
1 IntroductionEquation Chapter 1 Section 1 

1.1 Single-Particle Interaction 

On its own, an electron cannot transfer energy via a linear process to a monochromatic electro-
magnetic wave in vacuum if the interaction extends over a very long region. In this introductory 
chapter we limit the discussion to  single-particle schemes.  Collective effects, where the current 
is sufficiently high to affect the electromagnetic field, are discussed in Chaps. 4, 6 and 7. 

1.1.1 Infinite Length of Interaction 

For the sake of simplicity let us assume that such a wave propagates in the z  direction and the 
component of the electric field is parallel to the x  axis i.e.,  

 0( , ) = cos .x
zE z t E t
c

      
            (1.1.1) 

If a charged particle moves at a uniform velocity v  parallel to z  axis, then the electric field this 
charge experiences (neglecting the effect of the charge on the wave) is given by  
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   0
( )( ), = cos .x

z tE z t t E t
c

      
            (1.1.2) 

A crude estimate for the particle’s trajectory may be assumed to be  ( ) v ,z t t therefore, if the 
charge moves in the presence of this wave from t    to t   then the average electric 
field it experiences is  zero,  

 vcos 1 ,= 0dt t
c






      
             (1.1.3) 

even if the particle is highly relativistic [Pantell (1981)]. The lack of interaction can be illustrat-
ed in a clearer way by superimposing the dispersion relation of the wave and the particle on the 
same diagram – see Fig.1.1. Explicitly, the relation between energy and momentum for an elec-
tron, 2 2= ( ) ,E c p mc  where 31= 9.1094 10m  Kg is the rest mass of the electron and the 
corresponding relation for a photon in free space =E cp are plotted on the same diagram.   For 
the interaction to take place the electron has to change its initial state, subscript i, denoted by 

i i( , )E p  along the dispersion relation to the final, subscript f, denoted by f f( , )E p  in such a way 
that the resulting photon in case of emission or absorbed photon for absorption, has exactly the 
same difference of energy and momentum i.e.,  

  i f ph= ,E E E    (1.1.4) 
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and  

  i f ph= .p p p    (1.1.5) 

In the case of vacuum this is impossible. Fig 1.1 reveals this fact graphically. The expression, 
=E cp , which describes the photon’s dispersion relation, is parallel to the  asymptote of the 

electron’s dispersion relation. Thus, if we start from one point on the latter, a line parallel to 
=E cp  will never intersect the particle's line again. In other words, energy and momentum can 

not be conserved simultaneously in vacuum.  
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1.1.2 Finite Length of Interaction 

If we go back to Eq. (1.1.3) we observe that if the electron spends only a finite time in the inter-
action region then it can experience a net electric field. Let us denote by T  the time the elec-
tron enters the interaction region and by T  the exit time. The average electric field experienced 
by the electron (subject to the same assumptions indicated above) is  

0 0
1 v v= d cos 1 sinc 1

2
T

T
E E t t E T

T c c
 



                      
         (1.1.6) 

here sinc( ) = sin( ) /x x x . This is to say that if the time the electron spends in the interaction re-
gion, as measured in its frame of reference, is small on the scale of the radiation period 

0 = 2 /T    then the net electric field it experiences is not zero. From the perspective of the 
conservation laws, the interaction is possible since although the energy conservation remains 
unchanged i.e.,  

 i f= ,E E               (1.1.7) 

the constraint on momentum conservation was released somewhat and it reads  
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 i f < ,p p
c cT


 
  (1.1.8) 

which clearly is less stringent than in (1.1.5) as also 
illustrated in Fig. 1.2; 34= 1.05457 10 J sec   is the 
Planck constant. The operation of the klystron relies 
on the interaction of an electron with a wave in a re-
gion which is shorter than the radiation wavelength. 
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1.1.3 Cerenkov Interaction 

It was previously indicated that since the dispersion curve of the photon is parallel to the as-
ymptote of the electron’s dispersion relation, the interaction is not possible in an infinite do-
main. However, it is possible to change the slope of the photon, namely to change its phase ve-
locity – see Fig. 1.3. The easiest way to do so is by “loading” the medium where the wave 
propagates with a material whose dielectric coefficient is larger than one. Denoting the refrac-
tion coefficient by n , the dispersion relation of the photon is given by  

 ph ph= ,cE p
n

            (1.1.9) 

while the dispersion relation of the electron remains unchanged. Substituting in the expressions 
for the energy and the momentum conservation laws we find that the condition for the interac-
tion to occur is  

 = v,c
n

   (1.1.10) 

where it was assumed that the electron’s recoil is relatively small i.e., 2/ 1mc . The result 
in (1.1.10) indicates that for the interaction to occur, the phase-velocity in the medium has to 
equal the velocity of the particle. This is the so-called Cerenkov condition in the 1D case.  
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Fig. 1.3. The interaction of an electron with an electromagnetic wave whose phase velocity is 
smaller than c   is possible  
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1.1.4 Compton Scattering: Static Fields 

Not only a structure with periodic boundaries facilitates the interaction between electrons and 
electromagnetic waves, but also periodic fields. For example, if a magneto-static field of perio-
dicity L  is applied on the electron in the interaction region, then this field serves as a momen-
tum “reservoir” which can supply momentum quanta of (2 / )n L  where = 0, 1, 2,...n    ; see 
Fig.  1.4. The energy conservation law remains unchanged i.e.,  

 i f ph= ,E E E            (1.1.11) 

but the momentum is balanced by the applied static field  

 i f ph
2= .p p p n
L


              (1.1.12) 

For a relativistic particle ( 1)  and when the electron’s recoil is assumed to be small, these 
two expressions determine the so-called resonance condition which reads  

 2 22 , c n
L
   

 
 

           (1.1.13) 
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where 2 1/2[1 (v / ) ]c   . Note that the frequency of the 
emitted photon depends on the velocity of the electron, 
which means that by varying the velocity we can change 
the operating frequency. A radiation source that possess-
es this feature is a tunable source. Identical result is 
achievable if we assume a periodic electrostatic field and 
both field configurations are employed in free electron 
lasers discussed in Chap. 7. 
 
 
Fig. 1.4.  The interaction of an electron with an electro-
magnetic wave in a periodic system whose periodicity is 
L . 
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1.1.5 Compton Scattering: Dynamic Fields 

Static electric or magnetic field can be conceived as limiting cases of a dynamic field of zero or 
vanishingly small frequency and we indicated above that they facilitate the interaction between 
an electron and a wave. Consequently, we may expect that the interaction of an electron with a 
wave will occur in the presence of another wave. Indeed, if we have an initial wave of frequen-
cy 1  and the emitted wave is at a frequency 2  the conservation laws read  

 i 1 f 2= ,E E               (1.1.14) 

and  

 1 2
i f= .p p

c c
 

     (1.1.15) 

Following the same procedure as above,  the ratio be-
tween the frequencies of the two waves is  

 22

1

4 , 


  (1.1.16) 

which is by a factor of 2 larger than in the static case. 
Figure 1.5 illustrates this process and it will be elabo-
rated in more detail in Chapter 8. 
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1.1.6 Uniform Magnetic Field 

A periodic magnetic field can provide quanta of momentum necessary to satisfy the conserva-
tion law. It does not affect the average energy of the particle. The opposite happens when the 
electron moves in a uniform magnetic field (B ): there is no change in the momentum of the 
particle whereas its energy may vary according to   

 2 2= ( ) 2 ,nE c p mc n eB              (1.1.17) 

where 19= 1.6022 10 Cbe    is the charge of the electron and = 0, 1, 2...n   . 
For most practical purposes the energy associated with the magnetic field is much smaller than 
the energy of the electron therefore we can approximate  

 
2 2

i 1 f 2 ph
i f

= ,ec B ec BE n E n E
E E

               (1.1.18) 

and the momentum conservation remains unchanged i.e.,  

 i f ph= .p p p            (1.1.19) 

From these two equations we find that the frequency of the emitted photon is  

 2= 2 = 2 .eB eB
m m

  


 
 
 

           (1.1.20) 
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The last term is known as the relativistic cyclotron angular frequency, c,rel /eB m  . Figure  
1.6 illustrates schematically this type of interaction. It indicates that the dispersion line of the 
electron is split by the magnetic field in many lines (index n ) and the interaction is possible 
since the electron can move from one line to another. Gyrotron’s operation relies on this mech-
anism and it is  discussed briefly in the next section. 
 
 

Fig. 1.6.  The interaction of an electron with an electro-
magnetic wave in the presence of a uniform magnetic field  
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1.2 Radiation Sources: Brief Overview Equation Section (Next)  

There are numerous types of radiation sources driven by electron beams. Our purpose in this 
section is to continue the qualitative discussion from the previous section and briefly describe 
the operation principles of one “member” of each class of what we consider the main classes of 
radiation sources. A few comments on experimental work will be made but for further details, 
the reader is referred to recent review studies. The discussion continues with the classification 
of the major radiation sources according to several criteria which we found to be instructive. 

1.2.1 The Klystron 

  
 

Fig. 1.7.  The basic configuration of a klystron: the first cavity bunches the beam, the second 
amplifies the modulation and the third extracts power from the beam and converts it into radia-
tion power. 
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1.2.2 The Traveling Wave Tube 

The traveling wave tube (TWT) is a Cerenkov device, namely the phase velocity of the interact-
ing wave is smaller than c  and contrary to the klystron where the interaction occurs in the close 
vicinity of the cavity's gap, the interaction is distributed along many wavelengths.  
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1.2.3 The Gyrotron 

The gyrotron relies on the interaction between an annular beam, gyrating around the axis of 
symmetry due to an applied magnetic field, and a transverse electric (TE) mode. The concept of 
generating coherent radiation from electrons gyrating in a magnetic field was proposed inde-
pendently by three different researchers in the late fifties, Twiss (1958), Schneider (1959) and 
Gaponov (1959), and it has attracted substantial attention due to its potential to generate milli-
meter and sub-millimeter radiation. 

. 
 
 

Fig. 1.9.  The basic configuration of a gyra-
tron.  The magnetic insulated gun (MIG) 
generates electrons which spin azimuthally 
therefore they are suitable for interaction 
with a transverse electric (TE) mode 
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1.2.4 The Free Electron Laser 

The free electron laser (FEL) will be discussed in detail in Chap. 7. As the gyrotron, it is a fast-
wave device in the sense that the interacting electromagnetic wave has a phase velocity larger 
or equal to c  but instead of a uniform magnetic field it has a periodic magnetic field. The “con-
ventional” free electron laser has a magnetic field perpendicular to the main component of the 
beam velocity. As a result, the electrons undergo a transverse oscillatory motion, which is suit-
able for interaction with either a TE or a TEM mode. The oscillation of electrons is in the trans-
verse direction but the bunching is longitudinal and in this last regard the process is similar to 
the one in the traveling wave tube. However, its major advantage is the fact that it does not re-
quire a metallic structure for the interaction to take place. Consequently, it has the potential to 
either generate very high power at which the contact of radiation with metallic walls would cre-
ate very serious problems, or produce radiation at UV, XUV or X-ray where there are no other 
coherent radiation sources. Figure 1.10 illustrates the basic configuration. 

 
 

 

Fig. 1.10. The schematic of a free elec-
tron laser. 
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1.2.5 The Magnetron 

The magnetron was invented at the beginning of the 20th century [Hull (1921a,1921b)] and it 
played a pivotal role in the radar development in WWII due to its relative high efficiency. Be-
cause of its complexity there is no analytical model which can describe its operation adequately 
as a whole. In recent years, great progress has been made in the understanding of the various 
processes with the aid of particle in cell (PIC) codes. Its operation combines potential and kinet-
ic energy conversion. Figure 1.11 illustrates the basic configuration. Electrons are generated on 
the cathode (inner surface) and since a perpendicular magnetic field is applied, they form a flow 

which rotates azimuthally. The magnetic 
field and the voltage applied on the anode are 
chosen in such a way that, in equilibrium, the 
average velocity of the electrons equals the 
phase velocity of the wave supported by the 
periodic structure at the frequency of interest. 

 
 

Fig. 1.11.  The schematic of a magnetron 
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1.2.6 The Vircator 

The vircator takes advantage of the fact that the amount of current generated by a given voltage 
that can be injected into a grounded metallic waveguide is limited. Any current injected above 
this limit is reflected, but on average there is a finite amount of charge in the waveguide -- see 
Fig. 1.12. This charge forms what is called a virtual cathode (i.e. negative potential) which can 
be conceived as the reason for the reflection of the electrons. These oscillate between the real 
and the virtual cathode at a frequency which is directly related to the electrons’ density (plasma 
frequency). A review of the vircator’s theory has been given by Sullivan, Walsh and Coutsias 
(1987) and later Alyokhin (1994) presented a review of the ious studies. 

 

Fig. 1.12.  The schematic of a vircator 
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2. Elementary Electromagnetic Phenomena.   

Equation Chapter 2 Section 1 
All the effects discussed in this text rely on the presence of electric, magnetic or electro-
magnetic fields in the system. It is therefore natural to discuss first the governing equations and 
some basic electromagnetic phenomena. With this regard, “elementary” in the title of this chap-
ter refers to subjects related to beam-wave interaction and not necessarily to undergraduate-
level topics, though we discuss a few elementary concepts in the first two subsections. 

2.1 Maxwell’s Equations 

At the foundations for the analysis of all electro-magnetic phenomena are Maxwell’s equations 
that relate the electric (E) and magnetic (H) field, the electric (D) and magnetic (B ) inductions 
with the current (J ) and charge ( ) densities:  

( , ) ( , ) = 0,t t
t


 


E r B r            (2.1.1) 

( , ) ( , ) = ( , ),t t t
t


 


H r D r J r            (2.1.2) 

( , ) = ( , ),t tD r r            (2.1.3) 
( , ) = 0.tB r             (2.1.4) 
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This set of equations determines the electromagnetic field at any point in space and in time pro-
vided that the source terms (  and J ), are known. In addition, the initial and boundary condi-
tions have to be determined together with the constitutive relations of the medium, i.e., the rela-
tion between the inductions (B  and D  ) and the field components (H  and E). 

2.1.1 Constitutive Relations 

Matter reacts to the presence of an electromagnetic field and the constitutive relations charac-
terize this reaction. In general, these relations are non-linear and they couple all the components 
of the electromagnetic field. In many of the cases of interest, the constitutive relations are linear 
and scalar  

 0 r( , ) = ( , ),t t B r H r             (2.1.5) 
 0 r( , ) = ( , ),t t D r E r             (2.1.6) 
and in case of a metal Ohm law's reads 
 
 ( , ) = ( , );t tJ r E r             (2.1.7) 

here 12
0 = 8.85 10   farad/m and 7

0 = 4 10    henry/m are the vacuum permittivity and per-
meability respectively. The relative dielectric coefficient r  and its permeability counterpart r  
characterize the material. In vacuum, r 1  , r 1   and = 0 , i.e.,  
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0( , ) ( , ) = 0,t t
t


 


E r H r            (2.1.8) 

0( , ) ( , ) = ( , ),t t t
t
 


H r E r J r            (2.1.9) 

0 ( , ) = ( , ),t t  E r r            (2.1.10) 

0 ( , ) = 0.t H r            (2.1.11) 
 

Assuming that we know the source terms (  and J ) it is sufficient to use the first two equations 
(2.1.8)–(2.1.9) in conjunction with the charge conservation,  

 ( , ) ( , ) = 0,t t
t


 


J r r            (2.1.12) 

in order to solve the electromagnetic field. This statement can be examined by applying  on 
both (2.1.8) and (2.1.9). Since any vector function V  satisfies 0  ( V) , one obtains 
(2.1.11) from (2.1.8) and (2.1.10) from (2.1.9). 
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2.1.2 Boundary Conditions 

At sharp discontinuities the differential operators are not defined therefore an integral approach 
has to be adopted.  Alternatively, Maxwell’s equations can be solved in each region separately, 
away of the discontinuity, and the question that needs to be addressed is the relation between 
the various field components from both sides of a discontinuity. Consider two regions (sub-
scripts 1 and 2) separated by a surface which is locally characterized by its local normal n . The 
boundary condition associated with (2.1.1)  is deduced from its integral form as   

 1 2( ) = 0. n E E            (2.1.13) 

Similarly, from the integral form of (2.1.2) we conclude that  

 1 2 s( ) = , n H H J            (2.1.14) 

from (2.1.3)  

 1 2 s( ) = , n D D            (2.1.15) 

and finally, from the integral form of (2.1.4) we can deduce that  

 1 2( ) = 0. n B B            (2.1.16) 

Here sJ  is the surface current density and s  is the surface charge density. 
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2.1.3 Poynting’s Theorem 

The energy conservation associated with the electromagnetic field can be deduced from Max-
well’s equations by multiplying (scalarly) (2.1.1) by H , (2.1.2) by E and subtracting the latter 
from the former. In a linear medium, the result reads  

0 r 0 r
1 1 = ,
2 2t
               

S E E H H J E          (2.1.17) 

where  

 ( , ) ( , ) ( , )t t t S r E r H r            (2.1.18) 

is the instantaneous Poynting vector which represents the energy flux (power per unit surface) 
in the vector direction. The second term,  

0 r 0 r
1 1w( , ) ( , ) ( , ) ( , ) ( , ),
2 2

t t t t t      r E r E r H r H r  (2.1.19) 

represents the instantaneous energy density stored in the electric and magnetic field respective-
ly. And the right-hand side term in (2.1.17) represents the coupling between the electromagnetic 
field and the sources (or sinks) in the system. 
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Gauss’s theorem can be used to formulate Poynting’s theorem in its integral form. We in-
tegrate over a volume V  whose boundary is denoted by a ; the result is  

 d ( ) d d ,
d V

W t V
t

     a S J E            (2.1.20) 

where for a linear medium  

0 r 0
1 1( ) d ,
2 2 rV

W t V           E E H H            (2.1.21) 

is the total energy stored in the volume V .  Explicitly, Eq.(2.1.20) reveals that the change in the 
energy stored in the volume is either due to energy flux flowing through the surrounding  enve-
lope or due to sources  in the volume (or both).  

One important aspect to emphasize at this stage is that the electromagnetic power is carried 
by the field and not by the metallic boundaries; the latter only guide the energy flow. This is an 
important observation since subsequently, we discuss the propagation of electromagnetic waves 

of hundreds of megawatts and 
all this power propagates in vac-
uum. 
Fig. 2.1. Energy flow in a simple 
circuit.  The power flows in the 
air and is guided by the wires. I

I

IH E bV bVS R

I= /RbV

bV
I 
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Firstly, we examine the Poynting vector term of (2.1.20): the voltage bV  is determined by the 
battery whereas the current is determined by the resistor (R ) namely, b= /I V R . Since the dis-
tance between the two wires is d , the typical electric field between the two wires is b /V d  
moreover, the azimuthal magnetic field generated by one wire at the location of the other is 
proportional to the current I . Consequently, the Poynting vector is parallel to the wires and it is 
proportional to the product of the two field components bS IV . The power which propagates 
from the battery towards the resistor is proportional to Poynting vector thus as expected, the 
power is proportional to bIV  or 2

b /V R . Since there are no time variations the energy term in 
Poynting theorem vanishes whereas the second term in the right-hand side of (2.1.20) can be 
readily calculated to show that the power dissipated in the resistor is 2

b /V R . For further discus-
sion see Chap. 11 in the text book of Haus and Melcher (1989).  
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2.1.4 Steady-State Regime 

In many cases of interest all the components of the electromagnetic field oscillates at a single 
angular frequency ( )  thus all components have the following functional form  

 ( , ) = ( )cos[ ( )].F t f t r r r           (2.1.22) 

It is convenient to omit the time dependence and represent the function ( , )F tr  using a complex 
notation, namely we introduce the imaginary number 1j    and utilize the fact that 

 exp cos( ) sin( )j j     the function F   

        1( , ) = ( )exp ( ) exp ( )exp ( ) exp .
2

F t f j j t f j j t     r r r r r    (2.1.23) 

With this notation, it is convenient to define  

 ( )( , ) ( )e ,jF f   rr r           (2.1.24) 

which permits us to use this function instead of ( , )F tr  and consequently,  

 ( , ) = Re ( , )e ;j tF t F   r r           (2.1.25) 

( , )F r  is called the phasor associated with the function ( , )F tr . To illustrate the use of this no-
tation, Maxwell’s equations read 
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= 0,j E B            (2.1.26) 
= ,j H D J            (2.1.27) 

= ,D             (2.1.28) 

= 0.B             (2.1.29) 

The main advantage of this notation is now evident since the differential operator / t   was re-
placed by a simple algebraic operator j . 

2.1.5 Complex Poynting’s Theorem 

The phasor notation, as introduced above, cannot be directly applied to Poynting’s theorem 
since all quantities are quadratic in the electromagnetic field. In principle, we have two options: 
(i) transform the field components to the time domain and then substitute in Poynting’s theorem 
as defined in (2.1.17) – abandoning in the process the phasor notation. (ii) Limit the information 
to the average energy and average power – but preserving the phasor notation. Since in the 
former case there is no real advantage to the new notation, we next pursue the latter option. 

When we consider the product of two oscillating quantities, we have  

       
1 1 2 2

* *
1 1 2 2

cos( ) cos( )
1= exp t exp t exp t exp t
4

A t A t

A j A j A j A j

   

   

 

               (2.1.30) 
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the  average of the product of these two oscillating functions corresponds to the non-oscillating 
term in the expression above i.e.,  

 * *
1 2 1 2 1 2 1 2

1 1= cos( ).
4 2

A A A A A A                 (2.1.31) 

We use this fact in order to formulate the complex Poynting’s theorem. First (2.1.26) is multi-
plied scalarly by the complex conjugate of the magnetic field phasor ( *H ). From the product we 
subtract the complex conjugate of (2.1.27) multiplied by the electric field; the result reads  

  M E
12 w w = ,
2

j     *S E J            (2.1.32) 

wherein = / 2 *S E H  is the complex Poynting vector, M 0 rw = / 4   *H H  is the average (in 
time) magnetic energy density and E 0 rw = / 4   *E E  is the electric counterpart. 

Energy conversion is associated with the real part of the Poynting vector whereas the im-
aginary component is associated with electro-magnetic energy stored in the system. Throughout 
the text we omit the bar from the phasor quantities, except if ambiguities may occur. 

 
 
 
 



2. Elementary Electromagnetic Phenomena.      11 

2.1.6 Potentials 

It is convenient, instead of solving a couple of first order differential equations, to solve a single 
second-order differential equation. For this purpose we benefit from the fact that the divergence 
of the magnetic induction is zero ( = 0B ) and introduce the magnetic vector potential A  
which determines the magnetic induction through  

 = B A .           (2.1.33) 

By virtue of this definition, the equation = 0B  becomes an identity. Substituting this defini-
tion in Faraday's law [(2.1.26)] we obtain  

 ( ) = 0.j E A            (2.1.34) 

Further using the fact that ( ) 0    we conclude that  

 = ,j E A            (2.1.35) 

wherein   is the scalar electric potential. Both potentials satisfy, in a Cartesian coordinate sys-
tem and in a linear medium ( r = 1  and r > 1 ), the non-homogeneous wave equation:  

 
2

2
r 02 = ,

c
 

 
   
 

A J            (2.1.36) 

and  
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2

2
r 2

0 r

1= ,
c
 

 
 
    
 

           (2.1.37) 

provided that the divergence of the vector function A  is chosen to be  

 r
2 = 0.j

c
  A            (2.1.38) 

This is the so-called Lorentz gauge; 0 01/c    is the phase velocity of a plane electromag-
netic wave in vacuum. 

2.1.7 Edge Effect 

In addition to the boundary conditions discussed above in the context of sharp discontinuity, 
we need to consider the field and the energy near an edge. It is demonstrated in what follows 
that while near an edge, the electric field diverges, the energy stored is finite.  

With this purpose in mind, consider a simple configuration where the radius of curvature of a 
realistic edge is much smaller than the characteristic wavelength of the electromagnetic field in 
its vicinity ( )R  . Based on this assumption, the electric field in the vicinity of an ideal edge 
( 0)R  as the one schematically illustrated in Fig. 2.2, is a solution of the Laplace's equation 
and further assuming that the system is infinite in the z -direction, then   
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Fig. 2.2. In the vicinity of an ideal edge the curvature 
of the electric  field is determined by its angle  . 

2

2 2

1 1 = 0r
r r r r 
   

     
  (2.1.39) 

is the equation to be solved subject to the zero poten-
tial condition on the metallic walls 

, = = 0 and , = 2 = 0.
2 2

r r           
   

                               (2.1.40) 

Its solution has the form , j jAe r Be r     thus imposing the boundary conditions 
namely,  , / 2 0r      and  , 2 / 2 0r        we conclude that a non-trivial solution 
is possible if sin[ (2 )] = 0,   implying that the radius of curvature of the field     is given 
by 

x

y

α
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= = 1,2,3
2

n n
 

                                                    (2.1.41) 

and consequently,  

2

=1
, 2 = sin .

2 2 2 2

n

n
n

nr A r

      

 




                
        (2.1.42) 

 
 

Fig. 2.3. Contours of constant potential  1n   in the vi-
cinity of an ideal edge.  

 
 
 
 
 
 
 

In order to demonstrate the previous statement, let us consider the first harmonic  1n   illus-
trated in Fig. 2.3 for = / 6  . The corresponding field components are 


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1
1 2

1

1
1 2

1

= = sin
2 2 2

1= = cos
2 2 2

rE A r
r

E A r
r


 


 



  
   

  
    







            
            

                          (2.1.43) 

revealing that at the limit 0r  , if <  , then the electric field diverges. Nevertheless, the en-
ergy, stored in a volume of radius R  and length z , is finite as can be deduced from the explicit 
expression for the stored energy 

2 /2
2 2 2

0 0 1
/2 0

2
1 1 2= .
2 2

R

E z rW d drr E E A R
 





   

                                        (2.1.44) 

Comment #2.3:  A similar approach may be followed to investigate the field distribution in the 
vicinity of a dielectric  edge. In this case the curvature of the field    is determined by both the 
angle of the edge    as well as the dielectric coefficient  r and  it is a solution of  

tan tan 0.
2 2r
                  

                         (2.1.45) 
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2.1.8 Reciprocity Theorem 

The Lorentz reciprocity theorem is a useful theorem for solution of electromagnetic problems, 
since it may be used to deduce a number of fundamental properties of practical devices. It 
provides the basis for demonstrating the reciprocal properties of electronic microwave circuits 
and for showing that the receiving and transmitting characteristics of antennas are the same. To 
derive the theorem, consider a volume V  bounded by a closed surface A. Let a current source 

1J


 in V  produce a field 1 1,E H
 

 while a second source 2J


produces a field 2 2,E H
 

. Expanding the 
relation 1 2 2 1( )E H E H   

   
 and using Maxwell's equation it can be shown that 

  
1 2 2 1 1 2 2 1

2 1 1 2

2 1 1 2

( ) = ( ) ( )

( ) ( )

= .

E H E H E H H E

E H H E

J E J E

        

     

   

       

   

   
 (2.1.46) 

 
Integrating both sides over the volume V  and using Gauss' theorem  
 

1 2 2 1 1 2 2 1

2 1 1 2

( ) = ( )

= ( ) ,

A
V

V

E H E H dV E H E H ndA

E J E J dV

       

  

 



        

   


                   (2.1.47) 
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where n  is the unit outward normal to A. 

 
There are at least two important cases where the surface integral vanishes: in the first case of 

radiating fields (to be discussed subsequently) and in the case of quasi-state fields when 2E r  
and 2H r . Since the surface of integration is proportional to 2r  at the limit r   the surface 
integral clearly vanishes, therefore (2.1.47) reduces to  

 
1 2 2 1= .

V V

E J dV E J dV  
   

                              (2.1.48) 

 
If  1J


 and 2J


 are infinitesimal current elements this  is to say that the variations of the electric 

field of the other source are negligible in the region of the source, then 
  

1 2 2 2 2 1 1 1( ) ( ) = ( ) ( ),E J E J r r r r
   

                                                  (2.1.49) 
 

which states that the field 1E


 produced by 1J


 has a component along 2J


 that is equal to the 
component along 1J


 of the field generated by 2J


 when 1J


 and 2J


 have unit magnitude. The 

form (2.1.49) is essentially the reciprocity principle used in circuit analysis except that E


 and J


 
are replaced by the voltage V  and current I .  
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2.2 Simple Wave PhenomenaEquation Section (Next) 

In this section, we present solutions of the wave equation for several simple cases. A few of the 
examples presented here will be used subsequently to develop models which in turn enable the 
investigation of complex structures.  

2.2.1 Simple Propagating Waves 

With the source terms, constitutive relations and boundary conditions determined, one could 
proceed towards solution of a few simple wave phenomena. For simplicity we consider a scalar 
function ( ) r  which oscillates at an angular frequency   (i.e., we assume a steady-state regime 
of the form exp j t ) and which is a solution of  

 
2

2
2 ( ) = 0.

c
 

 
  
 

r             (2.2.1) 

As a first stage, we examine waves propagating in one dimension. In a Cartesian system 
( , , )x y z  we consider a system in which all variations are only in the z  direction ( / 0x   and 

/ 0y  ), and the homogeneous wave equation reads  

 
2 2

2 2

d ( ) = 0.
d

z
z c

 
 

 
 

            (2.2.2) 
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A second order differential equation, has two solutions:  

 ( ) = exp - exp ;z A j z A j z
c c
   

      
   

            (2.2.3) 

these represent plane waves since the phase is constant, in the plane defined by =z const. The 
first term describes a wave propagating in the z -direction whereas the second represents a wave 
propagating in the opposite direction. 

In a cylindrical coordinate system ( , ,r z ), ignoring azimuthal and longitudinal variations 
( 2 2/ 0   and 2 2/ 0z  ), the wave equation reads  

 
2

2

1 d d ( ) = 0.
d d

r r
r r r c

 
 

 
 

            (2.2.4) 

Its solution is  

 (2) (1)
0 0( ) = H H ,r A r A r

c c
   
      
   

            (2.2.5) 

where (1)
0H ( )  and (2)

0H ( )  are the zero order Hankel function of the first and second kind; they 
are related to Bessel functions of the first and second kind by (1)

0 0 0H ( ) J ( ) Y ( )x x j x   and 
(2)
0 0 0H ( ) J ( ) Y ( )x x j x  . As in the previous case, the first term represents a wave propagating 

from the axis outwards and the second term describes a wave propagating inwards. For com-
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pleteness, we also present the solution in a spherical coordinate system ( , ,r   ). Ignoring all 
angular variations the wave equation is given by  

 
2 2

2 2

1 d ( ) = 0,
d

r r
r r c

 
 

 
 

            (2.2.6) 

and its solution is  
1 1

( ) = exp exp ,r A r j r A r j r
c c c c
   

 

 
               
       

        (2.2.7) 

where the first term represents a spherical wave propagating outwards (from the center out) 
whereas the second represents an inward flow. 

2.2.2 The Radiation Condition 

From the pure mathematical point of view, the two waves in each one of the solutions of above 
are a direct result of the fact that the wave equation is a second order differential equation. 
However, in absence of obstacles, our daily experience dictates a wave which propagates from 
the source outwards; this implies that in all three cases there are no “advanced” waves i.e., 

0A  . This is one possible interpretation of the so-called the  radiation condition and it can be 
considered an additional boundary condition which is a byproduct of the causality constraint 
imposed on the solutions of the wave equation. 
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This formulation relies on the simple solutions presented above; however, the general trend 
is valid for solutions that are more complex. In the case of cylindrical azimuthally non-
symmetric waves, the radiation condition implies for a solution ( , , , )r z   that the limit  

   1/2( , , )exp / ,
r

r z j r c r  


               (2.2.8) 

is finite and it is r  independent. In a similar way, for spherical waves described by a function 
( , , )r   , the limit  

 ( / )( , , )e ,j c r

r
r r  


               (2.2.9) 

is finite and r  independent. While this condition looks straightforward in the analytic examples 
presented above, it is not as trivial to impose it in numerical solvers in particular in a broad fre-
quency range and/or when the mode configuration cannot be explicitly specified. 

Wheeler and Feynmann (1945) have used advanced solutions of the wave equation in order 
to explain the source of the so-called radiation reaction force. It is well known that electromag-
netic power is emitted by a particle when it is accelerated. This power is emitted from the parti-
cle outwards and comes at the expense of its kinetic energy. Since this change in the kinetic en-
ergy of the particle can be conceived as an effective force this is also referred to as the radiation 
reaction force.  
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2.2.3 Evanescent Waves 

So far we have presented only waves which vary and propagate in one dimension (1D), namely 
solutions of the wave equation either in a Cartesian, cylindrical or spherical system of coordi-
nate. At this point, the level of complexity is slightly elevated to include waves that vary in two 
dimensions. First, consider a Cartesian coordinate system in which we ignore variations in the 
y  direction. The wave equation in this case reads  

 
2 2 2

2 2 2 ( , , ) = 0,x z
x z c

  
  

    
           (2.2.10) 

and its formal solution, assuming a propagating behavior in the z-direction, is given by  

 
2 2

2 2
2 2( , , ) = exp exp exp .x z jkz A k x A k x

c c
    

    
                

    (2.2.11) 

However in the half-plane defined by > 0x  the solution is  

 
2

2
2( , , ) = exp exp ,x z A jkz k x

c
  

 
    

 
         (2.2.12) 
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since otherwise the solution diverges at x . For | | >k c   the wave decays exponentially in 
the x  direction. This is an evanescent wave: it propagates in one direction and decays exponen-
tially in another. In the opposite case, for | | <k c  , the wave propagates at an angle 

 1cos /kc   relative to the z  axis. 
It is instructive to examine (2.2.12) in the time domain. Assuming zero phase for A  then  

2
2( 0, , ) = cos( )exp .x z t A t kz k x

c
 

        
   

        (2.2.13) 

Based on this expression it is convenient to introduce the concept of phase velocity: this is the 
velocity at which an imaginary observer has to move, in order to measure a constant phase 
( =t kz   const); explicitly, this reads  

 phv .
k


            (2.2.14) 

With this definition, we observe that in a two dimensional case, an evanescent wave is charac-
terized by a phase velocity smaller than c . 
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2.2.4 Waves of a Moving Charge 

Evanescent waves play an important role in the interaction process of particles and waves. The 
simplest manifestation of their role is the representation of the spectrum of a moving charge in 
the laboratory frame of reference. For this purpose, we examine now the waves associated with 
a point charge ( )e  moving in the z  direction at a constant velocity 0v  in vacuum; no boundaries 
are involved and the system is azimuthally symmetric ( / = 0  ). The current distribution in 
this case is given by  

 0 0
1( , ) = v ( ) ( v ) ,

2 zt e r z t
r
 


 J r 1            (2.2.15) 

where z1  is a unit vector in the z  direction. This current distribution excites the z  component of 
the magnetic vector potential that in turn satisfies  

2 2

02 2 2

1 1 ( , , ) = ( , , );z zr A r z t J r z t
r r r z c t


    

       
        (2.2.16) 

its solution is assumed to have the form  

   ( , , ) = d exp d exp ( , , ),z zA r z t j t k jkz a r k  
 

 
         (2.2.17) 

where ( , , )za r k   satisfies  
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2 0 0
02

v1 d d ( , , ) = ( ) ( v ),
d d (2 )z

er a r k r k
r r r r

   


    
        (2.2.18) 

and 2 2 2 2= / .k c   Off-axis the solution of this equation is  

 0( , , ) = ( , )K ( ),za r k A k r              (2.2.19) 

where 0K ( )  is the zero order modified Bessel function of the second kind. In order to deter-
mine the amplitude A  there are two ways to proceed: (i) calculate the azimuthal magnetic field 
and then impose the boundary conditions at = 0r . An alternative way is to (ii) integrate 
(2.2.18) from = 0r  to = 0r   . At this point we prefer the latter primarily because this ap-
proach will be utilized extensively subsequently.  For small arguments the modified Bessel 
function behaves as 0K ( ) ln( )   [see Abramowitz and Stegun (1968) p. 375] and conse-
quently,  

 0 0
02

v( , ) = ( v ).
(2 )
eA k k  
              (2.2.20) 

Substituting this result in (2.2.17), (2.2.19) we obtain  

0
02

0

1( , , ) = d exp K ,
(2 ) vz
e zA r z t j t r

c
  
 





    
     

   
        (2.2.21) 
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where 0= v / c  and 2 1/2= [1 ]   . Using the Lorentz gauge one can determine the scalar 
electric potential  

0
0 0 0

1 1 1( , , ) = d exp K .
4 v v

e zr z t j t r
c
 

  




    
      

   
       (2.2.22) 

This expression indicates that the field associated with a moving charge is a superposition of 
cylindrical evanescent waves [for large arguments the modified Bessel function decays expo-
nentially following  0K ( ) exp - / 2     Abramowitz and Stegun (1968) p. 378]. There is 
no electromagnetic  average power emitted by this particle in the radial direction however, this 
average power is non-zero in the direction parallel to the particle’s motion –  see Exercise 2.2. 
When scattered by periodic structures, the evanescent waves can be “converted” into propagat-
ing waves as we shall see when the Smith-Purcell effect will be discussed in Chap. 5. 
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2.3 Guided Waves 

In all the solutions presented above, no boundaries were involved, while in many of the topics 
to be considered, the electromagnetic wave is guided by either a metallic or dielectric structure. 
In addition to the injection of electromagnetic power into the system, metallic/dielectric struc-
tures facilitate the storage, the interaction process itself and ultimately, they allow extraction of 
the power out of the system.  

2.3.1 Transverse Electromagnetic ModeEquation Section (Next) 

The simplest mode, which may develop when two metallic surfaces are present, is the trans-
verse electro-magnetic (TEM) mode. In the first part of this subsection we consider the way this 
mode is excited.   In conjunction with the electromagnetic field generated by a moving charge 
let us consider a radial transmission line consisting of two parallel lossless plates; the distance 
between the plates is denoted by d  and it is much smaller than the (vacuum) wavelength i.e., 

( 2 / )c d   . Subject to this condition, we ignore the longitudinal variations ( 2 2/ 0z   
) therefore, for an azimuthally symmetric system the wave equation reads  

 
2

02

1 d d ( , ) = ( , ).
d d z zr A r J r

r r r c
   

 
  

 
            (2.3.1) 

An infinitely thin "wire" located on axis carries an oscillatory ( ) current,  excites the magnetic 
vector potential; the corresponding current density is 
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 1( , ) = ( ).
2zJ r I r

r
 


            (2.3.2) 

Figure 2.4a illustrates schematically the system under consideration. A solution of the homo-
geneous wave equation, which satisfies the radiation condition, is given by  

 (2)
0( , ) = H ,zA r A r

c
 
 
 
 

            (2.3.3) 

 
 

Fig. 2.4. (a) Propagation of transverse elec-
tro-magnetic (TEM) mode in a radial trans-
mission line d  . (b) Propagation of a 
transverse magnetic (TM) mode in a circular 
waveguide – see Sect. 2.3.2. (c) Propagation 
of transverse electric (TE) mode in rectangu-
lar waveguide – Sect. 2.3.4; the curled ar-
rows represent the direction of propagation 
of the waves. 
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and A  is determined by the discontinuity at = 0r . Integrating (2.3.1) in the close vicinity of 
= 0r ,  

 
0

=0

d ( , ) = ,
d 2z

r

r A r I
r




    
   (2.3.4) 

 
and using the expression for Hankel function for small arguments i.e.,   (2)

0H ( ) ln( )2 /x j x   
[Abramowitz and Stegun (1968) p. 360], we obtain 0= / 4A jI  . The corresponding longitu-
dinal component of the electric field and the azimuthal counterpart of the magnetic field are  

(2)
0

(2)
1

0 0

( , ) = ( , ) = H ,

1 d 1( , ) = ( , ) = H .
d

z z

z

E r j A r j A r
c

H r A r A r
r c c

   

  
 





    
 

   
 

        (2.3.5) 

With these two components, the radial component of the Poynting vector is  

 *1( ) = ( ) ( ),
2r zS r E r H r            (2.3.6) 

and consequently, the total power radiated is  
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   2
0

1= Re 2 ( ) = .
8rP rdS r d I

c
  
 
 

           (2.3.7) 

In the last expression, we used the asymptotic approximation for large arguments of Hankel 
function i.e.,  (2)

0H ( ) exp - 2 /x jx x  [see Abramowitz and Stegun (1968) p. 364]. Bearing 
mind that in steady state the average power dissipated on a resistor carrying a current I is 

2 / 2P RI , the impedance associated with the radiation process is 
 

             rad,TEM 02

1= ;
/ 2 4

PR d
I c

    
 

  (2.3.8) 

 
in this expression 0 0 0/    is the vacuum impedance of a plane wave. At 9 GHz and for 

= 5mmd  the impedance is 90[ ]  which is 5 times larger (for the same parameters) than the ra-
diation impedance in free-space defined as    2

rad 0= / / 6 18R d c    . The radiation im-
pedance is a measure, extensively used in antenna theory, which represents the effect of the sur-
roundings on the radiation emitted by a source.  
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2.3.2 Transverse Magnetic Mode 

Transverse magnetic (TM) modes can develop in the radial system discussed previously and 
their characteristics will be further investigated in Chap. 4, in the context of periodic structures. 
Here we review the characteristics of these modes for a circular cylindrical waveguide of radius 
R  filled with a dielectric material of relative permittivity r ; the relative permeability is taken 
to unity ( = 1r ). We assume that the walls of the waveguide are made of an ideal conducting 
material ( ) therefore, the tangential electric field at the walls vanishes. To this configura-
tion, a cylindrical system of coordinates ( , ,r z ) is attached– see Fig. 2.4b and the waves are as-
sumed to be excited by an azimuthally symmetric source thus we may take / = 0  . 

The electromagnetic field in the waveguide has two contributions. One is from the z  com-
ponent of the magnetic vector potential  
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 0
=1

( , , ) = J e ,zs
z s s

s

rA r z A p
R




 
 
 

             (2.3.9) 

where  

 
2 2

2
r2 2= ,s

s
p
R c

              (2.3.10) 

0J ( )  is the zero order Bessel function of the first kind and sp  are the zeros of this function 
( 1 2= 2.4048, = 5.52p p ). The second, is from the scalar electric potential    

 0
=1

( , , ) = J e .zs
s s

s

rr z p
R




    
 

            (2.3.11) 

Lorentz gauge [(2.1.38)] correlates the two amplitudes, namely  

 
2

r

= .s
s s

c A
j


            (2.3.12) 

In this solution, the waves are assumed to propagate from the source without obstacles thus no 
reflected waves were included. 

The three non-trivial components of the electromagnetic field are: the azimuthal magnetic 
field  
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1
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1 1= = J e zsz s
s s

s

pA rH A p
r R R  


      

           (2.3.13) 

the radial electric field  
2

1
=1 r

= = J e ,zs s s
r s s

s

c p rE A p
r j R R


      

           (2.3.14) 

and the longitudinal electric field  
22

0
=1 r

= = J e zs s
z z s s

s

pc rE j A A p
z j R R


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
           

 .       (2.3.15) 

With the electromagnetic field determined, the average magnetic and electric energy per unit 
length can be calculated. These are given by  
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    (2.3.16) 
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In these expressions the orthogonality of the Bessel functions was used i.e.,  

2 2
0 0 ' 1 , '0

1d J J = J ( ) .
2

R

s s s s s
r rrr p p R p
R R

   
   
              (2.3.17) 

In a similar way, we can determine the total average power that flows in the waveguide:  

 *2 22
* 2 2

120
=10 r

1= Re 2 d = | | J ( ) Re e .
2 2

S SR zs s
r s s

s

p cRP rr E H A p
R j


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
      

        
   (2.3.18) 

According to this expression, we observe that power is carried along the waveguide only by the 
propagating modes namely those which satisfy  

 
2 2

2
r2 2= < 0.s

s
p
R c

             (2.3.19) 

The remainders are below cut-off and they do not carry any (real) power. The situation is dif-
ferent when reflections are present. 
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2.3.3 Velocities and Impedances 

Energy Velocity. In the context of power-flow presented above it is convenient to define sev-
eral parameters that help to characterize the interaction of waves and electron beams in various 
configurations. For a relatively narrow band signal, the energy velocity is a measure of the 
power flow in the system relative to the total energy stored per unit length namely,  

 en
M E

v = .P
W W

           (2.3.20) 

In a circular cylindrical waveguide with a single propagating mode ( = 1s ), the energy velocity 
reads  

 
2

1
en r

r

1v = .p cc
R


 

   
 

           (2.3.21) 

From the definition of the energy velocity (2.3.20) it is evident that whenever more than one 
mode propagates in the waveguide the energy velocity is dependent on the  relative amplitudes 
of the various modes. Another point which should be emphasized since it will be encountered 
again later in this text is the fact that even if only one mode propagates and there is a substantial 
amount of energy stored in the higher modes, the energy velocity will be much slower than in-
dicated by the expression in (2.3.21). In practice, Eq.(2.3.20) is of significance when there is 
one dominant mode in the system. 
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Phase Velocity. A general definition of this quantity was introduced in Sect. 2.2.3 [(2.2.14)]. In 
a cylindrical waveguide with no dielectric, the phase velocity is always larger than c . However 
if 2

r 1> 1 ( / )p c R   the phase velocity is smaller than c . In fact, for high frequencies 
( 1/ R c p ) the phase velocity is determined entirely by the medium: ph rv /c  . 

Group Velocity. This is a kinematical quantity indicative of the propagation of a relatively 
smooth spectrum of waves. To envision the meaning of the group velocity, imagine that a sys-
tem is fed by two waves oscillating at adjacent frequencies 1 =    , 2 =    having 
the form  

1 1 2 2( , ) = cos( ) cos( ),f z t t K z t K z               (2.3.22) 

where the wave-numbers 1 =K k k  , 2 =K k k   are the corresponding wave-numbers with  
2 2

1= ( / ) ( / )k c p R   . Explicitly we can now write the expression in (2.3.22) as  

 ( , ) = 2cos( )cos( ).f z t t kz t kz               (2.3.23) 

Assuming that | |  , we can consider the first trigonometric function as a slow varying 
amplitude. As such, we can ask what has to be the velocity of an observer in order to experience 

a constant amplitude i.e., = 0t k z   ; in this case, the answer will be grv
k





 or at the 

limit of 0  ,  
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 grv .
k





           (2.3.24) 

If the dielectric coefficient is not frequency dependent, the group velocity of a propagating TM 
mode is 2

gr rv = /c k   and it satisfies  

 
2

gr phv v = .
r

c


           (2.3.25) 

Although this relation is valid only for uniformly filled waveguide it provides information 
about the general trend in the variation of the group velocity as the (effective) dielectric coeffi-
cient changes in partially loaded systems. 
Characteristic Impedance. There are several kinds of impedances that can be defined. Two of 
which will be defined here and a third one, will be defined in Chap. 8. The first is basically ori-
ented towards the propagation of the electromagnetic mode in the structure and this is the char-
acteristic impedance which is the ratio between the two transverse components of the field, rE  
and H , it reads  

 ch 0
r

.sr cEZ
H j





             (2.3.26) 
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Interaction Impedance. The second impedance is indicative of the electric field which a thin 
pencil or annular beam experiences as it traverses the waveguide. For this purpose, we define 
the effective longitudinal electric field in the region where the electron beam will be injected. 
For a pencil beam ( b0 r R  ) this is given by  

 b2 2
2 0

2| ( ) | d | ( , , ) | ,
R

z
b

E z rr E r z
R

             (2.3.27) 

whereas for an annular beam ( b b/ 2 / 2R r R      ) it reads  
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1| ( ) | d | ( , , ) | .
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zR
E z rr E r z

R






             (2.3.28) 

For either one of the cases we define the interaction impedance as  

 2 2
int

1 1| ( ) | .
2 ( )

Z E z R
P z

            (2.3.29) 

Note that although we are motivated by the presence of a beam of electrons, all the quantities in 
the definition of the interaction impedance are “cold” quantities namely, they do not account for 
the presence of the beam. It should be pointed out that the definition introduced here differs 
from Pierce’s (1957) definition, 2 2

int =| | /2Z E k P  by the factor 2k  which was replaced by the 
inverse of the area where the wave propagates, 21/ R . This definition is in particular useful in 
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tapered structures where the internal radius of the system is kept constant but the other geomet-
ric parameters may vary in space such that the phase velocity varies. 

For our particular system the interaction impedance reads  
2 2 2

0 1 b 1 1 b1
int 0 2

1 1 en

J ( / ) J ( / ) 1= ;
J ( )r

p R R p R Rp cZ
R p


  
  
 
 

        (2.3.30) 

here en en= v / c  is the normalized energy velocity which in many cases is equal or close to the 
group velocity (in this particular case it is equal). One may expect to achieve maximum effi-
ciency when the longitudinal electric field [ ( )E z ] experienced by the electron is maximum. 
Therefore, according to the definition in (2.3.29), from the point of view of the beam-wave in-
teraction, the purpose should be to design a structure with the highest interaction impedance. 
According to (2.3.30) there are three possibilities: (i) operate at low frequency, which in many 
cases is not desirable, (ii) have a structure with small radius which might be acceptable or 
(iii) design a structure with low energy (group) velocity. It should be pointed out that these 
three possibilities are interdependent since for example, the energy velocity depends on both 
frequency and radius. One possibility to design a low group velocity structure is to have a small 
radius. 
Interaction Dielectric Coefficient. This quantity is indicative of the total average electromag-
netic energy stored per unit length in terms of the longitudinal component of the electric field 
experienced by a thin annular/pencil beam:  
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In our particular case it reads  
2 2

r 1 1
int 2 2

1 0 1 b 1 1 b
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p c p R R p R R
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           (2.3.32) 

  Note that according to the definitions of the interaction impedance (2.3.29) and the effective 
dielectric coefficient (2.3.31) their product is inversely proportional to the energy velocity:  

 int int 0
en

1= .Z  


           (2.3.33) 

Since the definitions above [(2.3.29) and (2.3.31)] are general, as long as there is only one dom-
inant mode in the system, the result in the last expression is also general. 
 
 
 
 
 
 



2. Elementary Electromagnetic Phenomena.      41 

2.3.4 Transverse Electric Mode 

In many cases, electromagnetic power is transferred along a waveguide in the transverse elec-
tric (TE) mode due to its low loss [Ramo, Whinnery and Van Duzer (1965) p. 424]. In many 
devices, power is extracted using rectangular waveguides, therefore we consider next the char-
acteristics of such a waveguide. In Sect. 2.3.1 we examined the radiation emitted from a dipole 
oscillating in azimuthally symmetric radial transmission line. In this geometry, the main mode 
generated was the transverse electro-magnetic (TEM) mode. In this section, we consider the 
same problem in a rectangular waveguide whose wide dimension is a  and the narrow one is b  – 
see Fig. 2.4c. Variations along the narrow dimension are neglected ( / 0y  ). An infinitesi-
mally thin "wire" (dipole) is located in the center of the waveguide and it prescribes a current 
density given by  

 ( , , ) = ( ).
2y
aJ x z I x z    

 
           (2.3.34) 

It excites the transverse electric field ( , , )yE x z   that satisfies  

2 2 2

02 2 2 ( , , ) = ( , , ),y yE x z j J x z
x z c

   
  

    
         (2.3.35) 

subject to the boundary conditions: ( = 0, , ) = 0yE x z   and ( = , , ) = 0yE x a z  . The solution can 
be represented as a superposition of trigonometric functions i.e.,  
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where ( , )nE z   satisfies  

22 2
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d 2( , ) = sin ( ) ( ).
d 2n n

n E z j I n z I z
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     (2.3.37) 

For > 0z  the solution of this equation is  

 ( > 0) = e ,zn
nE z A 

            (2.3.38) 

and for < 0z   

 ( < 0) = e ,zn
nE z A 

            (2.3.39) 

where 2 2 2= ( / ) ( / )n n a c   . The transverse electric field has to be continuous at = 0z  thus  

 = ,A A             (2.3.40) 

whereas its derivative is discontinuous. The discontinuity is determined by the Dirac delta func-
tion in (2.3.37) therefore by integrating the latter we obtain 
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hence  

 = .n n nA A I              (2.3.42) 

From (2.3.40),(2.3.42) we conclude that the transverse electric field reads  
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As in Sect. 2.3.1 we next calculate the power generated by the current distribution in (2.3.34). 
For this purpose the transverse magnetic field is calculated since it is the only component which 
contributes to the longitudinal component of the Poynting vector; xH  for > 0z  reads  
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
      

          (2.3.44) 

Before proceeding note that similar to the transverse magnetic mode, the phase velocity (for 
> /nc a   and r = 1 ) is always larger than c . Nevertheless, the characteristic impedance (in 

vacuum) of the n th propagating mode,  
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is always larger than the vacuum impedance ( 0 ), in contrast to the TM mode, where the char-
acteristic impedance is always smaller than 0 . 

Now we can direct our attention to the power flow: the average power which flows in the 
positive z  direction, assuming a single mode above cut-off, is given by  
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           (2.3.46) 

The radiation impedance is determined by the power emitted in both directions divided by 
21 | |

2
I  and it reads  
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         (2.3.47) 

At 9 GHz, and for = 2.5a  cm, = 0.5b  cm, this impedance is 100   which is close to that calcu-
lated in the case of the radial transmission line as calculated in Sect. 2.3.1. 
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2.3.5 TE, TM and Hybrid Modes in a Dielectric Waveguide 

Pure TM or TE modes are possible only in a limited set of geometries. In most cases these 
modes are coupled and in this section we present a well-known configuration that supports ei-
ther TE, TM or hybrid modes – this is the dielectric waveguide.  In its simplest configuration it 
consists of a dielectric ( r ) fiber of radius R .  For small-diameter rods, the field extends for a 
considerable distance beyond the surface, and the axial propagation constant zk  is only slightly 
larger than / c . At the limit of an infinite radius r /zk c  . The field components, omitting  
the term  exp jn j z   ,  are 
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Table 2.1: Field components in a cylindrical dielectric waveguide 
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wherein 2 2 2 2
r= / zc k    and 2 2 2 2/zk c   ; the prime indicates differentiation with re-

spect to the arguments of the corresponding Bessel functions. 
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Imposing of the boundary conditions at =r R  leads to the dispersion relation 
22 2

2 2

( ) ( ) ( ) ( ) =
( ) ( ) ( ) ( )

n n n n z

n n n n

J a K b J a K b ck b an
aJ a bK b aJ a bK b a b



        

      
    

  (2.3.48) 

where = , =a R b R  . When = 0n , the right-hand side vanishes, and each factor on the left-
hand side must equal zero. These two terms determine the dispersion of the axially symmetric 
TM and TE modes: 
  

r 0 0

0 0

0 0

0 0

( ) ( )TM modes : =
( ) ( )

( ) ( )TE modes : = .
( ) ( )

J a K b
aJ a bK b
J a K b

aJ a bK b

  

 


                                                        (2.3.49) 

 
Based on their definitions, a and b are related by   22 2

r= 1 / .a b R c    Clearly, pure TM or 
TE modes are possible only if the field is independent of the azimuthal coordinate   namely, 

0n  . As the radius of the rod increases, the number of TM and TE modes also increases. All 
modes with angular dependence are a combination of a TM and a TE mode, and are classified 
as hybrid modes.  
Comment #2.4: Contrary to metallic waveguide the HE11mode, for example, has no low-
frequency cutoff. 
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2.4 Green’s Scalar TheoremEquation Section (Next) 

Green’s function is a useful tool for calculation of electromagnetic field generated by a distrib-
uted source (particles) subject to the boundary conditions imposed by the structure. The logic 
behind the method presented below is the following: instead of solving for an arbitrary source 
we solve for a point source and by virtue of the linearity of Maxwell’s equations, the field at a 
given location is a superposition of all the point sources that constitute the real source. 

Let us assume that we have to solve the non-homogeneous wave equation:  

 
2

2
2 ( ) = ( ),s

c
 

 
   
 

r r             (2.4.1) 

where ( )s r  is an arbitrary source which is assumed to be known. Instead of solving this equa-
tion let us assume for the moment that we know how to solve a simpler problem namely,  

 
2

2
2 ( | ) = ( ),' 'G

c
 

 
    
 

r r r r             (2.4.2) 

where the coefficient of the Dirac delta function on the right-hand side was chosen such that the 
result of the integration over the entire space is unity. We can then multiply (2.4.1) by ( | )'G r r  
and (2.4.2) by ( ') r , subtract the two results to obtain  

2 2( | ) ( ') ( ') ( | ') = ( | ') ( ') ( ') ( ').'G G G s        r r r r r r r r r r r r      (2.4.3) 
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Integrating over the entire and using Gauss' theorem, we get  

 ( ) = d ' ( | ') ( ') d ' ( | ') ' ( ') ( ') ' ( | ') ;
V

V G s G G       r r r r a r r r r r r     (2.4.4) 

  is a surface integral which encloses the volume V . This is the scalar Green’s theorem. In 
free space Green’s theorem reads  

 ( ) = d ' ( | ') ( ').
V

V G s r r r r             (2.4.5) 

Next, we employ Green’s theorem for the calculation of the Cerenkov effect in two cases: first-
ly, in a boundless system and secondly in a waveguide. 

2.4.1 Cerenkov Radiation in the Boundless Case 

Let us examine the electromagnetic field generated by a charge ( )e  as it moves in gas a medium 
which is characterized by a dielectric coefficient larger than unity, r > 1 ; its velocity is v . For 
simplicity sake, it will be assumed that the dielectric coefficient is frequency-independent. 

A current density described by the same expression as in (2.2.15) drives the system and for 
an azimuthally symmetric medium the wave equation is  

2 2

r 02 2 2

1 1 ( , , ) = ( , , );z zr A r z t J r z t
r r r z c t

 
    

       
        (2.4.6) 
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the other two components of the magnetic vector potential are zero and the electric scalar po-
tential can be determined using Lorentz gauge. The time Fourier transform of the magnetic vec-
tor potential is defined by  

 ( , , ) = d e ( , , ),j t
z zA r z t A r z 



             (2.4.7) 

where ( , , )zA r z   satisfies  

2 2

r 02 2

1 ( , , ) = ( , , ),z zr A r z J r z
r r r z c

   
   

      
         (2.4.8) 

and the time Fourier transform of the current density in  (2.2.15) is  

 2( , , ) = ( )exp .
(2 ) vz

eJ r z r j z
r

 


   
 

            (2.4.9) 

Green’s function associated with this problem is a solution of  
2 2

r2 2

1 1( , | ', ') = ( ') ( ')
2

r G r z r z r r z z
r r r z c r

  


    
       

           (2.4.10) 

which can be represented by  
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 ( , | ', ') = d ( | ')exp ' ,kG r z r z kg r r jk z z



             (2.4.11) 

and ( | )'
kg r r  satisfies  

2
2

1 d d 1( | ') = ( '),
d d (2 )kr g r r r r

r r r r



     

         (2.4.12) 

where  

 
2

2 2
r 2= .k

c
             (2.4.13) 

The solution of this equation for > ' > 0r r  is  

 1 0( | ' < ) = ( ')K ( ),kg r r r F r r            (2.4.14) 

and for ' > > 0r r  it reads  

 2 0( < ' | ') = ( ')I ( ).kg r r r F r r            (2.4.15) 

The function ( | ')kg r r  has to be continuous at = 'r r  i.e.,  

 1 0 2 0( ')K ( ') = ( ')I ( '),F r r F r r             (2.4.16) 
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whereas its derivative is discontinuous at the same location. To determine the discontinuity we 
integrate (2.4.12)  

2
= ' 0 = ' 0

d d 1( | ') ( | ') = ,
d d (2 )r r r r

r g r r r g r r
r r  

          
        (2.4.17) 

hence  

1 1 2 1 2

1' ( ') K ( ') ' ( ') I ( ') = .
(2 )

r F r r r F r r


                (2.4.18) 

From (2.4.16),(2.4.18) and using the fact that 0 1 1 0K ( )I ( ) K ( )I ( ) = 1/      [see Abramowitz 
and Stegun (1968) p. 375] we finally obtain  

0 0
2

0 0

I ( )K ( ') for 0 ' < ,1( | ') =
K ( )I ( ') for 0 ' < .(2 )k

r r r r
g r r

r r r r
    

     
       (2.4.19) 

This expression together with (2.4.11) determine Green’s function in a boundless space. 
With this function, Green’s theorem (2.4.5) and the current density as given in (2.4.9), we 

can determine the magnetic vector potential. It reads  

2 20
02( , , ) = K exp ,

(2 ) vz
eA r z r n j z

c
   


        
   

       (2.4.20) 
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where rn   is the refractive index of the medium. If we examine this solution far away from 

the source and use the asymptotic value for large arguments 2 2( / ) | | 1c r n   
 

 of the 

modified Bessel function, the magnetic vector potential reads  

2 2( , , ) exp exp .
vzA r z r n j z

c
            

   
         (2.4.21) 

If n  is smaller than 1/   the field decays exponentially in the radial direction since, as in vacu-
um, this is an evanescent wave. 

When the velocity of the particle, v = c , is larger than the phase velocity of a plane wave 
in the medium ( /c n  ) i.e., > 1/ n , the expression above represents a propagating wave – this 
is called Cerenkov radiation. The emitted wave is not parallel to the electron’s trajectory but it 
propagates at an angle   relative to this direction ( z  axis) given by  

 1= cos =zk n
c c
 


           (2.4.22) 

This determines what it is known as the Cerenkov radiation angle, c   

 1 1cos .c n



  

  
 

           (2.4.23) 
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Since the phase velocity of the wave is smaller than that of the particle, clearly, the radiation 
lags behind the particle. This fact will become evident in the next subsection. However, before 
proceeding, it is important to make a comment regarding Cerenkov radiation emitted by a sin-
gle particle and an ensemble of N electrons: by virtue of the linearity of Maxwell's equation the 
total field is a superposition of the contributions of all electrons. For wavelengths significantly 
longer than the bunch-length, the various contributions add up coherently and since the power 
is proportional to the square of the field, the emitted power is proportional to the square of the 
number of electrons ( 2P N ) —this is also referred to as coherent radiation. For wavelengths 
shorter than the bunch, the average field vanishes therefore, the total power is a product of the 
power emitted by a single electron  and the number of electrons. The proof is left to the reader 
and the details are phrased as an exercise (2.6) at the end of this chapter. 
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2.4.2 Cerenkov Radiation in a Cylindrical Waveguide 

In this subsection we consider the electromagnetic field associated with the symmetric trans-
verse magnetic (TM) mode in a dielectric filled waveguide. As in the previous subsection, the 
source of this field is a particle moving at a velocity v , however, the main difference is that the 
solution has a constraint since on the waveguide’s wall ( =r R) the tangential electric field van-
ishes. Therefore, we calculate Green's function subject to the condition ( = , | ', ') = 0G r R z r z . 
We assume a solution of the form  

 0
=1

( , | , ) = ( | , )J ,' ' ' '
s s

s

rG r z r z G z r z p
R

  
 
 

            (2.4.24) 

substitute in (2.4.10) and use the orthogonality of the Bessel functions we find that  

0
2 2

1

' 1( | ', ') = J ( | '),1 J ( )
2

s s s

s

rG z r z p g z z
R R p

 
 
 

         (2.4.25) 

where ( | ')sg z z  satisfies  

 
2

2
2

d 1( | ') = ( '),
d 2s sg z z z z

z



 

   
 

           (2.4.26) 
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and 2 2 2 2 2
r= / / .s sp R c    For > 'z z  the solution of (2.4.26) is  

 ( ')( | ') = e ,z zs
sg z z A  

            (2.4.27) 

and for < 'z z  the solution is  

 ( ')( | ') = e .z zs
sg z z A  

            (2.4.28) 

Green’s function is continuous at = 'z z  i.e.,  

 = ,A A             (2.4.29) 

and its first derivative is discontinuous. The discontinuity is determined by integrating (2.4.26) 
from = ' 0z z   to = ' 0z z   i.e.,  

= 0 = 0

d d 1( | ') ( | ') = .
d d 2s s

' 'z z z z

g z z g z z
z z  

          
         (2.4.30) 

Substituting the two solutions introduced above, and using (2.4.29) we obtain  

  1( | ') = exp ' .
4s s

s

g z z z z


 


           (2.4.31) 
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Finally, the explicit expression for the Green’s function corresponding to azimuthally symmet-
ric TM modes in a circular waveguide is given by  

 0 0

2 2=1
1

J ( / )J ( '/ ) 1( , | ', ') = exp ' .1 4J ( )
2

s s
s

s s
s

p r R p r RG r z r z z z
R p 



 
      (2.4.32) 

In this expression, we tacitly assumed that > 0  and s  is non-zero. 
 
With Green’s function established, we can calculate the magnetic vector potential generated by 
the current distribution described in (2.4.9); the result is  

0 0

( /v)0 0
2 2 2 2

2 2=1
1

( , , ) = 2 d ' ' d ' ( , | ', ') ( ', ')

J ( / ) 2= e .18 / vJ ( )
2

R

z z

j zs

s s
s

A r z r r z G r z r z J r z

e p r R

R p



 


 








 

 

        (2.4.33) 

It will be instructive to examine this expression in the time domain; the Fourier transform is  
2 ( /v)

0
2 2 2 2 2 2 2

=10 1

J ( / ) e( , , ) = d ,
2 1 J ( )

j t z
s

z
s s s

p r ReA r z t
R n p

 
   

 




         (2.4.34) 

where    
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2 2

2
2 2= .

1
s

s
p c
R n




     
           (2.4.35) 

Equivalently, this result may be interpreted as the interception of the dispersion relation 
   2 22

r/ / 0z sk p R c     and the "beam-line" / vzk  .  With this definition, the problem 
has been now simplified to the evaluation of the integral  

 2 2

e( = / v) d ,
j

s
s

F t z


 





 

            (2.4.36) 

which in turn is equivalent to the solution of the following differential equation  

 
2

2
2

d ( ) = 2 ( ).
d s sF   


 
  

 
           (2.4.37) 

Case I: If the particle’s velocity is slower than the phase velocity of a plane wave in the medi-
um ( < 1n ) then 2 > 0s  and the solution for > 0  is  

 ( > 0) = e ,s
sF A  

            (2.4.38) 

or  

 ( < 0) = e .s
sF A  

            (2.4.39) 
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As previously, in the case of Green’s function, ( )sF   has to be continuous at = 0  and its de-
rivative is discontinuous:  

 
=0 =0

d d( ) ( ) = 2 .
d ds sF F

 

  
  

       
   

           (2.4.40) 

When the velocity of the particle is smaller than /c n  (i.e., < 1n ) the characteristic frequency 
s  is real, therefore  

 | |( ) = e ,s
s

s
F  


           (2.4.41) 

and consequently, 
2

| /v|0
2 2 2 2

=10 1

J ( / )( , , ) = e .
2 1 J ( )

t zs s
z

s s s

p r ReA r z t
R n p


 


 

          (2.4.42) 

This expression represents a discrete superposition of evanescent modes attached to the parti-
cle.  
 
Case II: If the particle’s velocity is faster than the phase velocity of a plane wave in the medi-
um ( 1n  ) then 2 0s  . In this case the waves are slower than the particle and there is no 
electromagnetic field in front of the particle i.e.,  
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 ( < 0) = 0.sF             (2.4.43) 

By virtue of the continuity at = 0  we have for > 0   

  ( > 0) = sin | | .s sF A              (2.4.44) 

Substituting these two expressions in  (2.4.40) we obtain  

  2( ) = sin | | ( ),
| |s s

s

F h   


           (2.4.45) 

and the magnetic vector potential reads  
2

0
2 2 2 2

0 1

J ( / )( , , ) = sin | | ,
1 J ( ) | | v v

s
z s

s s s

p r Re z zA r z t t h t
R n p


 

                 
    (2.4.46) 

where ( )h   is the Heaviside step function. This expression indicates that when the velocity of 
the particle is larger than /c n , there is a discrete superposition of propagating  waves traveling 
behind the particle. Furthermore, all the waves have the same phase velocity which is identical 
with the velocity of the particle, v . It is important to bear in mind that this result was obtained 
after tacitly assuming that r  is frequency independent which generally is not the case, therefore 
the summation is limited to a finite number of modes. The modes which contribute are deter-
mined by the Cerenkov condition ( = ) > 1sn   .  
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After we established the magnetic vector potential, let us now calculate the average power 
which trails behind the particle. Firstly, the azimuthal magnetic field is given by  

0

1
=10

1( , , ) = ( , , )

1= J sin | | ,
v v

z

s
s s s

s

H r z t A r z t
r

p r z zA p t h t
R R

 








                    
       (2.4.47) 

where  
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2 2 2 2
0 1

1= .
1 J ( ) | |s

s s

eA
R n p


 


 

           (2.4.48) 

Secondly, the radial electric field is determined by the electric scalar potential, which in turn is 
calculated using the Lorentz gauge, and it reads  

2

1
=1r

( , , ) = ( , , )

= J sin | | .
v v v

r

s
s s s

s

E r z t r z t
r

pc r z zA p t h t
R R


 


                    
       (2.4.49) 
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With these expressions, we can calculate the average electromagnetic power trailing the parti-
cle. It is given by  

 
2

2 2 2
0 r r 1

e 1 1= .
2 1 J ( )s s

cP
R p


                 (2.4.50) 

Note that for ultra relativistic particle ( 1  ) the power is independent of the particle’s energy. 
In order to have a measure of the radiation emitted consider a very small bunch of 1110N  
electrons injected in a waveguide whose radius is 9.2 mm. The waveguide is filled with a mate-
rial whose dielectric coefficient is r = 2.6  and all electrons have the same energy 450 keV. If 
we were able to keep their velocity constant, then 23 MW of power at 11.4 GHz (first mode, 

= 1s ) will trail the bunch. Further examining this expression we note that the average power is 
quadratic with the frequency i.e.,  
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In addition, based on the definition of the Fourier transform of the current density in (2.4.9), we 
conclude that the current which this macro-particle excites in the s 'th mode is = / 2s sI eN  . 
With this expression, the radiation impedance of the first mode ( = 1s ) is  
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           (2.4.52) 

For a relativistic particle, 1 , a dielectric medium r = 2.6  the radiation impedance corre-
sponding to the first mode is  1200  which is one order of magnitude larger than that of a 
dipole in free space or between two plates. Note that this impedance is independent of the ge-
ometry of the waveguide and for an ultra-relativistic particle it is independent of the particle’s 
energy.  
 

2.4.3 Coherent Cerenkov Radiation 

Once we established the radiation from a single bunch, it is possible to proceed and investigate 
a distribution of electrons rather than a point-charge. For an ensemble of electrons the field 
components are  
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wherein ....  represents the ensemble average; N is the total number of electrons in the bunch.  
For simplicity sake, we assume that the electrons are uniformly distributed in the radial direc-
tion (0 )br R   and the transverse and longitudinal distributions are independent thus 
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Defining v  -  t z  , the power emitted is given by  
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 In case of a single bunch of length  , the  trailing power is   
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Figure 2.5 illustrates the normalized spectrum as expressed 
above as a function of s ; note that it decreases rapidly thus 
the convergence is expected to be quick. 
Fig. 2.5. Normalized spectrum of Cerenkov radiation emitted 
by a finite size azimuthally symmetric  bunch in a dielectric 
filled waveguide of radius R.  Only the first 10 modes are 
shown. 
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 Analysis of the maximum average power trailing behind the bunch reveals that  
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is an excellent approximation. In this expression 1 0.0048c  ,  2 1.747c  , 3 0.259c   and 

4 1.271c  ; 0.005 / 0.2bR R   and 0.1 / 10R   . For a quantitative comparison, Fig. 2.6 
shows the exact and the approximate average power generated by a finite size bunch.  Some 
other interesting features are formulated as an exercise (2.7) at the end of this chapter. In partic-

ular, one may investigate ways to suppress the coherent radia-
tion. 
Fig. 2.6. Normalized average power of Cerenkov radiation 
emitted by a finite size azimuthally symmetric  bunch in a die-
lectric filled waveguide of radius R as a function of the length 
of the bunch. For the exact expression the first 100 modes have 
been used. The expression developed  reveals an excellent  up-
per value approximation.  
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Taking the same number of electrons ( )N  but splitting them into a train of bunches ( )M  the 
discrete spectrum excited in the waveguide  undergoes an additional selection associated with 
the bunches spacing. As in the single bunch case,  the bunches  are identical in size (radius bR  
and length  ) their spacing is L . A similar approach as above, results into the following ex-
pression for the average power trailing behind the train  
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The last term,    2 2sinc / sincuM u , is responsible  to the selection associated with the train 
configuration. If u  is not an integer number of    (off resonance condition), then the term is 
proportional to 2M   implying that the total power is reduced by this factor and there is no ad-
vantage in splitting the bunch into a train of bunches. However, if we can ensure resonance 
namely, for a given s  the bunch spacing is chosen such that / 2vsu L n   , it is possible to  
generate a total average power that is of the same order of magnitude as if all the electrons were 
forming a single bunch.   In order to reveal this selection associated with the train's configura-
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tion it is convenient to normalize the average power to the case of a single bunch ( 1)M   -- this 
is illustrated in Fig.2.7 

 
Fig. 2.7. The power normalized to the M=1 case 
as a function of the number of bunches in the 
train. Off resonance ( / 0.5,1.4L R  ), the average 
power is roughly proportional to 2M  . At reso-
nance ( / 1.6)L R   the power becomes virtually 
independent of the number of bunches and for 
large M, this normalized power is of order of uni-
ty. 

 
 
 
 

When scanning the normalized power there are many possible values of L that facilitate power 
levels of the order of that generated when all the electrons form a single bunch. In the example 
illustrated in Fig. 2.7, the spacing choice has taken into consideration the fact that for 1s , 

1s sp p    . This fact facilitates: 4 3su   , 9 7su   ,  14 11su     …. which is reflected in 
the following plot (Fig.2.8) of the spectrum of the first 20 modes. 
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Fig. 2.8. The spectrum normalized to the M=1 case as a fun-
tion of the mode index at resonance ( / 1.6)L R  . At reso-
nant frequencies (corresponding to the frequencies 

4,9,14.....s  ) the emitted power is identical to that of the 
single bunch.  

 
 
 

 
 
It is evident that at resonance the spectrum is identical to that of a single bunch and in parallel, 
the spectrum of the off resonance frequencies is significantly suppressed. Note that there is no 
significant difference between the case 10M   and 100M  .   For a different choice of  bunch-
spacing, at resonance, it is possible to have one or at least a few resonant peaks and still to get a 
substantial fraction of the power generated by a single bunch. The reader is referred to Exercise 
2.8  in order to examine additional options associated with the choice of parameters.   
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2.4.4 Cerenkov Force  

In the previous subsection we examined the radiation trailing one or more bunches moving in a 
dielectric medium with a velocity larger than the phase velocity of a plane wave in the material. 
Obviously, this emitted energy comes at the expense of its kinetic energy. In other words, the 
particle is decelerated. It is the goal of this subsection to examine this decelerating force in de-
tail.  With this purpose in mind we consider a simple model consisting of a charge  e  moving 
at a constant velocity  v  in a vacuum channel of radius R  surrounded by a dielectric medium 

r .  The evanescent waves attached to the charged particle impinge upon the discontinuity at 
=r R  and they are partially reflected and partially transmitted. It is the reflected wave which 

acts back on the electron decelerating it;  the corresponding current density is described by 
(2.2.15) whereas its time Fourier transform by (2.4.9). Correspondingly, this current density 
generates a magnetic vector potential determined by  
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and  
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where 2 2 2= ( / )k c  , 2 2 2
r= ( / )k c   , ( , | , )' 'G r z r z  is the boundless Green’s function as 

defined in (2.4.11),(2.4.19) but for vacuum i.e.,  
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The amplitudes   and   represent the reflected and transmitted waves correspondingly. In or-
der to determine these amplitudes we have to impose the boundary conditions at =r R . For this 
purpose, it is convenient to write the solution of the magnetic vector potential off-axis as  
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From the continuity of the longitudinal electric field ( zE ) we conclude that  
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In a similar way the continuity of the azimuthal magnetic field implies  

 1 1 1( )I ( ) ( )K ( ) = ( )K ( ).k R k R k R                 (2.4.65) 

At this stage, we introduce the (normalized) impedances ratio  
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by whose means the amplitudes of the reflected waves are given by  
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On axis, the only non-zero field is the longitudinal electric field and only the waves “reflect-
ed” from the radial discontinuity contribute to the force that acts on the particle, therefore  
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Substituting the explicit expression for   and using the integral over the Dirac delta function 
[see (2.4.63)] and defining = /x R c  , we obtain  
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At this point, it is convenient to define the normalized field that acts on the particle as  
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Clearly, from this representation we observe that, for a non-zero force to act on the particle, the 
impedance ratio   has to be complex since the argument of the modified Bessel functions is re-
al. 

We can make one step further and simplify this expression by defining  

 ( )( ) | ( ) | e ,j xx x              (2.4.71) 
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In order to evaluate this integral for a dielectric medium and a particle whose velocity c  is 
larger than r/c  , we go back to (2.4.66) which now reads  
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and it can be further simplified if we assume that the main contribution occurs for large argu-
ments of the Bessel function (i.e., 1 ) thus  
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Since subject to this approximation = / 2   and | |  is constant we can evaluate  ,  
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for two regimes: firstly when | | 1  i.e., 1 , the contribution to the integral is primarily 
from small values of x  thus  
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At the other extreme (| | 1 ) the normalized impedance has to be re-calculated and the result 
is  

2 2 2 2
r r

20
r 0 r

( 1) ( 1)d 1.263 ,
I ( )

 
xx
x

     
 

 
         (2.4.77) 

and we can summarize  
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       (2.4.78) 

It is interesting to note that for ultra-relativistic electrons the decelerating Cerenkov force 
reaches an asymptotic value which is independent of   and the dielectric coefficient; it is given 
by 2

0= / 2E e R . In addition, we observe that the normalized impedance ( )  determines the 
force.  
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2.4.5 Ohm Force   

If in the Cerenkov case the charged particle has to exceed a certain velocity in order to generate 
radiation and therefore to experience a decelerating force, in the case of a lossy medium, the 
moving electron experiences a decelerating force starting from a vanishingly low speed. This is 
because it excites currents in the surrounding walls and as a result, power is dissipated – which 
is equivalent to the emitted power in the Cerenkov case. The source of this power is the J E 
[see (2.1.17)] term which infers the existence of a decelerating force acting on the electron. In 
order to evaluate this force we use the same formulation as in the previous subsection only that 
in this case, the dielectric coefficient is complex and it is given by  

 r
0

= 1 ,j 
 

            (2.4.79) 

where   is the (finite) conductivity of the surrounding medium. It is convenient to use the same 
notation as above, therefore the normalized impedance   from (2.4.74) is replaced by  
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           (2.4.80) 

In this expression 0 /R    which for typical metals and R 1 cm is of the order of 
810 /   thus for any practical purpose 1  hence  
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Note that the phase of the normalized impedance is = 3 / 4  . Substituting this expression in 
(2.4.72) and defining the characteristic angular frequency 3
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which can be evaluated analytically for two extreme regimes: in the first case the (normalized) 
momentum of the particle is much smaller than the normalized conductivity term i.e., the skin-
depth is much smaller than the radius of the tunnel  2 2 R  in which case  
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The second case corresponds to a highly relativistic particle i.e., 3
0( )  R   or 2 2R  im-

plying that the main contribution to the integral is from the small values of x  which justifies the 
expansion of the modified Bessel functions in Taylor series. Redefining 2 3

0( ) / 4y x R   
we have  
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20

4 2 1d 2.
3 1 2

  y
y y



             (2.4.84) 

In fact a best fit to the exact expression in (2.4.82) reveals that   

 

10
6 6

2 2 10

2 20.54 2 1
R R R
  


 

              

           (2.4.85) 

is an excellent approximation – the integrated  0 / 20R   relative error is less than 0.02% . 
Clearly, as in the Cerenkov case, for ultra-relativistic particles 3

0( or ) R R     the de-
celerating force is independent of   and of the material’s characteristics. However, the critical 
  for operating in this regime is much higher comparing to the Cerenkov case.  
 
The characteristic angular frequency  0  is low for relativistic electrons and consequently, the 
skin-depth is much larger than the radius and all the bulk material “participates” in the decelera-
tion process. On the other hand, if the frequency is high, then the skin-depth is small (compar-
ing to the radius) and only a thin layer dissipates power, therefore the loss is proportional to  . 



2. Elementary Electromagnetic Phenomena.      79 

2.5 Finite Length EffectsEquation Section (Next) 

In all the effects discussed so far, we assumed an infinite system with no reflected waves. In 
this section, we consider several systems and phenomena associated with reflected waves. 
When both forward and backward propagating waves coexist, there is a frequency selection as-
sociated with the interference of the two. Another byproduct of reflections is tunneling of the 
field in a region where the wave is below cutoff. We also examine the radiation generated by a 
particle as it traverses a geometric discontinuity in a waveguide. We conclude with the evalua-
tion of a wake field generated by a particle in a cavity. 

2.5.1 Impedance Discontinuities 

In most cases of interest, the waveguide is not uniform and as a result, more than one wave oc-
curs. In order to illustrate the effect of discontinuities we consider next the following problem: a 
cylindrical waveguide of radius R  but, instead of being uniformly filled with one dielectric ma-
terial, there are three different dielectrics in three different regions  

 
1

r 2

3

for < < 0,
( ) = for 0 ,

for < < ,

z
z z d

d z


 




  
 

            (2.5.1) 

as illustrated in Fig. 2.9. 
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Fig. 2.9.  Schematics of 
the system used to ex-
amine the reflected 
waves resulting from 
characteristic imped-
ance discontinuities 

 
 

A wave is launched from z    towards the discontinuity at = 0z . For simplicity we as-
sume that this wave is composed of a single mode (TM01 i.e., = 1s ). The z  component of the 
magnetic vector in the first region ( < < 0z ) is given by 

(1) (1)
1 1

in 0 1( , < < 0, ) = e e J ,z z
z

rA r z A A p
R            

        (2.5.2) 

where inA  is the amplitude of the incoming wave and A  is the amplitude of the reflected wave; 
(1) 2 2
1 1 1= ( / ) ( / )p R c   . Between the two discontinuities at 0 < <z d  the solution has a 

similar form  
(2) (2)
1 1

0 1( ,0 , ) = e e J ,z z
z

rA r z d A A p
R

  
 

          
         (2.5.3) 

A

A
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
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where (2) 2 2
1 1 2= ( / ) ( / )p R c   . In the third region, there is no reflected wave therefore  

(3) ( )1
0 1( , < < , ) = e J ,z d

z
rA r d z A p
R      

 
           (2.5.4) 

and as above (3) 2 2
1 1 3= ( / ) ( / )p R c   ; A  is the amplitude of the transmitted wave. The 

four as yet unknown amplitudes A , A , A  and A  are determined by imposing the boundary 
conditions at = 0,z d . Continuity of rE  at = 0z  implies  

    1 in 2= ;Z A A Z A A                (2.5.5) 

1Z  and 2Z  are the characteristic impedances (2.3.26) in the first and second regions respective-
ly. In a similar way the continuity of H  implies  

 in = .A A A A                (2.5.6) 

An additional set of equations is found imposing the continuity of the same components at 
=z d :  

 2 3[ e e ] = ,Z A A Z A 



              (2.5.7) 

and  
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 e e = ,A A A 



              (2.5.8) 

where (2)
1 d   . From (2.5.5)–(2.5.8) the reflection ( ) and transmission ( ) coefficients are 

determined base on the radial electric field and are given by  
2

1 1 3 2 1 2 2 3
2

1 in 1 3 2 1 2 2 3

3 3 1 2
2

1 in 1 1 3 2 1 2 2 3

sinh( )( ) cosh( )( )= ,
sinh( )( ) cosh( )( )

2 .
sinh( )( ) cosh( )( )

Z A Z Z Z Z Z Z Z
Z A Z Z Z Z Z Z Z
Z A Z Z Z
Z A Z Z Z Z Z Z Z Z





 
 


 

  


  

 
  

       (2.5.9) 

After we have established the amplitudes of the magnetic vector potential it is possible to de-
termine the electromagnetic field in each one of the regions, thus we can investigate the power 
flow in the system. Using Poynting’s theorem the power conservation implies that  

 2 2 2
1 in 3Re( ) | | = Re( ) | | .Z A A Z A 
              (2.5.10) 

This expression relates the power in the first region to that in the third. It does not depend ex-
plicitly on the second region; if, for example, in the third region the wave is below cutoff, the 
characteristic impedance is imaginary and the right-hand side is zero. Consequently, the abso-
lute value of the reflection coefficient is unity, regardless of what happens in the second region. 
On the other hand, if in regions 1 and 3 the wave is above cutoff, and in region 2 the wave is 
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below cutoff, we still expect power to be transferred. However, the transmission coefficient de-
cays exponentially with (2)

1= d    

 3 2
2

1 3 2 2 1 3

4 e .
( ) ( )

 Z Z
Z Z Z Z Z Z

 

  
           (2.5.11) 

In spite of the discontinuities there can be frequencies at which the reflection coefficient ( ) is 
zero if we design the structure such that  

 2
1 3 2= and = / 2,Z Z Z j             (2.5.12) 

as one can conclude by examining the numerator of  . The expression in (2.5.12) defines the 
conditions for the so-called quarter-  transformer. Fig. 2.10 shows a typical picture of the 
transmission coefficient. Note that the peaks in the transmission correspond to constructive in-
terference of the two waves in the central section; the valleys correspond to destructive interfer-
ence of the same waves. Zero reflections also occur when  
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Fig. 2.10. Transmission coefficient as a function of 
the frequency for two cases:  the upper trace repre-
sents a situation in which the dielectric coefficient in 
the third region equals that in the first, therefore at 
certain frequencies all the power is transferred – see 
(2.5.13).  In the lower trace the two are different and 
the relation in (2.5.12) is not satisfied, therefore al-
ways a fraction of the energy is reflected.   

 
 

 1 3= and = .Z Z j    (2.5.13) 

If in the first and third region the wave's frequency  is below cutoff but in the middle region 
a wave can propagate, then the system will determine a set of discrete frequencies at which the 
wave can bounce between the two sections. These eigen-frequencies are determined by the ge-
ometric parameters and the dielectric coefficients. We can calculate these frequencies from the 
poles of the transmission or reflection coefficient, namely from the condition that its denomina-
tor is zero:  

2
1 3 2 2 1 3sinh( )( ) cosh( )( ) = 0.Z Z Z Z Z Z             (2.5.14) 
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Equivalently, one can write equations (2.5.5)–(2.5.8) in a matrix form, set the input term to zero 
( in = 0A ) and look for the non-trivial solution by requiring that the determinant of the matrix is 
zero – the result is identical with (2.5.14). The reader is encouraged to determine Green's func-
tion of the configuration described in this section – see Exercise 2.9.  
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2.5.2 Geometric Discontinuity 

Another source of reflected waves is a geometric discontinuity. In a sense these can be con-
ceived as impedance discontinuities but of a more complex character since geometric variations  
couple between the different modes in the waveguide. The simplest configuration which can be 
considered quasi-analytically consists of a waveguide of radius 1R  and another of radius 

2 1<R R ; the discontinuity occurs at = 0z  as illustrated in 
Fig. 2.11. A detailed analysis when a single mode imping-
es upon a discontinuity was reported in the literature e.g., 
Mittra and Lee (1971) or Lewin (1975).  

 
 

Fig. 2.11.  Green’s function calculation for one disconti-
nuity in the geometry of a waveguide.  In the upper figure 
the source is in the left and in the lower it is in the right. 

 
 

Step I: We examine first the case when the source term is 
in the left-hand side ( < 0z ), therefore Green’s function in 
the left-hand side has two components  

 

1R R2

1R R2
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   

 

(1)
0 1 0 1

(1)
2 2=1

1 1

(1)
0

1=1

exp | ' |J ( / )J ( '/ )< 0, | ' < 0, ' = 1 4J ( )
2

( ', ' < 0)J exp ,

ss s

s s
s

s s s
s

z zp r R p r RG z r z r
R p

rr z p z
R









 



   
 



     (2.5.15) 

the non-homogeneous solution, which corresponds to an infinite waveguide and the homogene-
ous solution which is due to the discontinuity; (1) 2 2

1= ( / ) ( / )s sp R c  . In the right-hand 
side ( > 0z ),  

 (2)
0

2=1
( > 0, | ' < 0, ') = ( ', ' < 0)J exp ,s s s

s

rG z r z r r z p z
R


    

 
       (2.5.16) 

where (2) 2 2
2= ( / ) ( / )s sp R c  . Continuity of the radial electric field at = 0z  entails 

2

2

2

1 2

( , = 0 | ', ' < 0)

( , = 0 | ', ' < 0) for 0 < ,=
0 for

G r z r z
z r

G r z r z r R
z r

R r R






 

 


 
  

      (2.5.17) 
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In order to determine the amplitudes s  and s  the last equation is multiplied by 1 1J ( / )sp r R , 
the product is integrated from 0 to 1R  and using the orthogonality of the Bessel function [simi-
lar to (2.3.17) but for first order Bessel function] we obtain  

 (1)
,

=1
( ', ') ( ', ') = ( ', '),s s sg r z r z Z r z 



 


             (2.5.18) 

where  

 
 (1)

(1) 0 1
(1)

2 2
1 1

exp 'J ( '/ )( ', ') = ,1 4J ( )
2

ss
s

s
s

zp r Rg r z
R p 




           (2.5.19) 

and  
(2)

21
, 1 1(1) 2 2 0

2 1 1 1 2

1 2 d J J .
J ( )

R

s s
s s s

p R r rZ rr p p
p R p R R R

 
 

   
        

        (2.5.20) 

Continuity of the azimuthal magnetic field in the domain 20 < <r R  implies  

( , = 0 | ', ' < 0) = ( , = 0 | ', ' < 0).G r z r z G r z r z
r r

  
 

        (2.5.21) 
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As above, we use the fact that in the domain of interest, 1 2J ( / )sp r R  form a complete orthogo-
nal set of functions hence  

(1)
,

=1

( ', ') = ( ', ') ( ', ') ,s s s
s

r z Y g r z r z  


              (2.5.22) 

where  

 2
, 1 12 0

1 1 2

2 d J J .
R

s s
r rY rr p p

R R R 

   
    

   
            (2.5.23) 

The integral in both expressions for Z  and Y  can be calculated analytically [Abramowitz and 
Stegun (1968) p. 484] and it is given by  

1

1 10

2
1

12 2 2
1 0

d J ( )J ( )

1 J ( ) for = ,
2=

J ( )J ( ) otherwise.
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




   



      (2.5.24) 
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From (2.5.18), (2.5.22) one can determine the amplitudes of the reflected and transmitted 
waves. Adopting a vector notation, i.e., ( )( , < 0)' '

s r z  R , ( )( , < 0)' '
s r z  T  and 

(1) (1)( , < 0)' '
sg r z  g , these amplitudes can be formally written as  

    1( ) (1)= I ZY I ZY  R g            (2.5.25) 

and  

    1( ) (1)= .Y I I ZY I ZY     T g            (2.5.26) 

Step II: In a similar way, if the source is in the right-hand side ( > 0)'z  then Green’s function 
in the left-hand side can be written as  

 (1)
0

=1 1

( < 0, | ' > 0, ') = ( ', ' > 0)J exp ,s s s
s

rG z r z r r z p z
R


  

 
 

       (2.5.27) 

and  
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 

 
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 
  

 



     (2.5.28) 

Continuity of rE  at = 0z  implies  

(2)
,

=1

( ', ') = ( ', ') ( ', ') ,s sr z Z g r z r z  


 


             (2.5.29) 

where  
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(2) 0 2
(2)

2 2
2 1

exp 'J ( '/ )( ', ') = ,1 4J ( )
2

ss
s

s
s

zp r Rg r z
R p 




           (2.5.30) 

and the continuity of H  can be simplified to read  

 (2)
,

=1
( ', ') ( ', ') = ( ', ').s s

s
r z g r z Y r z   



             (2.5.31) 
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Again, adopting a vector notation ( )( ', ' > 0)s r z  T , (2) (2)( ', ' < 0)sg r z  g  and 
( )( ', ' > 0)s r z  R  we can write for the reflected and transmitted waves the following expres-

sions  

    1( ) (2)= ,I YZ I YZ   T g            (2.5.32) 

and  

    1( ) (2)= .Z I I YZ I YZ     R g            (2.5.33) 

With Green’s function established, we calculate now the energy emitted by a particle with a 
charge e  as it traverses the discontinuity. Assuming a constant velocity 0v , the current distribu-
tion is given by (2.4.9) and the electric field which acts on the particle due to the discontinuity 
is given by  

2 2
0

2 2
0 0

v( , , ) = d ( , | 0, )exp ' .
v

' '
z

eE r z z G r z z j z
j c z

 






  
      

      (2.5.34) 

With this field component we can examine the total power transferred by the particle i.e.,  
( )

0
( ) = 2 d d ( , , ) ( , , ),

R z

z zP t z rrJ r z t E r z t



             (2.5.35) 

and also the total energy defined by  
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 = ( ),W dtP t


             (2.5.36) 

which explicitly reads  
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

  

  



          
          

  

  
   

            (2.5.37) 

According to ((2.5.25), (2.5.32)) and the definitions of (1)g  and (2)g , we can write  

  (1)
, ' '

'
(0, ' < 0) exp 's s s s

s
z z              (2.5.38) 

and  

  (2)
, ' '

'
(0, ' > 0) exp ' .s s s s

s
z z              (2.5.39) 

Consequently, the expression for the total energy reads  
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

         (2.5.40) 

The matrices   and   are frequency dependent, therefore numerical methods have to be in-
voked in order to have a quantitative answer regarding the energy transfer. Nevertheless, the 
spectrum can be readily derived from these two expressions. The first term represents the ener-
gy emitted when the particle moves in the left-hand side and the second corresponds to the en-
ergy emitted when it moves in the right one. It should be pointed out that each one of the terms 
has two contributions: a fraction of the energy propagates to the left and the remainder to the 
right. In the next subsection we present a simpler configuration which allows one to trace ana-
lytically the way the electromagnetic field develops in time in the case of reflections. We rec-
ommend the reader to solve Exercise 2.10 at the end of the chapter in order to assess the emit-
ted spectrum. 

Before concluding, one question needs to be addressed. In principle, the number of modes 
required to represent the field exactly is infinite, but practically only a finite number of terms is 
taken into consideration because of the need to invert the matrices numerically. The question is 
what should be the number of Bessel harmonics necessary for the representation of a disconti-
nuity as the one presented above and what is the error associated with the truncation. In order to 
answer this question, let us consider a simple function  
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 2

2 1

1 for 0 < ,
( ) =

0 for < ,
r R

f r
R r R


 
         (2.5.41) 

as illustrated in Fig. 2.12. 
 

Fig. 2.12  Step function used to model the effect of 
truncation in a Bessel series representation 

 
 

 
 
 
 
 
 
 

This function can also be represented by a superposition of Bessel functions: 
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where  

 1 2 12
2

1 1

J ( / )= 2 ;
J ( )
s

s
s s

p R RRf
R p p

           (2.5.43) 

here we used the fact that the integral  

 0 10
d J ( ) = J ( ),

x
x x             (2.5.44) 

can be evaluated analytically [Abramowitz and Stegun (1968) p. 484]. We now define the rela-
tive error made when representing the function only with a finite number of Bessel harmonics 
as the 

  
Fig. 2.13.  Numerical error as a function of the num-
ber of terms 
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d ( ) J ( / )
Error( ) .

d ( )

NR

s s
s

R

rr f r f p r R
N

rr f r

 
  



         (2.5.45) 

Using (2.5.43), (2.5.44) the last relation can be simplified to read  

 
2

1 2 1

=1 1

J ( / )Error( ) = 1 4 .
J ( )

N
s

s s s

p R RN
p p

 
  

 
            (2.5.46) 

Figure 2.13 illustrates this error. Taking a single mode the normalized error is 36% for 
2 1/ = 0.5R R  and it drops to 2% for 20 modes. Howev-

er, even with 20 modes the error can be significantly 
higher if the radii ratio is small and it is more than 15% 
for = 20N  and 2 1/ 0.1R R  – see Fig. 2.14. These 
facts become crucial when an accurate solution with 
multiple discontinuities is necessary. 

 
Fig. 2.14. Truncation error as a function of the radius 
ratio for a constant number of Bessel harmonics 
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2.5.3 Wake-Field in a Cavity 

In order to examine transient phenomena associated 
with reflected waves we calculate the electromagnetic en-
ergy in a cavity as a single point-charge traverses the struc-
ture. Consider a lossless cylindrical cavity of radius R  and 
lengthd . A charged particle ( )e  moves along the axis at a 
constant velocity 0v . Consequently, the longitudinal com-
ponent of the current density is the only non-zero term, 
thus  

 0 0
1( , ) = v ( ) ( v ).

2zJ t e r z t
r
 


 r (2.5.47) 

Fig. 2.15.  Schematics of the field distribution generated by a particle as it traverse a cavity.  
Prior to its entrance, no field exists in the cavity.  When in the cavity the field has two contribu-
tions: directly from the source (non-homogeneous) and reflections from the walls (homogene-
ous).  After the particle leaves the cavity only the homogeneous contribution remains. 
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It excites the longitudinal magnetic vector potential ( , )zA tr , which for an azimuthally symmet-
ric system, satisfies  

2 2

02 2 2

1 1 1 ( , , ) = ( , , ).z zr A r z t J r z t
r r r z c t


   

       
        (2.5.48) 

In this section, we consider only the internal problem, ignoring the electromagnetic phenomena 
outside the cavity. The boundary conditions on the internal walls of the cavity impose 

( = , , ) = 0zE r R z t , ( , = 0, ) = 0rE r z t  and ( , = , ) = 0rE r z d t  therefore, the magnetic vector poten-
tial reads  

, 0
=1, =0

( , , ) = ( )J cos .z s n s
s n

r nA r z t A t p z
R d

    
   
   

           (2.5.49) 

Using the orthogonality of the trigonometric and Bessel functions, we find that the amplitude 
, ( )s nA t  satisfies  
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2
2 0
, ,2

2 20
1

0
0

vd 1 1( ) = 1d 2 J ( )
2

vcos v ( ) ,

s n s n
n

s

eA t
t g dR p

n t h t h t
d d





 
  

 

             
       (2.5.50) 

where  

 
1 for = 0,

=
0.5 otherwise,n

n
g





           (2.5.51) 

and  

 
2 2

, = ,s
s n

p nc
R d

       
  

           (2.5.52) 

are the eigen-frequencies of the cavity.  
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Before the particle enters the cavity ( < 0t ), no field exists, therefore  

 , ( < 0) = 0.s nA t       (2.5.53) 

For the time the particle is in the cavity namely, 00 < < / vt d , the solution of 
(2.5.50) consists of the homogeneous and the excitation term:  

, 1 , 2 , ,
0

0 < < = cos( ) sin( ) cos( ),s n s n s n s n n
dA t B t B t t
v

       
 

  (2.5.54) 

where  

 0
, 2 2

2 20 ,
1

v 1 1 1= ,12 J ( )
2

s n
n s n n

s

e
g dR p


 


 

           (2.5.55) 

and  

 0= v .n
n

d
            (2.5.56) 

Since both the magnetic and the electric field are zero at = 0t , the function , ( )s nA t  and its first 
derivative are zero at = 0t  hence  

 1 , = 0,s nB             (2.5.57) 
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and  

 2 = 0.B        (2.5.58) 

Consequently, the amplitude of the magnetic vector potential [ , ( )s nA t ] reads  

 , , ,( ) = cos( ) cos( ) .s n s n n s nA t t t            (2.5.59) 

Beyond 0= / vt d , the particle is out of the structure thus the source term in (2.5.50) is zero and 
the solution reads  

, 1 , 2 ,
0 0 0

> = cos sin .
v v vs n s n s n
d d dA t C t C t

        
            

        
      (2.5.60) 

As in the previous case, at 0= / vt d  both , 0( > / v )s nA t d  and its derivative, have to be continu-
ous:  

 , , 1
0

( 1) cos = ,
v

n
s n s n

d C         
           (2.5.61) 

and 
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 , , , 2 ,
0

sin = .
vs n s n s n s n
d C     

 
           (2.5.62) 

For this time-period, the explicit expression for the magnetic vector potential is  

, , , ,
0 0 0

, , ,
0 0

> = ( 1) cos cos
v v v

sin sin ,
v v

n
s n s n s n s n

s n s n s n

d d dA t t

d dt





        
            

        
    

       
    

      (2.5.63) 

The expressions in (2.5.53), (2.5.59), (2.5.63) describe the magnetic vector potential in the cavi-
ty at all times.. 

During the period the electron spends in the cavity, there are two frequencies which are ex-
cited: the eigen-frequency of the cavity ,s n  and the “resonances” associated with the motion of 
the particle, n . The latter set corresponds to the case when the phase velocity, phv = / k , 
equals the velocity /L R . Since the boundary conditions impose = /k n d  and the resonance 
implies  

 0 phv = v = ,dc
c n



 
 
 

           (2.5.64) 
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thus we can immediately deduce the resonance frequencies n  as given in (2.5.56). 
Now that the magnetic vector potential has been determined, we consider the effect of the 

field generated in the cavity on the moving particle. The relevant component is the longitudinal 
one  

 

, 0
=1, =00

,

, ,0 < < = J
v

cos cos cos( ) .

z s n s
s n

n s n

d rA r z t p
R

n z t t
d



 

   
   

  
         



 (2.5.65) 

Note that we omitted the upper limit in the double summation since in practice, the actual di-
mensions of the particle, which so far was considered infinitesimally small, determines this lim-
it. In order to quantify this statement we realize that the summation is over all eigenmodes 
which have a wavenumber much longer than the particle’s dimension i.e., 

, b/ < 1 and / < 1s n z sc p R R  wherein z is the bunch length whereas bR  represents its radius. 
According to Maxwell’s equations, the longitudinal electric field is  

 0
1( , ) = ( , ) ( , ).z zE t J t rH t

t r r   
 

 
r r r (2.5.66) 
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Furthermore, the field that acts on the particle does not include the self-field, therefore we omit 
the current density term. Using the expression for the magnetic vector potential [(2.1.33)], we 
have  

 2 1( , ) = ( , ),z zE t c dt r A t
r r r
 


 r r            (2.5.67) 

or explicitly,  
2

, 0
0 =1, =0

,

,

, ,0 < < = J
v

sin( )sin( )cos .

s s
z s n

s n

s nn

n s n

cp p rdE r z t
R R

ttn z
d






    
     
     

         



       (2.5.68) 

In a lossless and closed cavity the total power flow is zero, therefore Poynting’s theorem in its 
integral form reads  

 
0 0

d = 2 d d ( , , )J ( , , ).
d

R d

z z
W rr zE r z t r z t
t

              (2.5.69) 

Thus substituting the current density [(2.5.47)] we obtain  

 
/v0

0 00
= v d ( , = v , ),

d

zW e tE r z t t            (2.5.70) 
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which has the following explicit form  

 

2
/v0

0 , 0
=1, =0

,

,

= v d cos( )

sin( )sin( ) .

ds
s n n

s n

s nn

n s n

cpW e t t
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tt
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

 
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 

 
   

 
           (2.5.71) 

We can evaluate analytically the time integral in this expression. As can be readily deduced, the 
first term represents the non-homogeneous part of the solution and its contribution is identically 
zero whereas the second’s reads  

2
, 0

0 , 2 2
=1, =0 ,

1 ( 1) cos( / v )
= v .

n
s ns

s n
s n s n n

dcpW e
R




        
         (2.5.72) 

Substituting the explicit expression for ,s n  we have  

1 22

=1, =00 1

,
22 2

0

2 1=
4 J ( )

1 1 ( 1) cos .
v( / )

s

s n s n

s nn

s

peW W
d p g

d
p nR d



 


   

    
   

  
    
     



     (2.5.73) 



2. Elementary Electromagnetic Phenomena.      107 

Fig. 2.16 illustrates the normalized energy excited by a 10MeV in the first frequencies 
1,010   . In this range the spectrum is virtually independent of the particles energy  1    

 
2

,
,

1

2 11 = 1 ( 1) cos
J ( )

s nn
s n

s s n

W d
p p g c


    
     

    
 .  (2.5.74) 

 
 

Fig. 2.16.   Normalized energy deposited by a 10MeV 
point charge in the first modes  1,010    of a cylin-
drical cavity. 
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2.6 Scattered Waves PhenomenaEquation Section (Next) 

As an electromagnetic wave impinges upon an obstacle, it 
is scattered. This reflected energy can be harnessed for in-
teraction with charged particles or for measurement pur-
poses. In this section, we consider several cases chosen 
due to their relative simplicity.  

2.6.1  Plane Wave Scattered by a Dielectric Cylinder 

As a starting point, let us consider a plane wave that prop-
agates in the x direction and it impinges upon a dielectric 
( cyl ) cylinder of radius R whose axis is parallel to the magnetic field component of the incident 
wave 

   inc
0 bgexp ;zH x H j x

c
    

 
   (2.6.1) 

tacitly assuming a steady state regime  exp j t  and the background medium is characterized 
by a dielectric coefficient bg - see Figure 2.17.  Based on the generating Bessel function 
[Abramowitz and Stegun (1968) p. 361] 

 1 1exp J
2

n
n

n

u v v u
v





       
    (2.6.2) 
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this incident component may be written in cylindrical co-
ordinates  cosx r  as 

   inc
0 bg

0 bg

, exp cos

exp J .
2

z

n
n

H r H j r
c

H jn r
c

  

  




   
 

             


 

 
 

 

Fig. 2.17.   A plane wave scattered by a dielectric cylinder.  

The presence of the cylinder alters the electromagnetic field thus the secondary field is given by   
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   (2.6.4) 

 For imposing the boundary conditions, it is necessary to specify the azimuthal electric field  
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   

   
 

inc
0 0 bg

bg

cyl
cylsec

0 0
2

bg
bg

, exp J
2

J

, exp
2

H

n
n

n n

n
n n

jE r H jn r
c

j r r R
c

E r H jn
j r r R

c





    


 
  

 










             

                      











 (2.6.5) 

 
Continuity of the two components facilitate to determine the amplitudes 
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(2.6.6) 

 
where bg cyl/ and /a R c b R c     . With the amplitudes established, two measures 
need to be considered. The first is the extent the cylinder scatters the wave namely, the scatter-
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ing cross-section. For this purpose we determine the total power scattered in the cylindrical en-
velope of radius r R  and height z  
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The scattering cross section is defined by the ratio of the scattered power and the impinging en-

ergy flux, 20
0

bg

1
2xS H


 ,   

 

  2scatt
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22 .z n
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P R
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 
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       (2.6.8) 
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Figure 2.18  illustrates the normalized cross-section   scatt / 2 zR   as a function of the fre-
quency.  

 
 
Fig. 2.18.   Normalized cross section as a function 
of the radius normalized to the wavelength in vacu-
um. Comparing to the lossless case, the cross section 
in case of a lossy cylinder is systematically smaller 
since part of the power is absorbed. As a rough es-
timate  lossy lossless 0 cylexp 2 / tanR        . 

  
 
It reveals the evident resonant character of  the 
cross-section: for a dielectric coefficient cyl 3.3   
and using 100N   azimuthal harmonics, the cross 
section is almost 4 for 00.4R   and close to unity 

if the radius is 00.72R  .  Moreover, if due to dielectric loss, part of the reflected power is ab-
sorbed, the effective cross-section is systematically smaller than the lossless case.  
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Fig. 2.19.   Normalized cross section as a function of the radi-
us normalized to the wavelength in vacuum – focusing in the 
range 00.9 / 1.2R   . If the medium is active, the cross sec-
tion can be significantly larger  comparing to the lossless case. 

 
 
 
 
 
 

The opposite is the case if the medium is active, as illustrated in Fig. 2.19. Since multiple re-
flections in the cylinder may enhance significantly the scattered power, the cross-section may 
be larger. In the figure the range between 00.9 / 1.2R    has been magnified, and for the 
specific parameters, the normalized cross section at 01.1R   has dropped from 3.1 to 2.5 due 
to the dielectric loss but it has increased by almost a factor of four 12   in case of an active 
medium - corresponding to about 11 internal reflections. 
 

The second measure of interest is the screening factor, which is indicative of the extent the 
cylinder reduces/magnifies the electromagnetic energy in its center. This factor may be defined 
as the ratio of the electromagnetic energy densities at the point of interest with and without the 
cylinder namely, 
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For the parameters mentioned above, the screening factor is illustrated in Fig. 2.20 and evident-
ly, the fiber tends to focus the electromagnetic energy. As may be expected, this focusing is 
suppressed by lossy material and it is amplified by active medium. In addition, we observe that 
lossy or gain medium do not alter the resonant pattern (peaks) associated with azimuthally 
propagating modes. 

 
 
 
Fig. 2.20.   Screening factor as a function of the ra-

dius normalized to the wavelength in vacuum. If the 
medium is active, the cross section can be significant-
ly larger comparing to the lossless case. 
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2.6.2  Evanescent Waves Scattered by a Dielectric Cylinder 

In many cases of interest, waves attached to moving charges are scattered by various obstacles 
and these radiating modes may be used for the characterization of bunches of electrons as well 
as of the obstacle. We now exploit the relatively simple configuration of the dielectric cylinder 
in order to examine the scattering of evanescent waves attached to a charged line  / zQ  mov-
ing with a velocity v  at a height h R  -see Fig. 2.21. Near the cylinder the incident field is giv-
en by 
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Fig. 2.21.   Evanescent waves attached to a moving charged-line are 
scattered by a cylinder.  
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Similar to the approach from the above,  
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and  
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Thus imposing the boundary conditions we obtain the reflection and transmission coefficients 
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wherein    , , v , ,v /I In r n r R
R R r a 


   

 , bg /a R c  , cyl /b R c  . With the field es-
tablished, it is possible to determine the emitted energy during the passage of the charged-line 
near the cylinder 
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which enables us to write the following expression for the normalized spectrum 
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it should be pointed out that it has been assumed that the charged-line moves in vacuum 
thus, bg 1  .  If the single line charge is replaced by train of M micro-bunches of length and 
thickness  with a spacing L between each two micro-bunches then the normalized spectrum is  
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Note that the total amount of charge remains Q. For simplicity sake, we assume for what fol-
lows that cyl namely, the field does not penetrate in the cylinder therefore 

   2/In n nH a      and also that the bunch is ultra-relativistic (  )  or if to be more accu-

rate, , 1a a h
R R 
  .  Since the last two transverse geometric parameters , h

R R
  are expected to 

be at the most of the order of unity, the previous condition limits the spectrum of our approxi-
mation to co 0.01a a   .   Another implication is a significantly simpler expression for  
 

   1 exp cos J exp
2 2

In n
d d jn ja a jn
da





  
 

          
  

    (2.6.17) 

 
which finally implies 
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Evidently, the first term represents the contribution of the ideal line-charge whereas the two 
trailing terms represent the single bunch size effect and the multiple bunches impact respective-
ly. 
  
Before concluding this subsection, two comments are in place. First, the configuration consid-
ered above illustrates the coupling between the evanescent waves attached to the moving 
charged-line and the propagating waves scattered by cylinder. Due to the resemblance to regu-
lar diffraction, the emerging waves are also referred to as diffraction radiation.   Second, we 
need to provide an alternative interpretation of the emitted spectral density as manifested in 
Eq.(2.6.16). From the way it has been developed, it obviously characterizes the radiative con-
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tribution far away from the charged-line. Based on Poynting theorem, the source of this radia-
tion is the effect of the secondary field on the charged-line 
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Using the normalization employed above we get 
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which clearly reveals that the spectral density of the emitted energy is proportional to the spatial 
Fourier transform of the electric field as experienced by the charged-line. It can be readily 
checked that the square brackets have units of ohm-meter and consequently, the normalized 
spectral density equals the, so called, (normalized) longitudinal impedance experienced in this 
case by the charged-line. 
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2.6.3  Evanescent Waves Scattered by a Metallic Wedge 

Diffraction radiation is commonly employed by the parti-
cle accelerator community for characterizing the location 
and to some extent the shape of a charged bunch. This is 
generally done with thin metallic foils. A model for de-
scribing the system, as in the cylinder case, consists of a 
charged-line  / zQ   moving at a constant velocity v  at a 
height h  above the tip of an ideal wedge ( 

2 12 2        ) - see Fig. 2.22. In the frequency 
domain, the magnetic field is a solution of  
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Fig. 2.22.   Evanescent waves attached to a moving charged-line are scattered by a wedge.  

 Obviously the radial electric field is zero on both sides of the wedge therefore it is natural to 
employ the orthogonality of the corresponding azimuthal eigen-functions namely,  
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to get 
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with  2 1/ 2n       .  The source term may be simplified  
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Next, we define  0 arcsin /h r   and take advantage of the Dirac delta function 
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Wherein  u x  denotes the Heaviside step function thus 
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For a solution of (2.6.23) we employ the corresponding Green's function 
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and can formally determine the magnetic field  
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With this field component established we may proceed and evaluate the radiated energy at 
r   
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Defining /h c  ,   12
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or finally, after defining 1/ sin   we obtain 
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Several observations are in place now that we have an explicit expression for the energy's spec-
tral density. First, note that if the velocity is reversed v v , this is equivalent to taking the 
complex conjugate of the term in the curled brackets, the spectral density is invariant. At the 
limit of very low frequencies, the spectral density emitted by a relativistic bunch  1   is in-
versely proportional to the frequency as can be concluded from Fig. 2.23 where we plot this 
quantity as a function of the normalized frequency  . It should be pointed out that the first 
twenty harmonics were considered and for fast convergence, the integration was performed in 
the range / 2      where 0.0005  . As reference, we also present the first two har-
monics  1,2n  . 
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Fig. 2.23.   Contribution of the first 20 harmonics to 
the normalized spectral density as a function of the 
normalized frequency; 1 / 6  , 2 / 4  and  

1.  The dashed line clearly reveals that this quanti-
ty is inversely proportionnal to the frequency for 

1  . As reference the first two harmonics are also 
presented. 

 
 
 
 

Examining the same quantity as a function of the normalized momentum of the bunch we con-
clude that – see  Figure 2.24  --  for 1   the spectral density is proportional to 4  (for 1  ) 
however, this dependence is strongly dependent on the normalized frequency. For example, for 

0.2   the spectral density is proportional to  
1/441 /15 


   .  
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Fig. 2.24.   Contribution of the first 20 harmonics to the 
normalized spectral density as a function of the normalized 
momentum; 1 / 6  , 2 / 4 and 1.     For a relativ-
istic bunch each harmonic reaches it asymptotic value at a 
different momentum. As reference, the first two harmonics 
are also plotted.  For 1   the dashed line clearly reveals 
that the spectral density is proportional to 4 ;  this depend-
ence may be quite different at other frequencies. 

Although only the 1 and 2n n   harmonics are illustrat-
ed, we found that all harmonics reach an asymptotic value. 

In fact, this conclusion can be readily deduced from the fact that the energy spectral density de-
pends on   and the latter approaches unity at high kinetic energy.  The bending point depends 
both on the normalized frequency the geometry of the wedge as well as on the harmonic's in-
dex. 
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Exercises 
2.1 Determine the boundary condition associated with charge conservation. How it relates to 

(2.1.13)–(2.1.16)?  
2.2 In the context of Sect. 2.2.4, calculate the electromagnetic field associated with the moving 

charge (2.2.21)–(2.2.22). Calculate the Poynting vector associated with this field. With this 
result, calculate the total power. Is there a force acting on the moving particle?  

2.3 Show that the power radiated in free space by the current distribution in (2.3.2) is given by 
 22

0= / /12P I d c   .  
2.4 By virtue of the superposition principle, show that in case of multiple "wires" carrying cur-

rents I  located at  ,x y   between the two plates of a radial transmission line the magnetic 
vector potential is given by 

      2 22
0

1
4zA I H x x y y

j c  

      
  

2.4 Calculate the energy velocity (Sect. 2.3.3) assuming two modes TM01 and TM02 above cut-
off. Plot the energy velocity as a function of the ratio of the two modes 

01 020.3 < =| / |< 3.0A A .  
2.5 Calculate the radiation impedance of the TM01 in a circular waveguide of radius R . Assume 

a current distribution  

1 1 1( , , ) = J ( / ) ( ) / 2 .r zJ r z I p r R z p rR    
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2.6 The expression that determines the magnetic vector potential of N electrons   
       moving in a dielectric medium r  at a velocity v  

 
2

0
0 r2 2

1
( , , ) = K exp

(2 ) v v

N

z i
i

e cA r z r j z z
c

   
 

             
  

Assuming that the electrons are uniformly distributed / 2iz   , calculate the  
     power emitted by this bunch. Show that the power emitted in the range      
     is proportional to 2N .  What happens in the range   ?  Repeat the exercise  
     for a Gaussian distribution. 
 
2.7 In Section 2.4 we have demonstrated that 

 
 

   

2

1av r
2 2 2

r 1 r
2

0

2J /1/ /sinc
1 / J 2v 1

2

s b s

s s b s

p R RP p R
p R R peN

R


   



    
     

  

    Determine the condition(s) necessary to suppress the radiation  excited in  
    specific mode(s). Can you ensure zero power in many modes? Hint: for large  
    values of s, 1s sp p    .  
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2.8 Draw the normalized average power (2.4.58) for M=100 normalized to M=1 as  
     a function of /L R  as in Fig.2.7.  Show that for specific values of /L R , this  
     quantity is of order of unity. Analyze the spectrum in a few of these cases.  
 

 
2.9 Calculate Green’s function associated with the system described in Sect. 2.5.1. Begin with 

case when the source is located to the left of the discontinuity and continue by solving the 
problem when the source is between the discontinuities.  Can you deduce the Green's function 
for the third case, when the source is after the third discontinuity, from the first one.  For the 
second case (point-source between the discontinuities) can you design the system such that 
the source emits zero power? 

 
2.10 Based on Eq.(2.5.40), analyze the spectrum of the emitted radiation as a point-charge 

traverses a geometric discontinuity. Keep the ratio of the number of modes in each region 
proportional to the radii ratio.  

 
2.11 Based on the formulation of the wake generated by a point charge in a loss-less cavity ( 

Section 2.5.3), determine the spectrum of train of N point charges generated in the same cavi-
ty. Assume that the spacing between two adjacent charges  is L. 
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2.12 Repeat the steps in Section 2.6.1 for the orthogonal polarization, 

0 bgexpzE E j x
c
    

 
.  

2.13  Analyze the normalized spectrum density in Eq.(2.6.16) as a function of the various pa-
rameters. 

 
2.14 Plot the contour of constant far-field emitted energy density from a wedge (Section 2.6.3) 

for several values of the kinetic energy; 1 / 6  , 2 / 4, 1 and 2,11,21,31      .  
 
2.15  Extend Eq.(2.6.31) to the case of a train of M micro-bunches of spacing L and the length 

of each one is x  whereas the thickness is y .  


