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We investigate the longitudinal and transverse dynamics of sub-relativistic electrons during the

trapping process, as facilitated by an adiabatically tapered dielectric structure. The characteristics

of the trapped electrons are studied for different initial conditions and structure’s parameters. A set

of optimal parameters that exemplify our approach are presented. Specifically, we determine the

condition where the transverse emittance is preserved during the trapping process. Published by
AIP Publishing. https://doi.org/10.1063/1.5005031

I. INTRODUCTION

Laser driven accelerators bear inherent advantages over

conventional microwave accelerators due to the reduction of

4–5 orders of magnitude in wavelength. Accordingly, the

former have become an appealing alternative to the latter for

both high energy physics1,2 as well as for medical applica-

tions.3 This trend is also strengthened by the fact that over

the last decade there has been significant progress in wall-

plug to light efficiency of lasers.4–6

Optical accelerators present a number of advantages

over their microwave counterparts. Most notably, the reduc-

tion in wavelength facilitates a reduction in the length of the

machine. An optical machine could be two orders of magni-

tude shorter than its RF counterpart.7 For example, the 50 km

long ILC machine could be readily accommodated in the

3 km SLAC tunnel.8 Medical accelerators could be shrunk

from 50 cm long to no more than a few centimeters.

Another appealing advantage of operating in the optical

range is that higher accelerating gradients can be achieved.9

Additionally, while in both microwave and optical machines,

the accelerating gradient is limited by the material’s ability

to sustain an intense electric field, in microwave machines

breakdown limits the gradient to 20–50 MV/m,2,10,11

whereas in laser driven structures—most commonly made

from dielectric materials12—gradients of 1–10 GV/m have

been theoretically shown to be feasible13 prior to breakdown.

Beyond size and gradient, accelerators are also tested by

the number of accelerated particles. In microwave machines,14,15

the typical bunch contains roughly 1010 electrons, and its dimen-

sions are of the order of rz ’ 300 lm; rx ’ 10 lm, and ry is

tens of nanometers; thus, the density is of the order of nel

’ 5� 1019 cm�3 at the interaction point (IP).

In contrast, in an optical machine, the volume needs to be

a small fraction of the wavelength. Thus, assuming that the

latter is k ’ 1 lm, the bunch’s dimensions should be

rz ’ 0:1k; rx ’ ry ’ 0:2k. Regarding density, in this study,

our analysis considers a point which is away from the IP, and

thus we assume a density 100 times lower than microwave

machines, namely nel � 1018 cm�3. As a result, a single bunch

in an optical machine could contain 5000 electrons.

This number of accelerated charge should satisfy the

luminosity constraint as well as the medical dose require-

ments.3 In microwave machines, these are facilitated by a

repetition rate of 5 Hz, number of bunches in train of �2000,

and 2� 1010 electrons in one bunch16), resulting in �1�
1014 electrons per second. For optical machines, we assume

a train of 103 bunches (3 ps) and a repetition rate of 25 MHz,

and thus we anticipate a similar number of electrons per sec-

ond as microwave machines.

From the operational perspective, the trapping process

of sub-relativistic particles, governed by the trapping condi-

tion, also differs between microwave and optical machines.

The condition for electron trapping17 for a given initial

velocity (cbin) is a minimum accelerating field of

Emin ¼ 2pðmc2=ekÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� binÞ=ð1þ binÞ

p
, considering a uni-

form acceleration structure, wherein the accelerating field

(E) propagates at the speed of light.

In the case of initially slow electrons, the trapping con-

straint is several orders of magnitude higher if k is in the

optical range rather than microwave. Specifically, in micro-

wave machines, wherein k is of the order of centimeters and

thus the typical value of the normalized longitudinal field

a ¼ eEk=mc2 is unity, the electrons become relativistic

within a few wavelengths. In contrast, since in the optical

regime k ¼ 1 lm, the typical value of a is smaller than unity.

As a result, electrons may only reach relativistic velocities

after many wavelengths. For actual acceleration, the charge

must be kept in synchronization with the accelerating field

throughout the interaction length. In other words, the ampli-

tude and the phase of the accelerating mode must be tapered.

Ample designs and studies have been conducted with

regard to trapping electrons in microwave machines.

However, to the best of our knowledge—a design of a

tapered structure for trapping sub-relativistic electrons in an

optical regime, as well as a thorough investigation of the

trapping process properties—has not been conducted as yet.

In this study, we present a quasi-analytic formulation, as

well as numerical studies, of the trapping dynamics of sub-

relativistic particles in a tapered laser-driven acceleration

structure, which serves as a booster. This formalism enables

us to examine the interaction in phase-space and optimize it.

As a primary step, in order to maximize the trapping

efficiency, the structure’s longitudinal tapering isa)Adiha@tx.technion.ac.il
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established.18 This step is briefly presented in Sec. II as well

as the envisaged configuration (shown in Fig. 1) and the

model assumptions. Section III presents an analytical formu-

lation of the longitudinal dynamics of the trapping process

for a distribution of sub-relativistic particles. This is fol-

lowed by the transverse dynamics of the trapping process,

discussed in Sec. IV. Finally, in Sec. V, we examine the

effect of the initial phase and energy distributions on the

trapped electrons, and the latter’s characteristics (energy

spread and transverse emittance).

II. SYSTEM’S DESCRIPTION

Without significant loss of generality, throughout our

analysis, we adopt a configuration of a dielectric-loaded

cylindrical waveguide with a constant vacuum tunnel’s

radius (internal radius) as shown in Fig. 1. We assume that a

single TM01 laser mode (shown in the red line) with a phase

velocity bph is co-propagating with a single bunch (shown in

solid blue). Throughout the analysis, we trace N electrons in

one optical period, thus subject to the assumption that all the

other periods experience, eventually, the same conditions—

shown in dashed blue in Fig. 1.

The direction of propagation being the z-axis, the elec-

tromagnetic field components in the vacuum are

Ez q; zð Þ ¼ E0 zð ÞI0 Cqð Þexp �j
x

cbph

z
� �

Er q; zð Þ ¼ jcphE0 zð ÞI1 Cqð Þexp �j
x

cbph

z
� �

H/ q; zð Þ ¼
1

g0

bphEr q; zð Þ; (1)

where E0 is the laser’s amplitude, g0 ¼ 377X is the wave

impedance, I0; I1 are the modified Bessel functions of the

first kind, C ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b�2

ph � 1
q

=c, and q is the radial coordinate.

Additional model assumptions are as follows: (i) DC

space charge effects are ignored. (ii) Since we are interested

not only in the field’s effect on the electrons’ distribution, but

also vice-versa, it is assumed that the relation between interac-

tion impedance ðZintÞ and the phase velocity is known.18

Therefore, for a current I, we define a coupling coefficient

aðbphÞ ¼ eIZintðbphÞ=mc2. Table I presents the configuration’s

parameters used for the numerical simulations throughout this

study (unless otherwise specified). Additional structure’s

properties are discussed in Appendix A.

In what follows, we formulate the interaction dynamics

between the laser wave and the ensemble of N electrons

divided into M macro-particles. Longitudinal and transverse

dynamics are presented in Secs. III and IV, respectively. In

both Sections, it is assumed that the initial distribution of the

ensemble in one laser period is known. The phase of the i-th
particle vi is relative to the wave, its normalized energy is ci,

and its radial location is qi. Moreover, for the sake of design-

ing the structure’s longitudinal taper, namely determining

how the phase velocity changes in space (bphðfÞ), we adopt

the resonant particle approach17—see Appendix B. The struc-

ture’s longitudinal taper should satisfy the adiabaticity condi-

tion, in which the change in energy, Dc=ðc� 1Þ, in one laser

period in the material, is of the order of unity or smaller.

III. LONGITUDINAL DYNAMICS

In the case of a tapered structure, ignoring the radial

motion of the beam, the trapping dynamics is described by

the following set of equations:18

db

df
¼

ffiffiffi
a
p
hI0 Cqið Þexp �jvið Þii

dci

df
¼ � 1

2

ffiffiffi
a
p

bI0 Cqið Þexp jvið Þ þ c:c:
� �

dvi

df
¼ 2p

1

bz;i

� 1

bph fð Þ

" #
;

8>>>>>>>>><
>>>>>>>>>:

(2)

where f � z=k; h…ii ¼ 1
M

PM
i¼1, and c.c. represents the com-

plex conjugate. The first equation describes the laser’s nor-

malized amplitude ðb � eE0k=
ffiffiffi
a
p

mc2
� �

Þ, and the second

and third equations describe the energy ðciÞ and phase ðviÞ of

the i-th electron located at radius qi, with a longitudinal

velocity bz;i. Note that the global energy conservation is not

altered due to the tapering

d

df
hciii þ

1

2
jbj2

	 

¼ 0: (3)

FIG. 1. Schematics of the envisaged configuration. Dielectric (er) loaded

cylinder waveguide with a constant vacuum channel (Rint). The tapered

external radius (Rext) matches between the phase velocity of the accelerating

TM01 laser mode (red) to the co-propagating sub-relativistic electron beam

(blue).

TABLE I. Parameters of the laser, structure, and electron beam. (*) The

asterisk indicates that this current corresponds to 5000 electrons in one laser

period.

Parameter Symbol Value

Laser wavelength (lm) k 2

Gradient on axis (GV/m) E0 1.8

Laser input power (MW) Pin 2.1

Dielectric constant er 11.68

Structure’s length ðkÞ L 40

Number of macro-particles M 360

Current ðAÞ I 0.047*

Initial electron energy (MeV) Ein 0.045

Initial phase spread (%)
Dvin

2p 5

Initial bunch length (fs) Dtb 0.85

Initial energy spread (10�3)
Dcin

cin�1
0.7
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While the dependence of the capturing process [Eq.

(2)] on the longitudinal coordinate was shown in our previ-

ous work,18 we see it as imperative to present its depen-

dence on the radial coordinate. In this section, we assume

that the motion is confined by the strong magnetic field yet

the transverse location of the particle is accounted for

ðEz / I0ðCqÞÞ.
Let us assume a cylindrical vacuum tunnel of radius

Rint ¼ 0:3k, and a uniform initial distribution of particles

along the electron beam radius Rb ¼ 0:3Rint. Since the

accelerating gradient is higher towards the vacuum-

dielectric interface, the first electrons to gain energy are the

ones at the outer radii (bottom frame in Fig. 2). Next, along

the first 20% of the waveguide, there are radial oscillations,

whereas most of the beam continues gaining energy, some

electrons close to the axis are left behind (middle frame in

Fig. 2). Eventually, at the exit of the waveguide, most of

the beam was accelerated to 6 MeV except the electrons in

the vicinity of the axis (red circles in the top frame in Fig.

2). Those electrons have final kinetic energy which is

smaller than 80% of the resonant particle final kinetic

energy, and thus they were not trapped. As a result, at the

exit of the structure the beam is radially non-uniform. We

examined several additional trapping criteria as discussed

in Appendix C.

While this dependence of the radius is also shown in

Fig. 3, we would like to point out the impact of the initial

energy. Figure 3 shows the final kinetic energy of the i-th
electron normalized to the resonant particle final kinetic

energy as a function of its initial uniform distribution ci;in,

and radial location qi along the electron beam. Notably, the

particles which were not trapped had an initial energy

smaller than the resonant particle. Therefore, it is preferable

to inject the beam with a slightly higher energy than the reso-

nant particle’s initial energy, for which the structure was

designed.

IV. TRANSVERSE DYNAMICS

In this section, we include the transverse motion in the

absence of a guiding DC magnetic field (considered to be

infinite in Sec. III).

As a result of the transverse motion, the effective elec-

tric field components are

Eeff
z;i ¼ Ez;i þ br;ig0H/;i ¼ Ez;i þ br;ibphEr;i

Eeff
r;i ¼ Er;i � bz;ig0H/;i ¼ 1� bz;ibph

� �
Er;i;

(4)

where br;i is the particle’s radial velocity. Therefore, the

three equations of motion and energy equation for the i-th
particle are

dci

df
¼�1

2

ffiffiffi
a
p

b I0 Cqið Þþj
br;i

bz;i

cphI1 Cqið Þ
" #

exp jvið Þþc:c:

( )

dcibz;i

df
¼�1

2

ffiffiffi
a
p

b
1

bz;i

I0 Cqið Þþjcphbphbr;iI1 Cqið Þ
� �(

�exp jvið Þþc:c:

)

dcibx;i

df
¼�1

2

ffiffiffi
a
p

Cxi jb
1

bz;i

�bph

 !
cph

Ic Cqið Þ
2

exp jvið Þþc:c:

( )
;

(5)

where IcðrÞ ¼ 2I1ðrÞ=r if r> 0, and 1 if r¼ 0,

qi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ y2
i

p
, and br;i ¼ ðbx;ixi þ by;iyiÞ=qi. Similar equa-

tion for by;i as for bx;i is facilitated by replacing xi with yi,

respectively, in the third equation in Eq. (5).

While the phase equation in Eq. (2) remains the same,

the energy conservation law constrains the laser’s amplitude

equation to be

db

df
¼

ffiffiffi
a
p
h I0 Cqið Þ � uI1 Cqið Þ
� �

exp �jvið Þii; (6)

where u � jcphbr;i=bz;i. Therefore, together with

FIG. 2. Kinetic energy of the i-th electron for three frames during the captur-

ing process along the structure (�z ¼ z=L ¼ 0:05; 0:2; 1:0) as a function of its

radial location qi in the electron beam (Rb ¼ 0:3Rint, Rint ¼ 0:3k). While the

initial radial distribution is uniform, the electrons far from axis are the first

to gain energy (bottom frame), then oscillating along the waveguide (middle

frame), and eventually forming a radially non-uniform beam at the exit of

the structure (top frame). The resonant particle is highlighted in green, the

trapped electrons in blue, and the un-trapped electrons in red.

FIG. 3. Final kinetic energy of the i-th electron normalized to the resonant

particle’s (green) final kinetic energy as a function of the i-th electron’s ini-

tial uniform distribution ci;in, and radial location qi in the electron beam

radius Rb. Notably, as compared with trapped electrons (blue), the un-

trapped electrons (red) are the ones closer to the center of the beam and have

an initial energy smaller than the resonant particle.
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dyi

df
¼

by;i

bz;i

;
dxi

df
¼

bx;i

bz;i

: (7)

Equations (5)–(7) form the full set of equations for establish-

ing the transverse dynamics.

A flavor of a solution is given in Fig. 4 for the parame-

ters in Table I, and Rint ¼ 0:3k; Rb ¼ 0:07Rint. It is assumed

that all particles are initially distributed uniformly in energy,

phase, and radial location, and the initial transverse emit-

tance is �10�11 m. The output energy of the particles as a

function of the phase and radial location is presented in Figs.

4(a) and 4(b), respectively. In both figures, the resonant par-

ticle is highlighted in green. The bottom two figures describe

the dynamics along the structure in terms of the mean veloc-

ity of the bunch Fig. 4(d), and emittance and energy conser-

vation Fig. 4(c).

First, it is evident that the particles are assorted into

three groups as shown in Fig. 4(a): (i) trapped particles (blue

circles)—for which the final kinetic energy is higher than

80% of the resonant particle’s final kinetic energy, (ii) un-
trapped particles (red circles), and (iii) stuck particles (black

squares)—which hit the structure’s wall.

Second, the trapped accelerated particles are those in the

vicinity of the accelerating phase of v ¼ p. Notably, the

trapped bunch is not centered around p, but rather the elec-

trons in the pþ 0 region are most likely to be accelerated.

Also, as shown in Fig. 4(b), the particles closer to the axis

were not accelerated. Figure 4(c) shows that the change in

the longitudinal mean velocity of all the particles along the

structure is adiabatic. Figure 4(d) shows the evolution of the

emittance, which is several orders of magnitude higher than

the global energy conservation defined in Eq. (3).

Evidently, it is critical to reduce the number of stuck

particles as much as possible and maximize the number of

trapped particles. In order to achieve these requirements, we

operate in short structures (less than 50 optical cycles).

However, in many cases, it is yet insufficient; therefore,

increasing the internal radius is inevitable. In Appendix D,

we investigate the impact of the internal radius of the struc-

ture, taking the initial emittance to be zero.

V. DISCUSSION

Special attention should be given to the emittance. In par-

ticular, it is important to establish the conditions that the trans-

verse emittance at the input is not ruined by the trapping

process. For the purpose of trapping all the particles, we adopt

a structure’s radius of Rint ¼ 0:5k and a focused beam.

Varying the transverse emittance at the input ð�?;inÞ, it is pos-

sible by changing either the beam radius Rb or the mean trans-

verse velocity of all particles

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<b2
? >

q
—see Fig. 5(a). For

each set of initial conditions, the output transverse emittance

ð�?; outÞ of the trapping process is presented in Fig. 5(b).

As could be inferred from these two figures, for the

same initial transverse emittance [�?;in ¼ 0:08 nm for points

1–3 in Fig. 5(a)], the output transverse emittance of the

trapped particles could be an order of magnitude different

[�?;in ’ 0:6; 0:1; 1:5 nm, respectively, for points 1, 2, and 3

FIG. 4. An example of the dynamics

for Rint ¼ 0:3k and Rb ¼ 0:07Rint con-

sidering the transverse motion. The

electrons’ output energy is presented

as a function of the output phase [in

(a)], and as a function of the output

radial coordinate [in (b)], whereas the

dynamics of the longitudinal mean

velocity of all the particles, and their

transverse emittance along the struc-

ture (L ¼ 40k) is described in (c) and

(d), respectively. In the top two frames,

the resonant particle is highlighted in

green, the trapped electrons in blue,

the un-trapped electrons in red, and the

stuck electrons in black squares.
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in Fig. 5(b)]. This is due to a different effect of the mean

transverse velocity and beam radius on the trapping. In order

to better understand the emittance evolution, we define the

transverse emittance growth

D��? ¼
�?; out � �?;in

�?;in
: (8)

Figure 5(c) shows the transverse emittance growth

(D��?) as a function of beam radius and an initial transverse

emittance. The inner contour in this figure implies that there

is a combination of initial conditions, so that all particles are

trapped and their final transverse emittance is virtually pre-

served. The area below the bold black line represents events

in which all particles were trapped. Therefore, in all other

events (above the black line), regardless of the input trans-

verse emittance, the transverse velocity was too high, and it

was inevitable that some of the particles hit the structure.

Please note that the numerical results presented in Fig. 5

for the parameters in Table I are an average over 20 simula-

tions for each input parameters (Rb;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<b2
? >

q
), while the

initial energy, energy spread, and phase spread remain the

same; the error for each simulation is smaller than 10�14 ½%�.
Next, we investigate the impact of the initial energy spread

Dcin=ðcin � 1Þ and phase spread Dvin=2p on the trapping pro-

cess and its properties. According to Fig. 5(c), we choose a

combination of initial conditions (Rint ¼ 0:5k; Rb ¼ 0:03

Rint; �?;in ’ 0:02 nm) so that all particles are trapped and their

final transverse emittance is preserved for the initial energy and

phase spread given in Table I.

It is evident that by varing Dcin and Dvin, the final

kinetic energy and mean phase of trapped particles remain

virtually the same. Moreover, while the initial energy spread

changes by orders of magnitude, the final energy spread of

the trapped particles does not change significantly—being

the same characteristic as we previously18 showed for the

longitudinal motion alone.

In contrast, the number of trapped particles ðMTrapÞ and

their phase spread ðDv outÞ do vary quite significantly. The

latter quantity (averaged over 20 simulations) is shown in

Fig. 6 as a function of the initial energy spread and initial

phase spread. Notably, for energy spread values smaller than

6� 10�3, the capturing process is more sensitive to the

phase spread rather than the initial energy spread. The area

above the black bold line represents simulations where not

all particles were trapped.

Figure 6 shows that the output phase spread of the

trapped particles increases for larger initial phase spread.

For example, for energy spread values smaller than

6� 10�3, a tightly pre-bunched beam of Dvin=2p ¼ 1%

would result in relatively the same phase spread of the

trapped beam at the output. However, slightly wider spread

of Dvin=2p ¼ 2% would result in a trapped beam of

Dv out=2p ¼ 4% at the output (two times wider). Evidently,

FIG. 5. Contours of transverse emit-

tance (a) for all particles at the input

and (b) for trapped particles at the out-

put for Rint ¼ 0:5k, and a range of val-

ues of beam radius Rb and initial

velocity br. (c) The emittance growth

of trapped particles shows that there is

a combination of initial conditions, so

that all particles are trapped and their

final transverse emittance is preserved.

The area above the bold black line rep-

resents events in which either not all

the particles were trapped or particles

were stuck.

FIG. 6. Output phase spread of trapped particles as a function of the initial

energy spread and phase spread. The area above the black bold line repre-

sents simulations where not all particles were trapped.
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if the energy spread is higher than 6� 10�3, the output phase

spread increases significantly even for an initially small

phase spread. Table II summarizes the parameters required

for optimal operation, whereby all particles should be

trapped while conserving their transverse and longitudinal

emittance.

VI. CONCLUSION

We presented a quasi-analytic formulation of the longi-

tudinal and transverse dynamics of sub-relativistic electrons

in an adiabatically tapered laser-based acceleration structure.

We showed the trapping process of an ensemble of electrons

and discussed several ways to improve its properties, for

example, reducing the number of particles hitting the struc-

ture’s wall, and preserving the transverse emittance of the

trapped particles.

We further investigated the trapping process as a func-

tion of the electrons’ initial conditions—initial energy,

energy spread, and phase spread. This study allows us to

define a set of parameters for both the accelerating structure

and the sub-relativistic electron beam resulting in an optimal

operation—see Table II. Specifically, we determine the con-

ditions under which the transverse emittance is preserved

during the trapping process.
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APPENDIX A: PROPERTIES OF THE ENVISAGED
STRUCTURE

In this appendix, we present the structure’s group veloc-

ity (bgr) and coupling parameter’s ðaÞ dependence on the

dielectric constant (er) and the cylinder’s internal radius

(Rint).

In order to calculate the group velocity, we derive the

homogeneous dispersion relation given by

DH x; kzð Þ ¼ erT1 KRintð ÞI0 CRintð Þ þ K
C

T0 KRintð ÞI1 CRintð Þ ;

(A1)

where kz ¼ x=ðcbphÞ; C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

z � ðx=cÞ2
q

and K

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
erðx=cÞ2 � k2

z

q
, K0 and I0 are the modified Bessel

functions of the first and second kind, respectively, T0ðKrÞ

� J0ðKrÞ Y0ðKRextÞ � J0ðKRextÞY0ðKrÞ; T1ðKrÞ � �J1ðKrÞ
Y0ðKRextÞ þ J0ðKRextÞY1ðKrÞ and Jn and Yn are the n-th

order Bessel functions of the first and second kind,

respectively.

For a given dielectric coefficient and internal radius, the

external radius is locally established as a function of the

phase velocity by solving Eq. (A1), and then the group

TABLE II. Parameters for optimal operation, whereby all particles are

trapped and their transverse and longitudinal emittance are conserved.

Parameter Symbol Value

Vacuum channel radius (lm) Rint 1

Electron beam radius (nm) Rb 30

Input transverse emittance (nm) �?;in 0.02

Initial phase spread (%)
Dvin

2p � 5

Initial energy spread (10�3)
Dcin

cin�1
� 6

FIG. 7. Group velocity as a function of the phase velocity for (a) Rint¼ 0.3k
and various dielectric coefficients, and (b) er¼ 11.68 and various vacuum

core radii.

FIG. 8. Coupling parameter a as a function of the phase velocity for various

vacuum core radii, and er ¼ 11:68.
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velocity is derived. Figure 7(a) plots the group velocity for

various dielectric coefficients given a fixed internal radius,

whereas Fig. 7(b) plots the group velocity for various inter-

nal radii given a fixed dielectric coefficient. It is evident that

the same group velocity can be achieved for various choices

of �r;Rint. Moreover, the group velocity is nearly constant

for the high dielectric coefficient.

With regards to the coupling factor, defined as

aðbphÞ ¼ eIZintðbphÞ=mc2, where I is the current, Fig. 8 shows

that the coupling could vary in orders of magnitude as a

function of the internal radius and the phase velocity.

APPENDIX B: RESONANT PARTICLE VERSUS
ADAPTIVE DESIGN

For the sake of designing the structure’s longitudinal

taper, namely determining how the phase velocity changes in

space (bphðfÞ), we present two approaches: (i) resonant parti-

cle17 and (ii) adaptive design.

In the first approach, we assume that all the charge is

concentrated in one macro-particle (subscript r) on axis, and

retains a constant acceleration phase, namely dvr=df ¼ 0. In

the second approach, we consider the initial distribution of

the beam, and at each step, along the structure the phase

velocity is evaluated based on the averaged phase, i.e.,

dhviii=df ¼ 0. Therefore, the phase velocity is equal to the

average velocity of all the particles, i.e., bph ¼ 1=hb�1
z;i ii.

For a point charge (Rb ! 0), adaptive design results

in higher % of trapped particles with smaller energy

spread. However, for a pancake beam (Rb is finite), the

resonant particle approach results in all trapped particles

as compared with zero trapped in the adaptive design

approach.

APPENDIX C: TRAPPING CRITERION

In this appendix, we discuss several trapping criteria for

various initial energy spread and initial phase spread.

Throughout our analysis, we adopt the trapping criterion to

be a final electron kinetic energy that is higher than 80% of

the resonant particle’s final energy (for which the structure

was designed), namely ci;out � 0:8cmax. However, we exam-

ined a few other trapping criteria, such as 70%, 90%, and

95% of the resonant particle’s final energy.

Figure 9 plots the desired case in which all the particles

are trapped for different values of initial phase and energy

spread (Rint ¼ 0:5k; Rb ¼ 0:03Rint, and zero initial emit-

tance). Each curve in 9a represents a different trapping crite-

rion (70%, 80%, 90%, and 95% of the resonant particle’s

final energy); each curve represents the upper limit on the

combination of initial conditions (energy spread and phase

spread) that still allow the trapping of all particles.

Evidently, the output phase spread for each criterion will

be different even for the same initial conditions. For example,

for Dcin=ðcin � 1Þ ¼ 2� 10�3 and Dvin=2p ¼ 0:065, Fig.

9(b) shows the output energy normalized to the maximum out-

put energy as a function of the output phase spread. The colors

of the circle markers correspond to trapped particles according

to different trapping criteria as in Fig. 9(a): 95% (green), 90%

(blue), 80% (red), and 70% (black). The un-trapped particles

are marked in black squares. Therefore, the effective phase

spread (bunch length) grows as we consider lower kinetic

energy for the particles to be regarded as trapped.

APPENDIX D: TRANSVERSE DYNAMICS’
DEPENDENCE ON THE STRUCTURE’S VACUUM
CLEARANCE

In this appendix, we investigate the impact of the inter-

nal radius of the structure, taking the initial emittance to be

zero (the impact of non-zero initial emittance is discussed in

Sec. V). We show that increasing the structure’s vacuum tun-

nel results in higher output energy and less stuck particles. It

is assumed that for all the radii, the structure’s length is the

same (40k).

The output kinetic energy of the trapped particles is

higher for wider vacuum clearance and is independent on the

beam radius. For example, for Rint=k ¼ 0:3; 0:4; 0:5, the out-

put energy is c out ¼ 7; 20; 55, respectively. This occurs since

for wider vacuum tunnel the structure’s taper varies faster

than for small vacuum clearance. Therefore, the particle is

trapped faster and the remainder of the structure serves as a

pure accelerating section, resulting in higher output kinetic

FIG. 9. (a) Contours of 100% trapped particles as a function of the initial

energy spread and phase spread for four trapping criteria: 95% (green), 90%

(blue), 80% (red), and 70% (black). (b) Output kinetic energy normalized to

the maximum kinetic energy as a function of the output phase spread for

input parameters of Dcin=ðcin � 1Þ ¼ 2� 10�3 and Dvin=2p ¼ 0:065.

FIG. 10. Dynamics’ properties as a

function of the beam radius for L ¼
40k and three values of the structure’s

internal radius Rint. As the internal

radius is increased, the fraction of (a)

stuck particles decreases (b) the frac-

tion of trapped particles increases, (c)

the latter’s transverse emittance

increases as well.
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energy. Moreover, wider vacuum tunnel facilitates higher

group velocity—as was shown in Appendix A—and as a

result, the filling time of the structure decreases.

Figure 10 shows the following properties as a func-

tion of the beam radius, for three internal radii: (10a) per-

centage of stuck particles, (10b) percentage of trapped

particles, and their (10c) output emittance. For zero initial

emittance, internal radius Rint ¼ 0:5k and beam radius

Rb � 0:07Rint, the figure reveals not only that none of the

particles are stuck but that all of them are trapped. Also,

as the beam radius is bigger, the phase spread and energy

spread remain nearly the same (less than 5%), whereas

the emittance of the trapped particles is higher [Fig.

10(c)].
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