(published 23 December 2014)

The use of infrared lasers to power optical-scale lithographically fabricated particle accelerators is a developing area of research that has garnered increasing interest in recent years. The physics and technology of this approach is reviewed, which is referred to as dielectric laser acceleration (DLA). In the DLA scheme operating at typical laser pulse lengths of 0.1 to 1 ps, the laser damage fluences for robust dielectric materials correspond to peak surface electric fields in the GV/m regime. The corresponding accelerating field enhancement represents a potential reduction in active length of the accelerator between 1 and 2 orders of magnitude. Power sources for DLA-based accelerators (lasers) are less costly than microwave sources (klystrons) for equivalent average power levels due to wider availability and private sector investment. Because of the high laser-to-particle coupling efficiency, required pulse energies are consistent with tabletop microJoule class lasers. Combined with the very high (MHz) repetition rates these lasers can provide, the DLA approach appears promising for a variety of applications, including future high-energy physics colliders, compact light sources, and portable medical scanners and radiative therapy machines.

DOI: 10.1103/RevModPhys.86.1337

CONTENTS

I. Introduction	1339
A. Acceleration in vacuum	1340
1. Near and far fields	1340
2. The acceleration theorem	1341
3. Acceleration with violations of the theorem's	
conditions	1341
a. The particle is not far from a conductor or	
other source of radiation	1341
b. There is an external electric or magnetic	
field	1341
c. The particle is not in a vacuum	1341
d. Acceleration is not integrated to locations	
outside the field	1342
e. The acceleration is of higher order in $ \mathbf{E} $	1342
4. Summary	1342
B. Scaling laws for dielectric particle accelerators	1342
1. General laws for accelerating modes	1342
2. Efficiency and wakefields	1343
3. Luminosity	1345
4. Electromagnetically induced stress	1345
5. Thermal considerations	1346
II. Acceleration in Dielectric Structures	1346
A. Photonic crystals	1346
B. Accelerating and focusing forces	1348
1. Transverse dynamics	1349
2. Longitudinal dynamics	1350
C. Wakefields, impedance, and efficiency	1351
D. Laser damage thresholds of materials	1353
III. Dielectric Accelerator Structures	1355

*england@slac.stanford.edu

PACS numbers: 41.75.Jv, 29.20.-c

A. Grating accelerator	1355
1. Phase synchronicity and forces	1355
2. Design and simulations	1356
3. Fabrication	1357
4. Gradient demonstration experiments	1357
B. Bragg and omni-guide accelerators	1358
1. Matching layer	1358
2. Field distribution	1360
3. Dispersion curves	1361
C. 2D PBG fiber accelerator	1361
1. Structure design	1362
2. Accelerating mode properties	1363
D. 3D PBG woodpile accelerator	1364
1. Design and properties	1364
2. Fabrication	1365
a. Layer-by-layer fabrication method	1365
b. Wafer stacking and alignment	1365
E. Focusing and diagnostic structures	1366
F. Input power coupling to structures	1367
1. External laser-to-structure matching	1367
2. Optical waveguides	1369
G. Nonlinear dielectric effects at high fields	1370
IV. Sources, Bunching, and Injection	1371
A. High-brightness electron microsources	1371
1. Requirements on electron beam quality	1371
2. Current status of conventional photocathodes	1372
3. Tip-based ultralow emittance sources	1372
4. Focusing requirements	1372
5. Scaling of transverse emittance	1373
6. Current status of tip-based and tip array-based	
approaches	1374
B. Attosecond scale bunching techniques	1374
1. Optical density modulation	1374