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We introduce a general approach to determine the optimal charge, efficiency and gradient for laser driven
accelerators in a self-consistent way. We propose a way to enhance the operational gradient of dielectric
laser accelerators by leverage of beam-loading effect. While the latter may be detrimental from the
perspective of the effective gradient experienced by the particles, it can be beneficial as the effective field
experienced by the accelerating structure, is weaker. As a result, the constraint imposed by the damage
threshold fluence is accordingly weakened and our self-consistent approach predicts permissible gradients
of ∼10 GV=m, one order of magnitude higher than previously reported experimental results—with
unbunched pulse of electrons. Our approach leads to maximum efficiency to occur for higher gradients as
compared with a scenario in which the beam-loading effect on the material is ignored. In any case,
maximum gradient does not occur for the same conditions that maximum efficiency does—a trade-off set
of parameters is suggested.
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I. INTRODUCTION

Today’s electron accelerators are predominantly driven by
rf sources. Being structure-based systems, operating with the
lowest electromagnetic mode, the accelerating gradient is
limited by the breakdown in the metal’s surface [1].
However, in the optical regime it has been experimentally
shown [2,3] that dielectric materials held higher fields before
breakdown. Therefore, it indicates what should be the
general trend, namely operating at sub-mm or optical
wavelengths, as this allows higher accelerating gradients.
For example, the Stanford Linear Collider’s gradient is of the
order of 20 MeV=m [4], while in an optical accelerator 50
times this value is anticipated [5].
Another profound difference between a laser driven

accelerator as compared with its microwave counterpart
is their material. At optical frequencies Ohm loss makes
metals prohibitively lossy. Thus, low loss dielectric materi-
als are virtually the only alternative for an accelerating
structure, regardless of whether the latter is used as an
optical electron collider [6], a possible light source [7], or
as a module for medical devices [8]. Throughout the years
several dielectric structures have been proposed [9–12] and
more recently experimental results were reported [13–15].
In all these configurations fluence damage [16] is a limiting

factor, whereas in rf machines, breakdown at the metal-
vacuum interface is a critical impediment [17].
Both rf and laser accelerators have an important phe-

nomenon in common, this is the beam loading. It results
from the wakefield generated by each particle [18], thus
reducing the effective gradient experienced by the same or
trailing particles. As shown subsequently, the field reduc-
tion may be beneficial, since the structure is exposed to a
weaker electromagnetic field.
In the framework of this paper we present a general

approach relevant to any guided-mode or resonant Floquet
harmonic in a dielectric laser-driven acceleration structure,
which aims to achieve a self-consistent analysis of the
optimal charge, gradient, and efficiency. Contrary to the
approach in Ref. [19], we take into account the short range
wakefield only once. But in addition, we account for its
effect on the dielectric material too. Proper design of the
operation parameters, indicates that beam-loading although
reduces the effective gradient experienced by the particles,
it also enlarges the gap between the maximum field
experienced by the material and the damage threshold
fluence. As a result, the laser power may be increased and
so is the amount of accelerated charge. The optimization
process developed predicts an unloaded gradient of
∼10 GV=m. This is one order of magnitude higher than
previous experiments demonstrated [14,15].

II. SYSTEM DESCRIPTION

Let us now introduce the general approach. Common to
all various structures is the vacuum channel, where the
electrons propagate, and the single TM01 mode that
accelerates them. Although preliminary results were
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previously presented for planar Bragg structures [20], for
the numerical examples presented subsequently in this
study, we adopt an azimuthally symmetric dielectric-loaded
waveguide [21], as shown in Fig. 1, since it is possible to
evaluate all the quantities of interest analytically. However,
while the group velocity, interaction impedance, and wake
parameters may vary from one configuration to another, the
general trend is expected to be the same. We anticipate the
same quantities to control the interaction whether it is a
guided mode or synchronous harmonic (open structure).
Specifically, the fields components of a TM01 mode

which propagates at a phase velocity equals to the speed of
light in a cylindrical vacuum channel are
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where G0 is the accelerating unloaded gradient, ωL is
laser’s angular frequency, and η0 is the wave impedance in
vacuum. The idealized acceleration structure consists of a
dielectric (εr) loaded waveguide, whereby for a given
dielectric (fused Silica) and vacuum channel radius
(Rint), the external radius (Rext) is set by imposing single
mode (TM01) operation and phase velocity equal to the
speed of light in vacuum [see Eq. (B3)]. Moreover, note that
for a given dielectric material εr, imposing the group
velocity sets Rint and vice versa.
Additionally, more assumptions are at the foundation of

our model: (i) the microbunch is a point-charge, and remains
soall along the interaction region. (ii) The space-charge effect
inside each microbunch is ignored. (iii) The laser pulse has a
sharp rise/fall time relative to one laser period, and (iv) the
conversion from a propagating laser mode to an accelerating
TM01mode (couplingprocess) is considered tobe ideal.Each
one of these idealizations may reduce the optimal charge, the

gradient experienced by the electrons and of course the
overall efficiencyof thesystem,however thesearebeyond the
scope of this study. (v) Fluence damage threshold is the only
concern here and we ignore nonlinear optical effects (Kerr
[23], Brillouin, Stokes, etc.). (vi) Since the focus of this study
is the behavior of the field near the vacuum-dielectric
interface, we ignore the fluence damage threshold of the
confining metal. We wish to reiterate that the metallic
boundary is not intrinsic to the operation, but rather allows
us to readily determine the interaction impedance, wakefield
and group velocity, for the sake of showcasing an analytical
example for our general formulation. (vii) In case of single
bunch operation, both the laser pulse and the wake leave the
accelerating module before the next laser pulse fills in.
Previous studies [6,19,20] formulated the efficiency of

accelerating single bunch (η1) with a charge q in terms of
three quantities: (i) the accelerating unloaded gradient
generated by the laser ðEacc ¼ G0Þ; (ii) the wake coefficient
(κ) which by virtue of linearity of Maxwell’s equations
relates the decelerating electric field that acts on the bunch
ðEwake ¼ κqÞ, and (iii) κ1 is the projection of κ on the
fundamental (accelerating) mode. In these studies it was
tacitly assumed that the maximum gradient applicable is
limited by the damage threshold fluence—ignoring beam-
reduction of the field experienced by the dielectric. In the
next paragraph we explain how we suggest to consider this
effect, which would be referred to as the reduced field.
Virtually in all relevant acceleration structures the energy

flux ðSz ¼ ErH�
ϕ=2Þ reaches its maximum at the vacuum-

dielectric interface

Sz;maxðr ¼ Rint þ 0Þ ¼ 1
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where εr is the dielectric coefficient adjacent to the vacuum
channel, and Rint is the radius of the latter. We wish to
emphasize that this is the flux of the TM01 mode in the
dielectric in terms of the accelerating gradient (G0), in the
absence of the electron beam. However, since we examine
the effect of the electrons on the fundamental mode, we
shall consider an effective electric field (Eeff ). Note that the
effective electric field in the material near the dielectric-
vacuum interface is Eeff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
r þ E2

z

p
. Given a single

mode operation ωLRint=ð2εrcÞ < 1, the maximum effective
field in the material is approximately Eeff ≃ Ez.
Since the phase velocity is c, the latter is G0 reduced by

the projection (κ1) of the wakefield solely on the accel-
erating mode, ignoring the contribution of all the other
modes. Consequently, the maximum energy flux in the
dielectric is assumed to be given by

Sz;maxðr ¼ Rint þ 0Þ ¼ 1

2η0εr
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or explicitly, the effective field in the reduced case (super-

script R) is EðRÞ
eff ≡G0 − κ1q. Note that the latter quantity is

defined in the dielectric. Evidently, if the reduction κ1q is

FIG. 1. Schematics of the basic principle and envisaged
geometry. Single relativistic microbunches (blue) is accelerated
by TM01 laser mode (red) which propagates at cβgr group
velocity, in a vacuum channel of a dielectric (εr) loaded cylinder.
The wake (green), generated by the bunch, propagates at its
velocity [22] along the interaction region Lgeo.
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ignored, namely EðURÞ
eff ≡G0, in what follows we refer to

this incidence as the unreduced case (superscript UR).
It is important to emphasize that the projection of the

wake on the fundamental mode is proportional to the value
2hðτÞ whereby hðτÞ is the Heaviside step function. In this
study we consider a conservative scenario whereby the
typical value corresponds to the front of the wake rather
than the main trailing wake. If we consider the latter, the
reduction leads to a better optimization but we prefer the
conservative route rather than the best case scenario.
Given the flattop laser pulse duration τp, the maximum

Poynting vector and the fluence are related SmaxðRint þ 0Þ ¼
FðτpÞ=τp. Therefore substituting the latter to Eq. (3), the
effective field experienced by the dielectric is

Eeff ¼
ffiffiffiffiffiffiffiffiffiffiffi
2η0εr

p
1
2
ωL
c Rint

ffiffiffiffiffiffiffiffiffiffiffi
FðτpÞ
τp

s
: ð4Þ

Furthermore, we assume that the fluence dependence on
the pulse duration is known and determined by FðτpÞ;
explicitly, in the examples presented in this study, we adopt
the expression in Ref. [24] which is a parametrization of the
measured data presented in Ref. [16]

F

�
J

cm2

�
¼

8>><
>>:

1.44τ1=2p τp½p sec� > 10

2.51τ1=4p 0.4 < τp½p sec� < 10

2 τp½p sec� < 0.4

: ð5Þ

Note that although this fluence formula is based on
experimental results of laser wavelength λL ¼ 1 μm, we
adopt it also for λL ¼ 2 μm, due to lack of experimental
data with the latter. Next, we introduce one more condition:
full overlap between the laser pulse that propagates at cβgr
and a relativistic single microbunch along the interaction
length, Lgeo. This condition is satisfied by setting the pulse
duration, which is equal to the delay time τD [6], to be

τp ¼ τD ≡ Lgeo

c
ðβ−1gr − 1Þ: ð6Þ

While the group velocity is an electromagnetic property of
the structure, the interaction length is determined by two
parameters: the energy gain required Δγacc and the effective
loaded gradient that acts on the charge GLoaded ¼ G0 − κq.
Therefore, the geometric length is given by

Lgeo ¼
Δγaccmec2

eGLoaded
¼ Δγaccmec2

eðG0 − κqÞ ð7Þ

where me and e are the electron’s mass and charge respec-
tively. It is important to emphasize the difference between
Gloaded and Eeff , the former is the electric field acting on the
particlewhereas the latter is the electric field that the structure
is exposed to at the vacuum-dielectric interface.
At this stage, considering Eqs. (4)–(7), the unloaded

gradient G0 and charge q are yet unknown. However, the
inter-dependence between the parameters in Eqs. (4)–(7)

results in a transcendental equation for G0 and q. Given the
five free parameters: normalized energy gain (Δγacc), the
vacuum channel’s radius ðRintÞ, the group velocity (βgr),
the laser wavelength (λL), and the geometrical length of the
structure ðLgeoÞ, we can determine the gradient given the
charge or vice versa, we can calculate the charge given the
gradient. In either one of the options the solution is self-
consistent. Given the solution for the gradient and charge,
the efficiency ðη1 ¼ 4κ1qG−1

0 ð1 − κqG−1
0 ÞÞ can be evalu-

ated. Moreover, we show in what follows that optimal
values exist for the efficiency as well gradient.

III. SELF-CONSISTENT ANALYSIS

A flavor of the general trend of such a self-consistent
solution, for a single bunch in the reduced case, is given in
Fig. 2 for the parameters in Table I and a range of
interaction length values (Lgeo). While a detailed compari-
son between the unreduced and reduced cases is given in
Sec. IV, for the sake of simplicity, in what follows we focus
on the properties of the latter.
Figure 2 reveals a monotonic variation of the charge

(dashed blue), whereas both the efficiency (red) and
unloaded gradient (dotted green) reach maximum.
However, the conditions for maximum efficiency and
maximum unloaded gradient cannot be satisfied simulta-
neously. Moreover, as shown in Fig. 2, it is advantageous to
operate in short structures, where higher gradients are
available. For example, an unloaded gradient of G0 ≃
9 GV=m and loaded gradient of GLoaded ≃ 3 GV=m are

FIG. 2. Reduced case quantities for single bunch as a function
of geometrical length. Left vertical axis: normalized charge q� ¼
κq=G0 (dashed blue), efficiency normalized to its maximum
η1;max (red)—see derivation in Appendix B. Right vertical axis:
unloaded gradient (turquoise) and loaded gradient (dotted green).
While the charge varies monotonically, both the efficiency and
unloaded gradient reach maximum. Notably, maximum effi-
ciency and maximum gradient (G0) occur for different geomet-
rical lengths, and therefore cannot be satisfied together.
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feasible in a 0.3 mm long structure with an efficiency of
0.58η1;max. However, for a relatively long interaction length
(Lgeo ¼ 6 mm), the maximum unloaded gradient and
charge are G0 ¼ 4.7 GV=m, q ¼ 0.25 pC respectively,
therefore the loaded gradient is GLoaded ¼ 0.145 GV=m
and the efficiency is 0.08η1;max.
As could be inferred from Eq. (6), when the bunch enters

the structure the laser pulse might be half a way in the
structure, while no wake has been generated in this region
to reduce the exposure of the dielectric to the intense optical
field. During this time period ðτDÞ, the field at the dielectric
interface may be higher than the damage threshold fluence
(DTF). Therefore, the latter would set an upper limit on the
unloaded gradient values (G0). Figure 3 reveals the DTF
gradient ðGDTFÞ dependence on the delay time ðτDÞ, and the

corresponding fluence values (F) presented in Eq. (5).
Therefore, the fact that the delay time might be of the order
of picoseconds, would set an upper limit on the unloaded
gradient values. Consequently, it is advantageous to reduce
the delay time by either shortening the structure or
operating with a higher group velocity.
Before we proceed, we would like to note that since

dielectric breakdown is nonrecoverable, a failure at the
injector may cause the accelerator structure to be destroyed
by high-intensity laser fields. Therefore, it might be critical
to build a control system that would block the laser field in
case the electron bunch does not arrive at the structure, due
to some upstream fault, similar to control systems of
electron damping rings.

IV. DISCUSSION

At this stage, we may compare between the reduced case,
in which the beam loading effect on the dielectric is
considered, to the unreduced case, in which the effect is
ignored. The four constraints formulated in Eqs. (4)–(7)
reduce the number of free parameters to five: the radius of
the vacuum channel Rint, the structure’s geometric length
Lgeo, the group velocity βgr, the required energy gain Δγacc,
and the driving laser’s frequency ωL. The solution,
expressed in terms of the charge in a microbunch for the
unreduced case, is given by

qðURÞ ¼ 1

κ

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2η0εrFðτpÞ
ð1
2
ωL
c RintÞ2τp

s
−
Δγaccmec2

eLgeo

#
ð8Þ

where the pulse duration is τp ¼ Lgeoðβ−1gr − 1Þ=c, and
FðτpÞ is the fluence. Both the wake coefficient κ, and its

TABLE I. Parameters of the laser and the envisaged structure
shown in Fig. 1. (*) Average laser power formula is given by
PL ¼ G2

0λ
2
L=Zint.

Parameter Symbol Value

Laser
Laser wavelength [μm] λL 2
Group velocity βgr 0.63
Phase velocity βph 1.0
Interaction impedance [Ω] Zint 370
Laser power [kW] P�

L 10.8 · fG0½GVm �g2
Structure
Internal radius [λL] Rint 0.5
External radius [λL] Rext 0.65
Dielectric constant εr 2.1
Wake coefficient [ GV

m·pC] κ 18
Energy gain required Δγacc 1.7
Maximum efficiency [%] η1;max 67

FIG. 3. Damage threshold fluence gradient (red) and the
corresponding fluence values (dashed blue) in Eq. (5) as a
function of delay time. Since GDTF set an upper limit on the
unloaded gradient values, it is advantageous to reduce the
delay time.

FIG. 4. Single bunch efficiency vs loaded gradient for two
different radii in each case: reduced (solid curves) and unreduced
(dashed curves). Although maximum efficiency is the same in
both cases, it occurs for higher loaded gradients in the reduced
case. Also, wider vacuum channel presents higher efficiency.
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first mode’s weight W1 ≡ κ1=κ depend on the vacuum
channel radius and the group velocity βgr.
According to the set of equations for the reduced case,

we can show that the charge in a microbunch is

qðRÞ ¼ 1

1 −W1

qðURÞ: ð9Þ

Next, given the charge, the gradient G0 is calculated based
on Eq. (4) or Eq. (7). Therefore, as shown in Appendix C, in
both cases (un-reduced and reduced) the loaded gradient is

the same (e.g. GðURÞ
Loaded ¼ GðRÞ

LoadedÞ, although occurring for
different geometric length. Figure 4 shows the efficiency as a
function of the loaded gradient for two vacuum channel radii
—0.75λL (blue) and 0.5λL (red), and two cases for each radii
—reduced (solid curves) and unreduced (dotted curves).
First, it is evident that higher maximum efficiency (81% vs
67%) occurs for wider vacuum channel (0.75λL vs 0.5λL).
Second, maximum efficiency occurs for higher loaded
gradient in the reduced case as compared with the un-
reduced case. For example, for Rint ¼ 0.5λL, 67% maximum
efficiency occurs for loaded gradient of 5 GV=m in the
reduced case and only 2 GV=m in the un-reduced case.
In what follows we show that it is advantageous to

operate with short (sub mm) structures since the loaded
gradient is anticipated to be higher. Table II presents three
scenarios (corresponding to different structure lengths),
each of which regards both the reduced and unreduced
cases. Explicitly, for short structures (scenarios I and II
wherein Lgeo ≤ 0.2 mm), the loaded gradient is one order
of magnitude higher than the long structure (scenario III
wherein Lgeo ¼ 5.2 mm). Also, for long structures a variety
of other problematic effects arise such as laser defocusing.
Although the loaded gradient is the same for both the

reduced and unreduced cases, the former is preferable in
terms of microbunch charge and efficiency. The micro-
bunch charge is nearly three times higher in the reduced
case for all three scenarios, implying that the unloaded
gradient is higher as well. For instance, in a 0.2 mm long
structure, q ¼ 240 fC and G0 ¼ 8.6 GV=m in the reduced
case as compared with q ¼ 80 fC and G0 ¼ 5.7 GV=m in
the un-reduced case. Moreover, for the sub mm structures,
the reduced case efficiency is higher than the unreduced
case. For example, in a 0.2 mm long structure, the reduce

case efficiency is 25% higher than the unreduced case.
Such high efficiency leads to high charge, a total of 1.5 ×
106 electrons in a bunch. In order to employ the single
bunch theory developed in the current paper, in Ref. [25]
we present three different regimes of operation for high
energy physics applications: maximum efficiency, maxi-
mum charge, and maximum loaded gradient. We demon-
strated the tradeoffs between the regimes, that result in
loaded gradients of 1 to 6 [GV/m], efficiencies of 20% to
80%, and electrons flux of 1014 [el/sec], without significant
concerns regarding damage threshold fluence.

V. CONCLUSION

In conclusion, we solved a self-consistent set of non-
linear constraints, taking into account the beam loading
reduction on the material at the dielectric-vacuum interface.
This case, which was referred to as the reduced case,
presents unloaded gradient of ∼10 GV=m. While the
loaded gradient is anticipated to be the same in both cases
(reduced and un-reduced), the maximum efficiency (and
higher amount of charge) occur for a higher loaded gradient
in the reduced case (5 GV=m) as compared with the
unreduced case (2 GV=m).
Furthermore, we showed that it is advantageous to

operate in sub millimeter structures, where higher gradients
are available and are facilitated by shorter laser pulse and
consequently by higher damage threshold fluence gra-
dient (GDTF).
In addition, maximum gradient does not occur for the

same conditions that maximum efficiency occurs.
However, the latter, together with the laser field, determine
the optimal charge to be accelerated, a total of ∼106
electrons in a bunch.
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APPENDIX A: ENERGY GAIN DEPENDENCE
ON THE GROUP VELOCITY

In this Appendix we investigate the energy gain depend-
ence on the group velocity, fluence, and structure’s length

TABLE II. Comparison between reduced (R) and un-reduced (UR) cases for the parameters in Table I and three scenarios.

I II III

Parameter Symbol Units (R) (UR) (R) (UR) (R) (UR)

Structure length Lgeo mm 0.12 0.2 5.2
Pulse duration τp ps 0.23 0.38 10
Microbunch charge q fC 37 12 240 80 257 85
Efficiency η1 η1;max 0.3 0.1 1.0 0.75 0.14 0.36
Unloaded gradient G0 GV/m 7.9 7.45 8.6 5.7 4.7 1.7
Loaded gradient GLoaded GV/m 7.3 4.3 0.17
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for the reduced case. Let us assume that the wake’s first
mode is dominant (κ ≃ κ1), and the pulse duration is
τp ¼ τD. The latter condition occurs for either a single
bunch or for a short train of microbunches duration as
compared with the delay time (τB ≪ τD). Therefore the
energy gain required is

Δγacc ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2η0εre2cðβ−1gr − 1Þ−1

q
1
2
ωL
c Rintmec2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðτDÞLgeo

q
: ðA1Þ

By substituting Eq. (5) and the parameters in Table I, we get

Δγacc ¼

8>><
>>:

5.73L3=4
geo Lgeo½mm� > 3

6.57L5=8
geo 0.12 < Lgeo½mm� < 3

5.05L1=2
geo Lgeo½mm� < 0.12

; ðA2Þ

the typical values of which are presented in Table III for a
single bunch, assuming the wake’s first mode is dominant
(κ ≃ κ1). The corresponding loaded gradient values are
shown in Table III for three cases—each case corresponds
to a different regime of the fluence. These results indicate
that, due to the fluence dependence on pulse duration, high
energy gain is available only for long structures, whereas
the corresponding loaded gradient permissible is low.
Figure 5(a) shows the energy gain for the three fluence

regimes in Eq. (5) as a function of group velocity. Although
the energy gain is smaller as the structure is shorter, it is

independent of the group velocity. The latter’s dependence
on the structure’s internal radius is shown in Appendix B.
Figure 5(b) shows the energy gain for three values of group
velocity, as a function of fluence. While the energy gain
is a square root of the fluence [Eq. (A1)], the self consis-
tent analysis indicates virtually linear dependence for
F > 4.4 J=cm2. Moreover, the energy gain discontinuity
pertain to the discontinuity in the fluence (shown in Fig. 3).

APPENDIX B: WAKE IN A PARTIALLY
LOADED METALLIC CYLINDER

In this Appendix we calculate the wake’s weight func-
tions Ws of the envisaged configuration, shown in Fig. 1,
by solving the nonhomogeneous dispersion relation in the
presence of charge distribution in the structure.
The current density of a beam with a total charge q and

radius Rb, distributed at ri, zi, moving at a velocity v is

Jzðr; z; tÞ ¼ −
qv
2πr

X
i

δðz − zi − vtÞδðr − riÞ: ðB1Þ

Let us assume a TM01 laser mode is copropagating with the
beam in the z-direction with a phase velocity βph equal to
the beam’s velocity. The longitudinal electric field compo-
nent of the mode is

Ez¼ j
Γ2

ε0ω
expð−jkzzÞ

×

( q
4π2

½K0ðΓrÞþC1I0ðΓrÞ� 0<r<Rint

− Λ2

Γ2μ0εr
C2T0ðΛrÞ Rint<r<Rext

ðB2Þ

where kz ¼ ω=ðcβphÞ, Γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z − ðω=cÞ2

p
and Λ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εrðω=cÞ2 − k2z
p

, K0 and I0 are the modified Bessel
function of the first and second kind respectively,
T0ðΛrÞ≡ J0ðΛrÞY0ðΛRextÞ − J0ðΛRextÞY0ðΛrÞ, and Jn
and Yn are the n-th order Bessel function of the first
and second kind respectively.
In the absence of charge, the homogeneous dispersion

relation is

DHðω; kzÞ

¼ εrT1ðΛRintÞI0ðΓRintÞ þ
Λ
Γ
T0ðΛRintÞI1ðΓRintÞ ðB3Þ

where T1ðΛrÞ≡ −J1ðΛrÞY0ðΛRextÞ þ J0ðΛRextÞY1ðΛrÞ.
The coefficients C1, C2 in Eq. (B2) can be derived from
the boundary conditions at the internal radius

C1 ¼ −
εr

ΓRint

T1ðΛRintÞ
I1ðΓRintÞ

1

DHðω; kzÞ
C2 ¼ −

Γ
Λ
μ0q
4π2

εr
ΓRint

1

DHðω; kzÞ
: ðB4Þ

In the time-domain, the averaged (over r) longitudinal
electric field on the beam’s radius Rb is

TABLE III. Typical values of energy gain and loaded gradient
for three cases, each case corresponds to a different regime of the
fluence.

Parameter Symbol A B C

Structure length [mm] Lgeo 0.1 1 10
Fluence [J=cm2] F 2 3 6.3
Energy gain required Δγacc 1.6 6.6 32
Loaded gradient ½GVm � GLoaded 8.2 3.4 1.6

FIG. 5. Energy gain as a function of: (a) group velocity for the
three fluence regimes, and (b) fluence for three values of group
velocity. Although the energy gain is smaller for shorter struc-
tures, it is independent of the group velocity. Also, while the
energy gain is a square root of the fluence (Eq. (A1), self
consistent analysis indicates virtually linear dependence for
F > 4.4 J=cm2.
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Ezðτ¼ t−z=vÞ¼
Z

∞

−∞
dωexpðjωtÞ 2

R2
b

Z
Rb

0

drrEzðω;rÞ

¼−j
q

4π2ε0R2
int

�4R2
int

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β−2ph −1

q
cRb

Re
Z

∞

0

dωexpðjωτÞK1ðΓRbÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð1Þ

þ
Z

∞

−∞
dωexpðjωτÞ XðωÞ

ωDHðω;kzÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð2Þ

	
ðB5Þ

where XðωÞ≡2εrT1ðΛRintÞIcðΓRbÞ=IcðΓRintÞ, and IcðxÞ ¼
2I1ðxÞ=x for x > 0 and 1 for x ¼ 0.
The first term represents the self-field of the particle,

whereas the second term is the contribution of the structure.
Using Cauchy’s residue theorem for the second term, the
wakefield is

Ewake ¼ Eð2Þ
z ðτÞ ¼ κq

X
s

Ws cosðωsτÞ2hðτÞ ðB6Þ

where hðtÞ is the Heaviside step function, κ ¼ 1=ð2πε0R2
intÞ

is the wake coefficient, and the wake’s weight functions for
the sth mode are

Ws ¼
XðωÞ

ω∂ωDHðω; kzÞ





ω¼ωs

ðB7Þ

wherein the angular frequency ωs is the solution of the
homogeneous dispersion relation in Eq. (B3). Please note
that

P
s Ws ¼ 1, and that the first fundamental mode

is ωL ¼ ω1.
As an example, Fig. 6(a) shows the wake’s weight

functions for 60 modes and their corresponding angular
frequencies for λL ¼ 2 μm, Rint ¼ 0.5λL, εr ¼ 2.1 and the
relativistic particle beam (v ¼ c). For this case, the phase
velocity of the laser mode is βph ¼ 1. As a result the weight
functions are independent of the beam radius.
Please note that the projection of the wake on the

fundamental (accelerating) mode ðκ1 ¼ κW1Þ represents
the maximum efficiency of the structure for a single bunch

η1;max ¼
κ1
κ
¼ W1: ðB8Þ

For the self-consistent formulation, the group velocity
dependence on the radii must be presented. Despite the fact
that in this section we develop the nonhomogeneous
solution of the wake, it warrants to point out that this
solution contains information about the homogeneous
solution, specifically about the group velocity in the
system,

βgrðRintÞ ¼ −
1

c
∂DHðω; kzÞ=∂kz
∂DHðω; kzÞ=∂ω





ω¼ωL
kz¼

ωL
c

: ðB9Þ

Figure 6(b) shows the dependence of the group velocity on
the internal radius. For each internal radius, the external
radius is calculated via the dispersion relation, and then the
group velocity is derived.

APPENDIX C: LOADED GRADIENT IN THE
REDUCED AND UNREDUCED CASES

The set of Eqs. (4)–(7), describing the bunch’s charge q
in the reduced case, could be written in terms of the charge
in the un-reduced case [Eq. (9)], namely

qðRÞ ¼ 1

1 −W1

qðURÞ: ðC1Þ

Keeping in mind that the effective field in the dielectric
[Eq. (3)]

Eeff ¼
ffiffiffiffiffiffiffiffiffiffiffi
2η0εr

p
1
2
ωL
c Rint

ffiffiffiffiffiffiffiffiffiffiffi
FðτpÞ
τp

s
ðC2Þ

is equal to GðURÞ
0 in the unreduced case, and to

Eeff ¼ GðRÞ
0 − κ1qðRÞ ðC3Þ

in the reduced case, in what follows we show that the
loaded gradient in both cases is the same.
Substituting Eqs. (C1) and (C2), the loaded gradient in

the unreduced case is

FIG. 6. For the parameters λL ¼ 2 μm, εr ¼ 2.1 and βph ¼ 1:
(a) Wake’s weight functions Ws (blue) for the first 60 modes and
their corresponding angular frequencies ωs (red) for Rint ¼ 0.5λL.
(b) Group velocity of the envisaged structure as a function of the
internal radius.
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GðURÞ
Loaded ¼ GðURÞ

0 − κqðURÞ

¼ Eeff − κqðRÞð1 −W1Þ ¼ Eeff − κqðRÞ þ κ1qðRÞ:

ðC4Þ

Substituting Eq. (C3) to the former results in

GðURÞ
Loaded ¼ GðRÞ

0 − κqðRÞ ¼ GðRÞ
Loaded; ðC5Þ

implying that the loaded gradients are the same for the
reduced and unreduced cases. Therefore, the unloaded
gradient in the reduced case is expected to be higher,
and so does the amount of charge in the single bunch—as
was shown in Table II.
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