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We demonstrate the existence of a critical behavior of a
single electromagnetic mode propagating in a tapered di-
electric structure. This behavior is described in terms of
a critical phase velocity in the case of an adiabatic tapering.
In the vicinity of this critical phase velocity, the tapered
structure no longer confines the radiation and a significant
fraction of the power escapes transversely. © 2017 Optical
Society of America
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There is a growing demand for compact optical components
that can be integrated on-chip, to increase portability and po-
tentially reduce the cost and complexity of today’s systems [1].
This is true for various fields, among them high-resolution
spectrometry [2], sensing [3], communication [4], accelerators
[5], high-power lasers [6,7], and high-energy applications.

Tunable dielectric quasi-periodic structures can be used as
building blocks for such integrated optics. As low-loss periodic
dielectrics, which control light propagation, Bragg waveguides
[8] and photonic band-gap (PBG) fibers [9–12] are key ele-
ments for a variety of applications, for example, mode filtering

]13,14 ], tunable lasers [15], multi/demultiplexing [4], coupling
[16,17], mode conversion [18], field concentration [19], and
polarization dispersion compensation and manipulation [20].

Common to all quasi-periodic structures is a core (vacuum
or dielectric) surrounded by a cladding structure that facilitates
confinement—for example, multilayers in Bragg waveguides
or a pattern of holes in PBG. In order to tune the structure,
both the material and the tapering shape of either the core tun-
nel or the quasi-periodic structure should be considered.

Previous studies [21–25] have suggested several tapered con-
figurations as shown in Figs. 1(a)–1(c). With regard to dielec-
tric materials (core or clad), it was suggested (see the two top
frames in Fig. 1) to define either a linear or exponential taper of
the waveguide’s width [23] using a traveling burner tapering
method [24,25]. With regard to a hollow core fiber, it was sug-
gested to define a linear taper of the core’s width with wafer
bonding by either a photo-resist spacing post [21] and epoxy

“posts” [22], sacrificial etching techniques, or the buckling self-
assembly process [26]. However, the restriction on the hollow
core’s dimensions is a serious impediment.

It was shown experimentally [27,28] that in a system with a
linearly tapered vacuum core [Fig. 1(c)], radiation propagates
transversally when operating below cutoff. However, operating
with a single mode far from cutoff by retaining the vacuum
core’s width fixed, opens a wide range of applications. In spec-
troscopy, for example, optimal resolution is achieved when only
the lowest-order mode is excited [27]. Similarly, in laser-driven
particle accelerators, a single TM01 mode is co-propagating
with the particle, and the former phase velocity should be
synchronized to the velocity of the particle [29].

In this study, we introduce a novel tapering method whereby
the radius of the vacuum core is kept constant, while the
adiabatic tapering is determined by the local phase velocity.
The latter depends on the longitudinal structure’s coordinate
(z-axis) [29]; however, this is beyond the scope of this study.
As a result, there is a global change of all layers, and the thick-
ness of each layer varies along the z-axis of the structure. This is
different than the linear or exponential tapering of the core
or clad, whereby the geometry of the layers is kept globally
constant but they are either tilted or drawn.

With regard to confinement, we show a critical phenome-
non in which a single propagating mode (wavelength λ), leaks
out—not due to a finite number of layers [13]—but because
it reaches a critical point where a longitudinal flow of electro-
magnetic power is transformed into a transverse propagation.

Fig. 1. Types of Bragg waveguide tapering profiles; (a) exponential
or (b) linear taper for dielectric core fiber—which confines light
although some transmission losses [24], (c) tilted wafer bonding,
and (d) suggested configuration for hollow core fiber.
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This mode is far from the cutoff, contrary to leaky mode [30]
which is defined near cutoff [31]. Contrary to the linear
tapering [27,28], whereby transverse propagation is a direct re-
sult of cutoff (k2z ≤ 0), in our case, kz ≃ ω∕�cβph� and the lack
of confinement occur due to a lack of reflections (transverse
impedance of adjacent layers is virtually identical).

This critical phenomenon could be advantageous depending
on the application; transforming the transverse into longi-
tudinal flow might be useful for coupling or combining laser
beams for high-energy applications and, conversely, for sensors
and spectrometry. In any case, the concept can be exploited to
achieve controllable on-chip mode manipulations. Although
this is not the focus of our study, it is reasonable to assume
that a similar phenomenon may occur in metamaterials [32].

The concepts presented below apply to any quasi-periodic
structure with a constant vacuum tunnel with applicable changes
regarding the structure’s specific parameters (geometry). The core
conditions that must exist in order for the phenomenon to occur
could be satisfied in any desired quasi-periodic geometry (circular
or planar waveguide, photonic band gap, metamaterials, etc.).
However, without significant loss of generality, throughout
our analysis we adopt a geometry of a cylindrical Bragg wave-
guide in order to showcase the critical phenomenon’s properties.

In a cylindrical Bragg reflection waveguide, the taper is
facilitated by varying the thickness of all layers especially the
first layer [33]. Adiabatic geometrical variations are tacitly as-
sumed, and the local geometry of all layers determines the local
phase velocity of the propagating wave (TM01 mode); azimu-
thally symmetric configuration is assumed.

A cylindrical Bragg reflection waveguide has a vacuum core
radius of Rint and alternating layers of two dielectric coefficients
of εI; εII. Although we tacitly assume pure, real, dielectric co-
efficients of existent materials, the concepts presented are also
valid for artificial materials with effective coefficients, metama-
terials, and photonic crystals.

By denoting the ν-th layer’s dielectric coefficient as εr;ν, the
vacuum core �ν � 0� has εr;0 � 1 and the first dielectric layer
�ν � 1� has εr;1 � εI. Let “z” denote the waveguide’s propa-
gation axis and “r” the transverse coordinate. The longitudinal
electric field of a TM01 mode with phase velocity βph is

Ez;ν � exp�−jkzz�

×
� E0J0�kr;0r� ν � 0

AνH
�2�
0 �kr;νr� � BνH

�1�
0 �kr;νr� ν ≥ 1

; (1)

where the longitudinal wave-vector is kz � ω∕�cβph�, and the
transverse wave-vector is kr;ν �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εr;ν�ω∕c�2 − k2z

p
.

In the vacuum core E0 is the amplitude, and the ampli-
tudes of the ν-th layer are Aν; Bν. J0 is the Bessel function
of the first kind, and H �1�

0 , H �2�
0 are the Hankel functions of

the first and second kind. The characteristic impedance of the
vacuum core is Z 0∕η0 � J0�kr;0Rint�∕�Jc�kr;0Rint��πRint∕λ��,
where η0 � 377Ω, Jc�x� � 2J1�x�∕x for x > 0, and 1 for
x � 0. In a given layer ν, the transverse impedance is

Z ν≥1 � η0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εν − β

−2
ph

q
∕εν.

For confinement, the width of each layer (and particularly
the first layer) at a given phase velocity is derived from the
following condition [33]:

�
Ez;ν�r � Rν� � 0 Z ν > Z ν�1

∂rEz;ν�r � Rν� � 0 Z ν < Z ν�1

: (2)

Based on the boundary conditions, the dispersion relation
DN �ω; kz� is established [8], and it depends on an additional
parameter: number of layers (subscript N ). Figure 1(d) shows
the result of such tapering—the thickness of all the layers
decreases as the phase velocity βph increases. The configuration’s
parameters used for the numerical simulations are given in
Table 1 (unless otherwise specified). Note that the first layer sig-
nificantly varies if εr;1 � εI < εII and only slightly varies other-
wise. In the latter case, the second layer would vary significantly.

In general, the allowed range of phase velocities spans from
the cutoff (superscript c.o.) velocity β�c:o:� � max�βI; βII� �
1∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min�εI; εII�

p
to the speed of light, namely, βph ∈

�β�c:o:�; 1�. For instance, for an application of boosting particles
from a sub-relativistic regime to the speed of light [29], a wide
range of phase velocities would be required. In this case, the
dielectric coefficients �εI; εII� should be as high as possible,
such as zirconium dioxide (23) and silicon (11.68), which
would permit a span of βph ∈ �0.293; 1�.

In this span of phase velocities, special attention should be
given to a critical phase velocity defined as

β2cr � β2I � β2II �
1

εI
� 1

εII
; (3)

which occurs for kr;ν�1 · εr;ν � kr;ν · εr;ν�1. Here, the charac-
teristic impedances of adjacent layers are equal, Z ν � Z ν�1,
whereas the transverse wave-vectors are different �kr;ν ≠ kr;ν�1�.

Figure 2 shows the characteristic impedances of layers made
of zirconia (blue, εI � 3.9) and silicon (green, εII � 11.68) as a
function of the phase velocity. Before the critical point βcr,
where the impedance of the first layer is smaller than the second
layer �Z 1 < Z 2�, the width of the first layer Δ1 (red diamonds)
decreases significantly as the velocity increases. Beyond βcr
(Z 1 > Z 2), Δ1 slightly decreases as the velocity increases.
Note that the layer’s thickness in the vicinity of βcr is discon-
tinuous and the values converged from the left-hand side are
different from the value converging from the right-hand side;
we do not consider values in the close vicinity at βcr since the
taper can no longer be adiabatic. While our above analysis
focused on the system’s kinematics, next we investigate the sys-
tem’s dynamics by imposing boundary conditions for determin-
ing the field confinement. The electric field amplitudes Aν; Bν
in any ν-th layer are calculated using the matrix method [8] for
any given phase velocity. As shown in Fig. 3(a) for zirconia and
silicon, the electric field’s amplitude decays exponentially over
40 layers for βph ≃ 1, whereas in Fig. 3(b) the amplitude vir-
tually does not decay over 100 layers for βph � 0.58 (close
to the critical phase velocity βcr � 0.585). For the latter case,

Table 1. Parameters of the Envisaged Configuration

Parameter Symbol Value

Laser wavelength [μm] λ 1
Internal radius [λ] Rint 0.4
Dielectric constants εI 3.9

εII 11.68
Cutoff velocity β�c:o:� 0.506
Critical velocity βcr 0.585
Number of layers N 40
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neither of the conditions in Eq. (2) will lead to a transverse
decay—thus, confinement can never be achieved.

In order to get an idea of the confinement dependence on
the number of layers for any given phase velocity, the real part
of the z-component electric field as a function of the former is
shown in Fig. 4(a). Notably, around βcr the mode is not con-
fined in the radial direction—even in the case of 300 layers.
Figure 4(b) shows the electromagnetic energy per unit length
(W EM) on the ν-th layer (ν � 10, 30, 50) normalized to the
maximum of ten layers as a function of the phase velocity.
Increasing the number of layers results in orders of magnitude
decay of the EM energy density at all phase velocities except the
region adjacent to βcr from both sides.

The formulation above tacitly assumes an infinite number
of layers (N ), thus, an ideal confinement. When N is finite,
the confinement is no longer ideal as can be inferred from the
dispersion relation DN �ω; kz�. The dispersion never zeros, but
could be made arbitrarily small depending on the number of
layers. Consequently, the longitudinal wavenumber kz has an
imaginary part, which grows as the phase velocity approaches
βcr; additional layers would reduce Imfkzg. Figure 5 shows the
dispersion relation of the cylindrical Bragg structure for the
parameters in Table 1. At βph � 1 (blue curve), the imaginary
part of kz is negligible (Imfkzg � 0.001 × ω∕c for 40 layers),
whereas close to the critical point (red curve) Imfkzg �
0.195 × ω∕c for the same number of layers. However,
increasing the number of layers to 100 results in Imfkzg �
0.001 × ω∕c. Evidently for a finite N , a longitudinally propa-
gating power (P) is adiabatically transformed into transverse

propagation, which could be utilized as an electron-driven light
source structure [34] or for transverse coupling.

In the following, we elaborate upon four topics: (i) field
exponential decay, (ii) energy and group velocities, (iii) simula-
tion with commercial electromagnetic code HFSS 18.0, and
(iv) trade-offs associated with retaining the critical phase veloc-
ity outside of the required span of phase velocities.

First, for the case of βcr being within a required range of
phase velocities, we further investigate the field decay. As can
be inferred from Fig. 3(a), the field decay rc is exponential
exp�−r∕rc�. By denoting L���εI −β−2ph�−0.5��εII −β−2ph�−0.5�λ∕4
as the asymptotically (N → ∞) periodic cell of two layers,

the exponential decay rc is rc∕L �
��� lnhεI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εII − β

−2
ph

q
∕�

εII
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εI − β

−2
ph

q �i���−1 [8]. Figure 6 shows rc as a function of

the phase velocity for the parameters in Table 1. It is evident
that there is a weak decay (high rc) in the region adjacent to
βcr from both sides [as shown in Fig. 4(b) as well]. Thus, the
mode is adiabatically transformed from a guided mode to a
non-confined mode.

Second, the energy (ven � P∕W EM) and group velocities
�vgr � −�∂D∕∂kz�∕�∂D∕∂ω�� are equal in most cases except in
phase velocity values in the vicinity of the critical point (not
shown here due to space limitation). While the energy velocity

Fig. 3. Electric field’s amplitude versus the layer number: (a) ampli-
tude decays exponentially over 40 layers for βph ≃ 1 and (b) amplitude
nearly does not decay over 100 layers for βph � 0.58 �βcr � 0.585�.
Therefore, confinement is achieved only for the former case.

Fig. 2. Characteristic impedances of the first (εI � 3.9) and second
(εII � 11.68) layers, and the corresponding width of the first layer
(Δ1) normalized to the wavelength (λ) in cylinder Bragg waveguide.
At the critical point βcr, where the impedances are equal, there is a
discontinuity in the first layer’s width.

Fig. 4. (a) Absolute value of the electric field’s z-component (real
part) propagating in a structure with 300 layers. (b) Electromagnetic
energy per unit length (W EM) on the ν-th layer (ν � 10, 30, 50) nor-
malized to the maximum EM energy per unit length for ten layers as a
function of the phase velocity. Black dashed lines indicate βcr, wherein
confinement is not achieved.

Fig. 5. Dispersion relation of cylindrical Bragg structure for the
parameters in Table 1 as a function of the longitudinal wavenumber
kz for two phase velocities: speed of light (blue) and βph � 0.65 (red).
The imaginary part of kz becomes more significant closer to the critical
point (βcr � 0.585); adding more layers would reduce it minisculely.
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decreases as the phase velocity increases, the group velocity has
an “infinite” derivative in the vicinity of the critical point.

Third, our analytical approach regarding the critical point
phenomenon was verified with the commercial electromagnetic
code HFSS 18.0. The cylindrical Bragg waveguide was modeled
to obtain realistic field profiles of the propagating TM01 laser
mode. For each phase velocity, the cylinder was simulated as
an 18.0 slice with a symmetry condition to the slice’s side planes
to sort only the azimuthally symmetric modes. Master-slave
boundary conditions were applied to simulate an infinite struc-
ture in the z-axis. The second mode was excited from the vac-
uum core toward the layers. Both the excited mode’s frequency
and the layers’ width were set to match each phase velocity.

The insets in Fig. 6 plot the magnitude of the electric field
in the Bragg structure for three values of phase velocity (0.51,
0.61, 1.0). Notably, far from the region adjacent to the critical
point there is a transverse confinement. Around the critical
point, the energy is less confined and radiation potentially
could go into the vacuum surrounding the structure.

Last, for applications such as longitudinal coupling, particle
acceleration, or light sources based on free electrons, it is re-
quired to preserve confinement for all βph values. This means
that the critical phase velocity βcr should be outside of the re-
quired range of phase velocities, i.e., βcr ≤ β�c:o:� < 1 or
βcr > 1. These conditions result in constraints on the combi-
nation of the dielectric materials. For example, the latter con-
dition imposes εmin > 1, εmax < �1 − ε−1min�−1. However, by
retaining βcr > 1, the range of phase velocities narrows. On
the other hand, to achieve a wide range of velocities, it is nec-
essary to use materials with high dielectric coefficients, which
would result in the critical point being within such range.

In conclusion, we demonstrated the existence of a critical
behavior of a tapered quasi-periodic dielectric structure where
a longitudinally propagating power is transformed into transverse
propagation. It occurs around a critical phase velocity deter-
mined by the characteristic impedances of two adjacent layers,
which should be equal. Regardless of the number of layers in the
tapered structure, the mode is “leaking out,” and its propagation
constant is complex, similar to the case of a mode below cutoff.
However, the difference between the two was clarified.

While the examples in this study focus on a dielectric Bragg
reflection waveguide, similar behavior is anticipated in PBG
structures as well as in metamaterials. Moreover, we discussed the
unique behavior of the electromagnetic mode and its implications

for several applications in integrated optics—sensors, spectrom-
etry, coupling, and combining laser beams.
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