.

V. DYNAMICS WITHOUT SPACE CHARGE

The important result mentioned above and analyzed sub-
ject to a linear approximation is next investigated numeri-
cally relying on the exact set of equations in Eq. (2) and
employing the set of parameters specified in Table I.
Figure 2 shows the transverse phase space when the
space-charge effect is ignored. As reference, we show
the initial (z ¼ 0) phase space represented by red circles in
both frames. Each circle represents a microparticle that
contains many electrons that are “glued together” all along
the interaction length. It is tacitly assumed that, by splitting
the entire beam into Nmp microparticles, the characteristic
features of the entire ensemble will be preserved. It should
be made crystal clear that, while we focus here on the
transverse dynamics, the latter is solved self-consistently
with the longitudinal dynamics. And in the longitudinal
direction we consider one period of the exerted field,
since at a given location, during the next period of time,

the process repeats itself. It is for this reason that we
consider one period of the exerted field that contains Nmp

microparticles [19–20]. As a typical example, we can
conceive a 3-mm-long pulse of 109 electrons, and the
exerted force has a 3 μm period; therefore, in one period,
there are 106 electrons. These can be divided into 1000
microparticles, each one containing 1000 electrons.
Throughout all simulations that follow, the relative error,
defined based on Eq. (8), did not exceed 10−9%.
InFig. 2(a), the blue circles showhow the transverse phase

space evolved after half a meter. Several facts are evident:

TABLE I. The default values of the parameters used in the
various simulations.

λ0 ¼ 1.064 ½μm� Ē ¼ 1.2 × 10−5 γ0 ¼ 20

Er;0 ¼ 33 ½MV=m� L ≃ 1.0 ½m� jγið0Þ _̄xið0Þj ≤ 10−4
Sz;0 ¼ 147.4 ½MW=cm� F ≃ 1.0 ½J=cm2� jγi − γ0;ij ≤ 10−3γ0;i
θ0 ¼ 10ðπ=180Þ Rb ≃ 5λ0 Nmp ¼ 360
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FIG. 2. Phase space in the space-charge-free case. The trapping
of particles in the vicinity of the equilibrium points is evident:
jx̄eqj ∼ 0 and jx̄eqj ∼ 3.512. The initial beam’s phase space does
not cover the third equilibrium ðjx̄eqj ∼ 6.43Þ since jx̄j < 5;
therefore, electrons are not trapped in this state. (a) At
z ¼ L=2. (b) At z ¼ L.
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Already at this stage, part (20%) of the microparticles
(representing the electrons) are trapped ½J1ðx̄eqÞ≡ 0� on axis
x̄eq ≃ 0 forming a “pencil beam.” Another fraction (29%) is
trapped in the vicinity of the second zero of the Bessel
function corresponding to jx̄eqj ≃ 3.512, indicating the gen-
eration of an “annular beam.” (The parameters for this
particular examplewere chosen to illustrate how it is possible
for both a pencil and an annular beam to be guided simulta-
neously by the OBB. Although actual applications would
typicallyguideonlyone typeofbeam, thisparticularexample
will be useful in understanding the effects of space charge as
discussedshortly.)Athirdgroupisnot trapped,butrather they
slowly “diffuse” away from the center. Not shown is a fourth
group of electrons that were scattered in the first few
centimeters of the interaction.
In Fig. 2(b), only the trapped electrons (49%) are left,

and this is a representative picture for the last quarter of the
interaction region. Note that there are no trapped micro-
particles in the third equilibrium point jx̄eqj ≃ 6.43. In fact,
only microparticles that are initially in the vicinity of the
equilibrium are trapped. For example, if we reduce (not

shown) the phase space at the input to be jx̄ij ≤ 2, then no
particles are trapped in the vicinity of the second equilib-
rium point. This is the second important result of this study,
since it indicates that the OBB supports the generation of
either a pencil or an annular beam for rather large
amplitudes. Thus, the stable trajectories are not limited
to the linear regime.
A third important result is associated with the emittance.

Its value for the pencil beam at the output ðz ¼ LÞ is εn ≃
53.2 pm. Tracing backwards to those electrons that made it
to the end of the OBB and calculating their emittance at
z ¼ L=2, we find that the emittance is εn ≃ 53.5 pm, which
clearly shows that the emittance of the TTPs is conserved
for at least the second half meter. The slight deviation can
be attributed to the usage of a relatively small number of
microparticles (70) affecting the statistics.

VI. DYNAMICS WITH SPACE CHARGE

For guiding a significant number of monoenergetic
electrons, we need to confine them as much as possible
on the scale of the OBB wavelength with the limit being the
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FIG. 3. (a) κSC ¼ 4.2 × 10−6, z ¼ L=2. (c) κSC ¼ 4.2 × 10−6, z ¼ L. Space charge tends to reduce the trapping when comparing
κsc ¼ 4.2 × 10−6 with the zero space-charge case κsc ¼ 0 as revealed in Fig. 2. (b) κSC ¼ 4.2 × 10−5, z ¼ L=2. (d) κSC ¼ 4.2 × 10−5,
z ¼ L. Elevating the charge by one order of magnitude suppresses entirely the annular beam.
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repelling force the electrons exert on each other. When this
force is greater than or equal to the radial force exerted by
the OBB, the electron beam will tend to blow up. Our goal

now is twofold: expand the equations of motion to account
for the space-charge effect and assess the effect of the latter.
The former is explained in detail in Appendix D, and in
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FIG. 4. Guiding of a pencil beam of electrons by OBB. (a) κSC ¼ 4.2 × 10−6, z ¼ L=2, px;max ¼ 10−4. (c) κSC ¼ 4.2 × 10−6, z ¼ L,
px;max ¼ 10−4. The low space-charge (κsc ¼ 4.2 × 10−6) beam is significantly squeezed spatially, but the spread of the transverse
momentum increases by almost one order of magnitude. The initial emittance is 0.1 nm. (e) Phase space at the input is marked with red,
whereas in green are labeled particles at the input that eventually become trapped and make it to the output. A well-defined region
ðjx̄ij ≤ 1Þ in the phase space is occupied by only those electrons that will become trapped, implying that the emittance of the trapped
electrons is within a good approximation constant. (b),(d),(f) The same parameters as (a),(c),(e) except x̄max ¼ 1.0, p̄x;max ¼ 4 × 10−4.
Note that many fewer electrons are trapped, since the selection is more stringent, but the emittance of the trapped particles (0.2 nm) is
significantly lower than that of the entire ensemble at the input (1 nm).
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what follows we discuss the main findings from our
numerical investigation. In the framework of the approxi-
mation specified in Appendix D, space charge can be
represented by a single parameter κsc ≡ 2relNΔ, where
rel ¼ 2.8 × 10−15 ½m� is the classical radius of the electron
and NΔ represents the number of electrons per unit length
in the direction of motion. In zero order, for stability, we
require that the transverse force exerted by the OBB is
dominant, which is shown in Appendix D to be equivalent
to πE0 ≫ eNΔ=4πε0λ0γ2 and is readily satisfied even at
moderately relativistic energies, e.g., γ ≃ 20.
The first observation we make is that space-charge

effects tend to suppress the annular beams: Figs. 3(a)
and 3(c) correspond to a small space-charge parameter
κsc ¼ 4.2 × 10−6 at z ¼ L=2 and z ¼ L, respectively. We
observe that fewer electrons (36% compared to 49% in the
space-charge-less case in Fig. 2) are trapped and those
trapped have a slightly larger spatial spread. Elevating
the number of electrons by one order of magnitude,
κsc ¼ 4.2 × 10−5, as evident in Figs. 3(b) and 3(d), the
annular beam is absent even in the middle of the interaction
length. For the pencil beam, 11% of the particles are
trapped and are transported over the 1-m-long interaction
region. The emittance at the output ðz ¼ LÞ of the pencil
beam is εn ≃ 45.1 pm; whereas, tracing backwards, the
trapped electrons had an emittance of εn ≃ 48.5 pm at
z ¼ L=2. This is for the low space-charge case. For the
high space-charge case, the emittance is a factor of 2.5
lower, εnðz ¼ LÞ ≃ 17.4 pm and εnðz ¼ L=2Þ ≃ 21.1 pm.
Although to a lesser extent, in this case, too, the emittance
of the TTPs may be considered essentially constant in the
second half of the interaction region. We should note that
the effects of possible radiation loss have not been included
in this analysis. Furthermore, there may be a self-filtering
process occurring in which low emittance electrons tend to
remain well guided, whereas higher emittance electrons
tend to be lost during transit along the first half of the 1 m
OBB length (106 wavelengths).
Next, we focus our attention to a regime where only

a pencil beam is guided. For this purpose, we limit the
initial spatial spread of the electrons to jx̄ij ≤ 2 and
we consider the case of a weak space-charge effect
ðκsc ¼ 4.2 × 10−6Þ; the initial momentum spread is jp̄x;ij ≤
1 × 10−4. Figures 4(a) and 4(c) show the phase-space
distribution at z ¼ L=2 and z ¼ L, respectively. These
results reveal that, despite space-charge effects, there is
no major change in the transverse phase space along
most of the last half-meter guidance “tunnel” formed by
the OBB [see Figs. 4(a) and 4(c)] and the TTPs are
transported without loss (40% of the initial particles are
trapped). It is interesting to note that the electrons, which
are guided along the second half of the interaction, have an
emittance comparable with their value in the previous cases
[εnðz ¼ LÞ ≃ 34 pm and εnðz ¼ L=2Þ ≃ 29.2 pm]. While
clearly the phase space is squeezed spatially, along the

momentum coordinate its spread is almost one order of
magnitude larger—yet the electrons remain trapped.
In Fig. 4(e), we see the transverse phase space at the

input marked with red, whereas in green we labeled those
particles at the input that eventually became trapped and
made it all the way through to the output. Clearly, there is a
well-defined region ðjx̄ij ≤ 1Þ in the phase space occupied
by only those electrons that will become trapped. This
brings us to the fourth important result of this study that the
emittance is not reduced, but rather it is conserved; in other
words, the emittance of the trapped electrons at the input is
within a good approximation constant along at least the
second half of the interaction region.
The transverse phase space at the output of Fig. 4(c)

leads us to examine the case when the initial transverse
phase space is squeezed spatially ðjx̄ij ≤ 1Þ but enlarged
along the transverse momentum jp̄x;ij ≤ 4 × 10−4 axis—
see Figs. 4(b) and 4(d). In the middle of the interaction
region, there are very few (15%) microparticles that
remained untrapped [Fig. 4(b)], and this number diminishes
at the end of the guiding process [Fig. 4(d)]. In this case, the
emittance of the TTPs at the output is 10 pm. Figure 4(f)
reveals that the relatively large transverse momentum
spread as well as the space-charge effect makes the origin
of the trapped particles more complex compared to the case
in Fig. 4(e), but the emittance remains unchanged (10 pm).
Again, in the framework of our numerical analysis, the
emittance of the trapped particles seems to be conserved. In
Table II, we summarize the normalized emittances in the
various regimes.

VII. ANALYTIC MODEL: SLOWLY
VARYING AMPLITUDE

Adeeper insight into the preceding numerical results may
be obtained by developing a Hamiltonian that accounts for
averaging over the fast oscillations associated with the
electron and the wave propagating in opposite directions.
InAppendixE,weshowthat theHamiltonianassociatedwith
the radial motion ρi ¼ αiJ1ðCiÞ sinðχi;0 þ ψÞ þ Ci ≃ Ci
with the normalized time variable ψ ¼ 2πðct=λ0Þð1þ
cos θ0Þ and the normalized radius ρi ¼ 2πðri=λ0Þ sin θ0,
as well as the normalized coupling coefficient
αi ≡ ðeE0λ0=mc2Þ½2πγi;0ð1þ cos θ0Þ�−1 ≪ 1, reads

TABLE II. Emittance in the various regimes considered. In
brackets is the percentage of the TTPs near the axis.

κsc

ε½pm�@
z ¼ 0

εpenciltrapped½pm� @
z ¼ L

εpenciltrapped½pm� @
z ¼ L=2

0 35.5 53.2 (19.4%) 53.5 (19.4%)
4.2 × 10−6 35.5 45.1 (19.2%) 48.5 (19.2%)
4.2 × 10−5 35.5 17.4 (11.1%) 21.1 (11.1%)
4.2 × 10−6 14.4 34.4 (39.7%) 29.2 (39.7%)
4.2 × 10−6 28.5 10 (13.1%) 10 (13.9%)
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H ¼ 1

2

�
dCi

dψ

�
2

þ 1

4
α2i J

2
1ðCiÞ: ð14Þ

It contains a nonlinear potential VðCiÞ ¼ 1
4
α2i J

2
1ðCiÞ≃

1
2
ðα2i
8
ÞC2

i , which for small radii, Ci ¼ 2πðri=λ0Þ sin θ0 ≪ 1,
indicates that the transverse motion is stable and oscillates
with a normalized frequency αi2

−3=2 or in non-normalized
units Ωi ¼ eE0c=mc2γi;023=2.
For large radii, there are stable oscillations near any zero

of the potential well J1ðp1;sÞ ¼ 0—as already introduced
in the context of Eq. (15). The first zero ðp1;s¼0 ¼ 0Þ
represents a pencil beam, whereas all the others ðp1;s>0Þ
represent annular beams.

VIII. E-BEAM TRANSPORT

We are now in position to examine three aspects of the
e-beam transport by the OBB. First, we determine the
maximum transverse momentum allowed in order to
facilitate trapping. Second, by means of a transport
matrix formulation, it is shown that the transverse emit-
tance is conserved, and, third, we develop the equivalent
Kapchinskij-Vladimirskij [21] equation that determines
the equilibrium radius of the (pencil) beam and the
dynamics of small perturbation around this equilibrium.

A. Maximum transverse momentum

From the perspective of the oscillation’s amplitude, it is
limited to the range between two adjacent maxima,
_J1ð _p1;sÞ≡ 0, of the potential _p1;s≥0 ≤ C ≤ _p1;sþ1; there-
fore, according to the definition of the Hamiltonian
[Eq. (15)] the radial velocity is limited to

0 ≤
�
dCi

dψ

�
2

¼ 2Hi − 1

2
α2i J

2
1ðCiÞ ≤

���� dCi

dψ

����2
ψ¼0

þ 1

2
α2i fJ21½Ciðψ ¼ 0Þ� − J21ð _p1;sþ1Þg; ð15Þ

implying for the worst case scenario for a pencil beam
½Ciðψ ¼ 0Þ ¼ 0� that the (normalized) radius should not
exceed the location of the largest maximum ( _p1;s) of the
potential. For example, in the case of a pencil beam, the
Bessel function has a maximum: J21ðuÞ ≤ J2max ≡ 0.339
(u ≃ 1.841); therefore, the limit on the initial radial motion
allowed is jðdCi=dψÞψ¼0j < ð1=2ÞαijJ1ð _p1;1Þj or, explic-
itly, jγβrjt¼0 ≤ 0.065ðeE0λ0=mc2Þð1= sin θ0Þ. Keeping in
mind that based on Fig. 1 we may deduce that Pin ¼
ð1=2η0ÞE2

r;0πR
2
ext and Er;0 ¼ E0= sin θ0, thus we get

jγβrjt¼0 < 0.065

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2η0Pin

ðmc2=eÞ2
λ20

πR2
ext

s
; ð16Þ

implying that the upper limit of the transverse momentum
is set by the input energy flux before the axicon lens (e.g.,

F ¼ 1 J=cm2). For λ ¼ 1 μm, L ¼ 1 m, and Rext ¼ 10 cm,
we find jγβrjt¼0 < 6 × 10−3, which implies that any elec-
trons entering the OBB region with a radial velocity greater
than this value will not be trapped.

B. Emittance conservation

Let us examine the emittance as electrons are oscillating
near one of the zeros of the potential p1;s: J1ðp1;sÞ≡ 0,
s ¼ 0; 1; 2;…. Consider a linearized solution of the form
Ci ≃ p1;s þ δCs;i, and then the trajectory of the electrons
may be described in terms of a transport matrix. In
Appendix F, we show that the transverse emittance

εðψÞ ¼ λ0sin−2ðθ0=2Þ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hδC2

i ðψÞihδ _C2
i ðψÞi − hδCiðψÞδ _CiðψÞi2

q
ð17Þ

is conserved along the interaction region

εðψ ¼ ∞Þ ¼ εðψ ¼ 0Þ: ð18Þ
This is the fourth important result characteristic to this

guidance paradigm.

C. Envelope equation

Knowing for a pencil beam that the emittance is
conserved, we can go one step further and develop the
envelope equation for the OBB. Let us consider a particle at
the vacuum-beam interface—its radius is denoted by Rb.
Ignoring space charge and angular momentum, according
to Eq. (15) the particle’s trajectory is oscillating

d2Rb

ds2
þ
�

eE0

23=2mc2γ̄

�
2

Rb ¼ 0; ð19Þ

where s ¼ ct. For what follows, it is convenient to
define K ≡ eE0=23=2mc2γ̄, which represents the “lattice”
periodicity.
Including the repelling space-charge force developed in

Appendix D and in a similar way we incorporate the
angular momentum term from Eq. (9), we obtain

d2Rb

ds2
þ 1

8

�
eE0

mc2γ̄

�
2

Rb −
�
2NΔrel
γ̄3

�
1

Rb
− ε2

R3
b

¼ 0; ð20Þ

where ε is the transverse emittance being related to the
angular momentum by ε ¼ Lλ0=γ̄. In this process, we
ignored the energy spread by using, instead of γi, its average
value γ̄ ¼ hγii; rel is the classical radius of the electron.
The equation above represents the Kapchinskij-

Vladimirskij equation for the OBB. As such, it is evident
that the beam’s envelope has an equilibrium value that
depends on the laser intensity, e-beam emittance, and
number of electrons per unit length NΔ. In fact, it is
convenient to define the “space-charge emittance” εsc ¼
NΔrel=γ̄3K allowing us towrite the equilibrium condition as
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R2
b;eq ¼

1

K

�
εscþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2scþ ε2

q �
≃
�
2εsc=K εsc ≫ ε;

ε=K εsc ≪ ε;
ð21Þ

which indicates that, if the equilibrium is space-charge
dominated ðεsc ≫ εÞ, the beam radius is independent of
the emittance, whereas, in the opposite case, R2

b;eq ∝ ε.

IX. CONCLUSIONS

In conclusion, we considered the trajectories of electrons
counterpropagating along a radially polarized optical
Bessel beam. It was shown that a significant fraction of
the electrons can be transversally trapped by the OBB even
in the case of “unmatched” injection, i.e., an arbitrary phase
with respect to the optical field. Moreover, these trans-
versally trapped particles can be transported without loss
over more than 105 laser wavelengths (1 μm). The distance
is limited only by the length of the OBB as long as there is
full longitudinal overlap between the electrons and laser
pulse. The unique profile ½J1ðuÞ� of the transverse field
components supports the propagation of annular beams in
addition to an azimuthally symmetric pencil beam in the
vicinity of the zeros of the Bessel function, namely,
J1ðuÞ ¼ 0. Qualitatively, space charge tends to suppress
annular beams, and it reduces the amount of charge trapped
on axis.
Assessment of the emittance of the TTPs alone reveals

(see Table II) typical values of 10–50 pm for the parameters
specified in Table I. In fact, our simulations indicate that, if
we trace the emittance of those particles that are eventually

trapped from input to output, we find, within an error
ð∝ N−1=2

mp Þ associated with a relatively small number of
microparticles (70–40), that this emittance is conserved.
To thoroughly investigate the processes involved, we

developed an analytic model whereby we averaged over the
fast oscillation associated with the counterpropagating
electron and Bessel laser beam. The resulting
Hamiltonian has a Bessel (radial) potential J21ðuÞ which,
when operated in the linear regime and near equilibrium,
causes rotation of the phase space, and using this we
determined the analytic condition ðeE0λ0=mc2γ̄Þ2 ¼
2h _x2i ihx2i i−1 for the emittance to be conserved.
Finally, our choice of counterpropagating electrons is not

arbitrary. In Appendix G, we show that, while the stability
is identical in both cases, namely, the oscillation follows
the same frequency, the transverse confinement (kick) is
ðθ0=2Þ2 weaker in the copropagating case.
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APPENDIX A: EQUATIONS OF MOTION

Fromtheexplicitexpressionsof thepotentials [Eq. (1)] that
satisfy the Lorentz gauge, we may derive the three nonzero
field components in the cylindrical coordinates system:

μ0Hϕ ¼ − ∂
∂r A

ðOBBÞ
z ¼ − E0

c sin θ0
J1

�
ω0

c
r sin θ0

�
sin

�
ω0

�
tþ z

c
cos θ0

��
;

Er ¼ − ∂
∂rΦ

ðOBBÞ ¼ E0 cos θ0
sin θ0

J1

�
ω0

c
r sin θ0

�
sin

�
ω0

�
tþ z

c
cos θ0

��
;

Ez ¼ − ∂
∂t A

ðOBBÞ
z − ∂

∂zΦ
ðOBBÞ ¼ E0J0

�
ω0

c
r sin θ0

�
cos

�
ω0

�
tþ z

c
cos θ0

��
: ðA1Þ

With these field components, we may write the equation of motion of the ith electron in the Cartesian coordinate system:

d
dt

ðγiβx;iÞ ¼ − e
mc

ðEx;i − cμ0βz;iHy;iÞ;
d
dt

ðγiβy;iÞ ¼ − e
mc

ðEy;i þ cμ0βz;iHx;iÞ;
d
dt

ðγiβz;iÞ ¼ − e
mc

ðEz;i þ cμ0βx;iHy;i − cμ0βy;iHx;iÞ;
dγi
dt

¼ − e
mc2

ðcβx;iEx;i þ cβy;iEy;i þ cβzEzÞ;

χi ¼ ω0

�
tþ zi

c
cos θ0

�
: ðA2Þ
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The last expression determines the phase experienced by the ith particle. Keeping in mind that in cylindri-
cal coordinates Ex ¼ Er cosϕ and x ¼ r cosϕ, we get Ex ¼ ðx=rÞEr. Similarly, Ey ¼ ðy=rÞEr, Hx ¼ −Hϕ sinϕ¼
−ðy=rÞHϕ, and Hy ¼ Hϕ cosϕ ¼ ðx=rÞHϕ. Thus, we have

d
dt

ðγiβx;iÞ ¼ − e
mc

ðEr;i − η0βz;iHϕ;iÞ
xi
ri
;

d
dt

ðγiβy;iÞ ¼ − e
mc

ðEr;i − η0βz;iHϕ;iÞ
yi
ri
;

d
dt

ðγiβz;iÞ ¼ − e
mc

�
Ez;i þ η0βx;i

xi
ri
Hϕ;i þ η0βy;i

yi
ri
Hϕ;i

�
;

d
dt

γi ¼ − e
mc

�
βx;i

xi
ri
Er;i þ βy;i

yi
ri
Er;i þ βzEz

�
;

d
dt

χi ¼ ω0ð1þ βz;i cos θ0Þ: ðA3Þ

At this stage, we may substitute the explicit expressions for the field components derived in Eq. (A2), and, defining
ψ i ¼ ω0

c ri sin θ0 as the argument of the Bessel functions, we find

d
dt

ðγiβx;iÞ ¼ −
�
e
mc

ðcos θ0 þ βz;iÞ
E0

sin θ0
J1ðψ iÞ sin χi

�
xi
ri
;

d
dt

ðγiβy;iÞ ¼ −
�
e
mc

ðcos θ0 þ βz;iÞ
E0

sin θ0
J1ðψ iÞ sin χi

�
yi
ri
;

d
dt

ðγiβz;iÞ ¼ − e
mc

�
E0J0ðψ iÞ cos χi −

�
βx;i

xi
ri
þ βy;i

yi
ri

�
E0

sin θ0
J1ðψ iÞ sin χi

�
;

d
dt

γi ¼ − e
mc

��
βx;i

xi
ri
þ βy;i

yi
ri

�
E0 cos θ0
sin θ0

J1ðψ iÞ sin χi þ βz;iE0J0ðψ iÞ cos χi
�
;

d
dt

χi ¼ ω0ð1þ βz;i cos θ0Þ: ðA4Þ

Defining the normalized quantities as

τ ¼ ct=λ0; x̄i ¼ xi=λ0; ȳi ¼ yi=λ0; z̄i ¼ zi=λ0; ψ i ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̄2i þ ȳ2i

q
sin θ0 ;

Ūi ¼ πĒJcðψ iÞ sinðχiÞ; V̄i ¼ ĒJ0ðψ iÞ cosðχiÞ; Ē ¼ eE0λ0=mc2; JcðuÞ≡ 2J1ðuÞ=u;

we finally get
d
dτ

ðγi _̄xiÞ ¼ −ðcos θ0 þ _̄ziÞx̄iŪi;

d
dτ

ðγi _̄yiÞ ¼ −ðcos θ0 þ _̄ziÞȳiŪi;

d
dτ

ðγi _̄ziÞ ¼
�
1

2

d
dτ

ðx̄2i þ ȳ2i Þ
�
Ūi − V̄i;

dγi
dτ

¼ − cos θ0

�
1

2

d
dτ

ðx̄2i þ ȳ2i Þ
�
Ūi − _̄ziV̄i;

dχi
dτ

¼ 2πð1þ _̄zi cos θ0Þ; ðA5Þ

which constitutes the fundamental set of equations intro-
duced in Eq. (2) and used throughout this study.

APPENDIX B: CANONICAL LONGITUDINAL
MOMENTUM AND ENERGY SPREAD

The conservation of the longitudinal canonical momen-
tum [Eq. (6)] implies that for relativistic particles, γi (and
χi) can be solved analytically:

γiðτÞ þ
Ē sin½χið0Þ þ 2πð1þ cos θ0Þτ�

2πð1þ cos θ0Þ

¼ γið0Þ þ
Ē sin½χið0Þ�

2πð1þ cos θ0Þ
: ðB1Þ

From this last expression, we may conclude that, if the
initial energy and phase are statistically independent, the
average energy is independent of the OBB, i.e., hγiðτÞi ¼
hγið0Þi, whereas the second moment is given by
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hγ2i ðτÞii ¼ hγ2i ð0Þii þ
�

Ē
2πð1þ cos θ0Þ

�
2

× f1 − cos½2πð1þ cos θ0Þτ�g: ðB2Þ

Averaging in time over one oscillation period, we
conclude that the initial energy spread Δγ2ini increases
according to

Δγ2 ¼ Δγ2ini þ
�

eE0λ0=mc2

2πð1þ cos θ0Þ
�
2

: ðB3Þ

This last result represents the electrons’ energy spread
increase when the beam enters the OBB region. Because of
conservation of longitudinal canonical momentum, once
the e-beam exits the OBB, the electrons’ energy spread
drops back to its original value.

APPENDIX C: MATHIEU’S EQUATION

In this Appendix, we determine the constraints on α that
ensure a periodic (stable) solution to Mathieu’s equation�

d2

du2
þ α sinðuþ χ0Þ

�
ΨðuÞ ¼ 0; ðC1Þ

namely, ΨðuÞ ¼ expð−jkuÞP∞
n¼−∞ Ψ̄n expð−jnuÞ, where

u ¼ ð−π; πÞ and jkj < 0.5 is the projection on the first
Brillouinzone.TheMathieuequationnowhasanalgebraicform

X∞
n;n0¼−∞

½Mn;n0 − α−1δn;n0�Ψ̃n0 expð−jnuÞ ¼ 0; ðC2Þ

with Mn;n0 ≡ 1
2j ðkþ n0Þ−2½δnþ1;n0 expð−jχ0Þ − δn−1;n0 ×

expðþjχ0Þ�, Ψ̃n0 ≡ ðkþ n0Þ2Ψ̄n0 . Equation (C1) is an eigen-
value problem, or, explicitly, α−1 represents the eigenvalues of
thematrixM. In the framework of a periodic solution, it can be
shown that the eigenvalues are independent of the initial angle

χ0, and within a reasonable approximation the first passband
in the first Brillouin zone can be approximated by
αðkÞ ≃ 4αmaxjk − k2j, where 0 ≤ αðkÞ ≤ αmax ≡ αðk ¼
0.5Þ ≃ 0.454. The red curve in Fig. 5(a) shows the numerical
solution for jnj ≤ 5, whereas in bluewe plot the approximation
from the above. After a wide forbidden gap (corresponding to
unconfinedtrajectories), thesecondbranchα2ðkÞ isoneorderof
magnitude narrower, i.e., αmax ¼ 3.79, αmin ¼ 3.757. See
Fig. 5(b).

APPENDIX D: SPACE CHARGE

In free space, an azimuthally symmetric pencil beam of
uniform density tends to diverge due to the net repelling
force FðscÞ

r ¼ re2ðN=πR2
bΔzÞ=ð2γ2ε0Þ within the volume of

the beam. N is the number of electrons in the volume
πR2

bΔz, and the beam radius is Rb. Actually, as we show
subsequently, the quantity that matters is the number of
electrons N per unit length Δz; thus, we define
NΔ ≡ N=Δz. In practice, the radial distribution varies in
time, and, therefore, the space-charge force (after averaging
over the longitudinal dimension) is

FðscÞ
r ðr; tÞ ¼ e2NΔ

2πε0

1

γ2
1

r
hh½r − riðtÞ�ii: ðD1Þ

The earlier expression for the radial force is readily
retrieved if we notice that for a uniform distribution
ð2=R2

bÞ
R Rb
0 dρρhðr − ρÞ ¼ r2=R2

b if r ≤ Rb and 1 other-
wise. Consequently, by analogy to the latter and the fact

that for a uniform distribution hr2iu ¼
2

R2
b

Z
Rb

0

dρρ3 ¼
1
2
R2
b, we consider the following approximation for the

space-charge term:

hh½r − riðtÞ�ii ≃
( r2

2hr2i ii
r2 ≤ 2hr2i ii;

1 r2 > 2hr2i ii
: ðD2Þ
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FIG. 5. Dispersion curves corresponding to solution of Eq. (C2). (a) In red is the first passband and in blue its polynomial
approximation. (b) The second passband is relatively far away from the first one, and it is one order of magnitude narrower. The
eigenvalues are independent of the angle χ0.
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This is obviously an approximation that becomes exact for
the case of a uniform radial distribution, but it obviously fails
for large deviations. Therefore, we can expect it to describe
properly a pencil-beam-like configuration but be less accu-
rate when an annular beam is involved. In the latter case, at
best thismodelprovidesuswithageneral trend.Despite these
limitations, this approach greatly speeds up the numerical
processing time while still providing rough assessments.
Subject to the assumptions above, the transverse space-

charge forces can be readily incorporated in the equations
of motion [Eq. (2)], which then read

d
dτ

ðγi _̄xiÞ ¼ −
�
ðcos θ0 þ _̄ziÞŪi − hi

1

γ2i

1

r̄2i

�
x̄i;

d
dτ

ðγi _̄yiÞ ¼ −
�
ðcos θ0 þ _̄ziÞŪi − hi

1

γ2i

1

r̄2i

�
ȳi;

d
dτ

ðγi _̄ziÞ ¼
�
1

2

dr̄2i
dτ

��
Ūi þ

1

r̄2i
hi _̄zi

�
− V̄i;

dγi
dτ

¼ −
�
1

2

dr̄2i
dτ

��
cos θ0Ūi − hi

1

r̄2i

�
− _̄ziV̄i;

dχi
dτ

¼ 2πð1þ _̄zi cos θ0Þ;

hi ¼ 2relNΔ|fflfflffl{zfflfflffl}
≡κsc

� r̄2i
r̄2b

r̄2i ≤ r̄2b;

1 r̄2i > r̄2b;

: ðD3Þ

wherein r̄2b ¼ 2hr̄2i i, and rel ¼ 2.8 × 10−15 ½m� is the
classical radius of the electron. For an assessment of the
value of the space-charge parameter, let us consider first an
example density of 109 electrons confined by a ð100 μmÞ3
cube; thus, nb ≃ 1021 ½m−3�. A beam of similar density but
radius Rb¼5 ½μm� contains NΔ ≃ 0.75 × 1011 ½m−1�; thus,
κsc≡2relNΔ≃4.2×10−4. For stability, we require that the
transverse force exerted by the OBB is dominant:
jðcosθ0þ _̄ziÞŪijmax≫κscγ

−2
i ⇒2πeE0λ0=mc2≫2relNΔγ

−2
i .

For the parameters specified above, this is readily satisfied.

APPENDIX E: EFFECTIVE HAMILTONIAN

Our purpose is to develop an analytic approach to
simplify the equation of motion taking advantage of the
fact that the electron and the laser are counterpropagating;
thus, the absolute phase varies rapidly. We further neglect
the energy variations and consider zero angular momentum
in Eq. (9); thus,

d2ρi
dψ2

≃ −αiJ1ðρiÞ sinðχi;0 þ ψÞ; ðE1Þ

wherein ψ ¼ 2πτð1þ cos θ0Þ, ρi ¼ 2πr̄i sin θ0, and
αi ¼ Ē½2πγi;0ð1þ cos θ0Þ�−1. The radial location of the
electron has a slowly varying component and a fast
varying one:

ρi ¼ Ai cosðχi;0 þ ψÞ þ Bi sinðχi;0 þ ψÞ þ Ci;

_ρi ≡ dρi
dψ

¼ ð _Ai þ BiÞ cosðχi;0 þ ψÞ þ ð _Bi − AiÞ sinðχi;0 þ ψÞ þ _Ci;

ρ̈i ¼ ðÄi − Ai þ 2 _BiÞ cosðχi;0 þ ψÞ þ ðB̈i − 2 _Ai − BiÞ sinðχi;0 þ ψÞ þ C̈i; ðE2Þ

for substituting in Eq. (E2), we present also the first and second derivative of ρi:

ðÄi − Ai þ 2 _BiÞ cosðχi;0 þ ψÞ þ ðB̈i − 2 _Ai − BiÞ sinðχi;0 þ ψÞ þ C̈i

≃ −αiJ1½Ai cosðχi;0 þ ψÞ þ Bi sinðχi;0 þ ψÞ þ Ci� sinðχi;0 þ ψÞ;

and using the orthogonality of the trigonometric functions we get

C̈i ≃ −αi 1
2π

Z
2π

0

dψJ1½Ai cosðψÞ þ Bi sinðψÞ þ Ci� sinðψÞ;

Äi − Ai þ 2 _Bi ≃ −αi 1
2π

Z
2π

0

dψJ1½Ai cosðψÞ þ Bi sinðψÞ þ Ci� sinð2ψÞ;

B̈i − 2 _Ai − Bi ≃ −2αi 1

2π

Z
2π

0

dψJ1½Ai cosðψÞ þ Bi sinðψÞ þ Ci�sin2ðψÞ: ðE3Þ

In the framework of the slowly varying amplitude approximation, the derivatives of A and B are assumed to be negligible.
Furthermore, we keep in mind that, by defining ai ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
i þ B2

i

p
, θi ≡ arctanðBi=AiÞ, the argument of the Bessel function

reads Ci þ ai cosðψ − θiÞ; therefore, we get
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C̈i ≃ −αi 1

2π

Z
2π

0

dψJ1½Ci þ ai cosðψÞ� sinðψ þ θiÞ ≃ −αi 1
2

�
dJ1ðχÞ
dχ

�
χ¼Ci

Bi;

Ai ≃ 2αi
1

2π

Z
2π

0

dψJ1½Ci þ ai cosðψÞ�
1

2
sinð2ψ þ 2θiÞ ≃Oða2Þ;

Bi ≃ 2αi
1

2π

Z
2π

0

dψJ1½Ci þ ai cosðψÞ�
1

2
½1 − cosð2ψ þ 2θiÞ� ≃ αiJ1ðCiÞ þOða2Þ; ðE4Þ

where we again employed the slowly varying amplitude
approximation; namely, we assume that the amplitudes and
the phase vary slowly compared to trigonometric functions.
Based on the last three expressions, we have Ai ≃ 0,
Bi ≃ αiJ1ðCiÞ, and

d2

dψ2
Ci ≃ − 1

4
α2i

d
dCi

J21ðCiÞ: ðE5Þ

So we need to solve only the latter, since once Ci is
known, the radial coordinate is known: ρi ¼ αiJ1ðCiÞ×
sinðχi;0 þ ψÞ þ Ci, wherein again the first term is the fast
oscillatory term of the radial location, whereas the second is
its slowly varying counterpart.
Based on this equation of motion, we can deduce the

Hamiltonian associated with the radial motion, as we
ignored the change in the total kinetic energy. For this
purpose, we multiply the equation of motion by dCi=dψ :

d
dψ

�
1

2

�
dCi

dψ

�
2

þ 1

4
α2i J

2
1ðCiÞ

�

¼ 0 ⇒ H ¼ 1

2

�
dCi

dψ

�
2

þ 1

4
α2i J

2
1ðCiÞ; ðE6Þ

wherein H is the normalized Hamiltonian and obviously it
is positively defined, i.e., H ≥ 0.

APPENDIX F: EMITTANCE OF THE
TRANSPORTED BEAM

In this Appendix, we examine the emittance as electrons
are oscillating near one of the zeros of the potential p1;s:
J1ðp1;sÞ≡ 0, s ¼ 0; 1; 2;…. Consider a linearized solution
of the form Ci ≃ p1;s þ δCs;i, and then we may write

d
dψ̄

�
1

2

�
dδCs;i

dψ

�
2

þ 1

4
α2i J

2
0ðp1;sÞðδCs;iÞ2

�

¼ 0 ⇒

�
d2

dψ2
þ 1

2
α2i J

2
0ðp1;sÞ

�
δCs;i ¼ 0: ðF1Þ

Defining the normalized oscillating frequency ω2
s;i ≡

ð1=2Þα2i J20ðp1;sÞ≡ ω̄2
s γ̄

2γ−2i and keeping in mind that, for
most practical acceleration applications, the energy spread
is of the order ∼0.1%, we can assume γ̄γ−1i ∼ 1, wherein
γ̄ ¼ hγii. As a result, the transport matrix that describes the
trajectory is

�
δCs;iðψÞ
δ _Cs;iðψÞ

�
¼

2
64 cosðω̄sψÞ

sinðω̄sψÞ
ω̄s

−ω̄s sinðω̄sψÞ cosðω̄sψÞ

3
75� δCs;ið0Þ

δ _Cs;ið0Þ

�
;

ðF2Þ
that has a determinant of unity corresponding to a rotation
of the phase space. In the framework of the present
notation, the emittance is given by

εðψÞ¼ λ0sin−2ðθ0=2Þ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hδC2

i ðψÞihδ _C2
i ðψÞi− hδCiðψÞδ _CiðψÞi2

q
: ðF3Þ

Consequently, after the transients have decayed, ω̄sψ ≫ π,
the emittance is given by

ε∞ ≡ εðψ → ∞Þ ¼ λ0sin−2ðθ0=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hδC2

s;ii∞hδ _C2
s;ii∞

q
≃
1

2
λ0sin−2ðθ0=2Þ

�
ω̄shδC2

s;ið0Þi þ
1

ω̄s
hδ _C2

s;ið0Þi
�
;

ðF4Þ

where we define F2ðuÞ≡ 1

2π

Z
uþπ

u−π
dxF2ðxÞ. The best case

scenario dε∞=dω̄s ¼ 0 is achieved by matching the poten-
tial, represented by ω̄s, to the initial phase space:

ω̄s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hδ _C2

s;ið0ÞihδC2
s;ið0Þi−1

q
⇒

eE0λ0
mc2γ̄

¼
ffiffiffi
2

p

jJ0ðp1;sÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðdδx=dτÞ2s;iiτ¼0

hδx2s;ii−1τ¼0

q
: ðF5Þ

Subject to this condition, the emittance is conserved along
the entire interaction length:

ε∞ ¼ εðψ ¼ 0Þ: ðF6Þ

APPENDIX G: CO- AND
COUNTERPROPAGATING BEAMS

The goal in Appendix G is to compare the dynamics of
co- and counterpropagating beams. To obtain the equations
that describe the copropagating motion, we switch the
trajectory of the particles in the z direction: ziðtÞ → −ziðtÞ.
Therefore, instead of Eq. (2), the system is described by
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d
dτ

ðγi _̄xiÞ ¼ −ðcos θ0 − _̄ziÞx̄iπĒ sinðχiÞ;
d
dτ

ðγi _̄yiÞ ¼ −ðcos θ0 − _̄ziÞ ȳiπĒ sinðχiÞ;
d
dτ

ðγi _̄ziÞ ¼ −
�
1

2

d
dτ

ðx̄2i þ ȳ2i Þ
�
πĒ sinðχiÞ þ Ē cosðχiÞ;

dγi
dτ

¼ − cos θ0

�
1

2

d
dτ

ðx̄2i þ ȳ2i Þ
�
πĒ sinðχiÞ þ _̄ziĒ cosðχiÞ;

dχi
dτ

¼ 2πð1 − _̄zi cos θ0Þ; ðG1Þ

where the various normalizations are identical to those in the counterpropagating case.We focus on the transversemotion and
ultrarelativistic case γθ0 ≫ 1, and for comparison we present the corresponding equations for the counterpropagating case:

ðG2Þ

It is evident that, for otherwise identical conditions, the confining force is ðθ0=2Þ2 weaker in the copropagating case. This
is the main reason for our choice of using a counterpropagating OBB.
Next, we focus our attention on the radial stability of the beam for both cases. We show for both cases that the slow

varying component of the radial motion is stable. Subject to the previous assumptions, we may further assume that the
electrons energy is constant; thus,

Copropagating Counter propagating

d2x̄i
du2

≃
1

2πθ20

Ē
γ
sin ux̄i;

d2x̄i
du2

≃ − 1

8π

Ē
γ
sin ux̄i;

u ¼ χð0Þ þ πθ20τ; u ≃ χð0Þ þ 4πτ:

ðG3Þ

Note that the normalized time ðuÞ has a different (natural) definition. Clearly, the latter varies much slower in the
copropagating case. In cylindrical coordinates, the motion may be explicitly written as

x̄i ¼ ρi cosϕi;

_̄xi ≡ d
du

x̄i ¼ _ρi cosϕi − _ϕiρi sinϕi;

̈x̄i ¼ ρ̈ cosϕi − 2 _ϕi _ρi sinϕi − ϕ̈iρi sinϕi − _ϕ2
i ρi cosϕi; ðG4Þ

and, assuming vanishing angular momentum (which is conserved), we get

Copropagating Counterpropagating

d2ρi
du2

≃
1

2πθ20

Ē
γ
sin uρi;

d2ρi
du2

≃ − 1

8π

Ē
γ
sin uρi:

ðG5Þ

The radial location of the electron has a fast varying component and a slowly varying one:

ρi ¼ Ai cos uþ Bi sin uþ Ci; ðG6Þ
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where the three unknown quantities (A, B, and C) are slowly varying functions of u; thus,

_ρi ≡ d
du

ρi ¼ ð _Ai þ BiÞ cos uþ ð _Bi − AiÞ sin uþ _Ci;

ρ̈i ¼ ðÄi − Ai þ 2 _BiÞ cos uþ ðB̈i − 2 _Ai − BiÞ sin uþ C̈i:

Substituting in Eq. (G6) and using the orthogonality of f0ðuÞ ¼ 1, fcðuÞ ¼ cos u, and fsðuÞ ¼ sin u for the
copropagating case,

f0ðuÞ∶ C̈i ¼
Ē

4πθ20γi
Bi;

fcðuÞ∶ − Ai þ 2 _Bi ¼ 0 ⇒ Ai ≃ 0;

fsðuÞ∶ − 2 _Ai − Bi ≃
1

2

Ē
πθ20γi

Ci ⇒ Bi ≃ − 1

2

Ē
πθ20γi

Ci: ðG7Þ

Combining the three results and repeating the procedure for the counterpropagating case, we obtain

ðG8Þ

Consequently, employing regular time normalization ðτ ¼ ct=λ0Þ for both cases, we conclude that the radial motion of a
narrow pencil beam is stable for both copropagating and counterpropagating beams, i.e.,

d2

dτ2
Ci ≃ − 1

8

�
Ē
γi

�
2

Ci: ðG9Þ
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