ELECTRONS ACCELERATION in an INVERTED MEDIUM

Levi Schächter

Technion - Israel Institute of Technology Department of Electrical Engineering

- Overview and Motivation
- Particle Acceleration in Inverted Medium
- Wake Amplification and Acceleration
- Parameter Analysis
- Experimental Setup
- Summary

Laser & Plasma

Laser Wake-Field
Plasma Beat-Wave

E-beam & Plasma Wake-Field Acc.

Laser & Inverse of **Radiation Processes** M Inverse Cerenkov M Inverse FEL Juverse Smith-Purcell E-beam & Structure Two-Beam Acc. Cerenkov Wake-Field

Intense and short laser pulse

Two medium power laser pulses

 $\omega_1 - \omega_2 = \omega_p$

Laser & Plasma

Laser Wake-Field

M Plasma Beat-Wave

Driving bunch

Test bunch

Space-charge wave

Inverse FEL

 \bigcup

 \int

Inverse Cerenkov

Laser & Inverse of **Radiation Processes** Inverse Cerenkov M Inverse FEL Juverse Smith-Purcell $\hat{\mathbf{I}}$ Ţ

Inverse Smith-Purcell

 $\widehat{\Box}$

 $\widehat{\Box}$

 $\widehat{\Box}$

Ţ

Two-beam Accelerator

Cerenkov Wake-Field Accelerator

Phase velocity = velocity of driving bunch

Laser & Plasma

🥙 Plasma Beat-Wave

Inverse Laser ?

Laser & Inverse of Radiation Processes

Inverse Cerenkov
Inverse FEL
Inverse Smith-Purcell

E-beam & Plasma Wake-Field Acc.

Amplify a Wake ? Amplify Cerenkov Radiation ? E-beam & Structure

Two-Beam Acc. Cerenkov Wake-Field

Particle Acceleration by Inverted Medium

Passive Dielectric

Cerenkov Radiation
 Decelerating Force

Inverted Medium

> Negative Resistivity

Induced Currents

Accelerating Force

Phys. Lett. A, 205, p.355 (1995)

PRE, 53, p.6427 (1996).

Particle Acceleration by Active Medium

Laser & Plasma

🔥 Laser Wake-Field

🥙 Plasma Beat-Wave

Laser & Inverse of **Radiation Processes**

Inverse Cerenkov 💽 Inverse Laser

M Inverse FEL Merse Smith-Purcell

E-beam & Plasma Wake-Field Acc.

Amplify a

Wake?

0

Amplify Cerenkov Radiation ? E-beam & Structure

Two-Beam Acc. Cerenkov Wake-Field

The dispersion equation:

$$D(\omega) \equiv J_0 \left(\frac{\omega}{c} R \sqrt{\epsilon - \beta^{-2}}\right) + \frac{1}{\gamma \beta} \frac{\epsilon}{\sqrt{\epsilon - \beta^{-2}}} J_1 \left(\frac{\omega}{c} R \sqrt{\epsilon - \beta^{-2}}\right)$$

 $K_0\left(\frac{\omega}{c}\frac{R}{\gamma\beta}\right)$

 $\frac{1}{K_1\left(\frac{\omega}{c}\frac{R}{\gamma\beta}\right)}$

Inversion: $\omega_p^2 < 0$

For relativistic particles ($\gamma >>1$) the poles are determined by

Ignore resonance

$$D(\omega) \cong J_0\left(\frac{\omega}{c}R\sqrt{\varepsilon(\omega)-1}\right) = 0 \implies \frac{\omega_0}{c}R\sqrt{\varepsilon_r-1} = p$$

Resonance introduces a change:

$$\omega = \omega_0 + \delta \omega \implies \delta \omega = \pm j \frac{|\omega_p|}{2\sqrt{\varepsilon_r} - 1}$$

Wake-Field Amplification - Dispersion Curves

Although multiple modes are possible in this geometry only a single mode will be amplified - provided the mode separation is sufficient.

Wake-Field Amplification - Gradient

Length of the driving bunch

Longitudinal component of the electric field:

$$E_{z}(\mathbf{r}, z, t) \cong E_{d} J_{0}\left(p\frac{r}{R}\right) \sin[\omega_{0}(t - z/v)]e^{\left|\delta\omega\right|(t - z/v)}$$
Charge of the trigger bunch
$$\left[\left(R_{d}\right)\right]\left[\cdot\left(\omega_{0}\Delta^{\prime}\right)\right]$$

$$E_{d} \cong \frac{q}{4\pi\epsilon_{0}\epsilon_{r}R^{2}J_{1}^{2}(p)}$$

$$\begin{array}{c}
 J_1\left(p\frac{Rd}{R}\right) \\
 0.5 p\frac{Rd}{R} \\
 \hline
 \end{array}
 \end{array}
 \begin{bmatrix}
 \sin\left(\frac{\omega_0}{v}\frac{\Delta}{2}\right) \\
 \frac{\omega_0}{v}\frac{\Delta}{2} \\
 \hline
 \end{array}$$

Radius of the driving bunch

Total power flow

Interaction Impedance

$$Z_{\text{int}} \equiv \frac{(E_z R)^2}{2P} = \sqrt{\frac{\mu_0}{\epsilon_0} \frac{\epsilon_r - 1}{\pi J_1^2(p)}} \propto \frac{\omega_0}{c} R$$

Zero of Bessel function

Wake-Field Amplification - Saturation

At high intensities the inversion is reduced by the field:

$$\delta \omega \rightarrow \delta \omega \frac{1}{1 + (E/E_{cr})^2}, \quad E_{cr} \equiv \frac{\hbar}{\mu \sqrt{\tau T_2}}$$

Dipole moment

Relaxation time constants

Consequently, at a distance d after the driving bunch

$$E = E_d \exp\left\{\frac{d}{c} |\delta\omega| \frac{1}{1 + (E/E_{cr})^2}\right\}$$

and for a given accelerating gradient (E_{acc}) the witness bunch

$$d_{w} = \frac{c}{|\delta\omega|} \left[1 + \left(\frac{E_{acc}}{E_{cr}}\right)^{2} \right] \ln\left(\frac{E_{acc}}{E_{d}}\right)$$

Wake-Field Amplification - Parameter Analysis

Geometric and Electrical parameters

R[cm] = 1D[cm] = 100 $R_d [cm] = 0.01$ $\Delta [cm] = 0.1$ $E_{acc} [GV/m] = 1$ $E_{sat} [MV/m] = 10$

Wake-Field Amplification - Parameter Analysis

	ND:YAG	TI SAPPHIRE
	$[Y_3 \overline{A}_{L5} \overline{O}_{12}]$	$[TI^{3+}: AL_2O_3]$
ε _r	1.82	1.76
λ [μm]	1.06	0.514
N _{dop} [atom/cm ³]	5.8x10 ¹⁹	3.3x10 ¹⁹
Dopant	Yttrium (1%)	Ti ₂ O ₃ (0.1%)
p	5.362×10^4	9.981x 10 ⁴
Z_{int} [M Ω]	8.64	16.41
Energy [kJ]	3.24	3.8
N _{acc} [50% eff]	1.0×10^{13}	1.2×10^{13}
$\delta\omega/\omega_0$	0.134	0.051
$E_d [V/m]$	3x10 ⁻⁴	6x10 ⁻⁵
$d_w[m]$	0.36	0.49
P[MW]	5.78	3.05
S[MW/cm ²]	1.8	0.97
Gain [dB/cm]	6.9	5.4

• PASER: Electrons gain energy stored in the medium. For ``competitive`` gradients the charge density required is very high thus the alternative is

- Wake-Field Amplification. Energy is in the medium -- no need for optical system.
- Acc. mode moves at the speed of trigger bunch.
- Inherent longitudinal electric field.
- Growth controlled by the population inversion.
- Less than 0.1π mm-mrad emittance growth.

• Vacuum acc. by combining solid-state medium.

• Although the transverse dimension entails many modes excitation, they all move at V_d and all oscillate at the frequency of the medium ω_0

 Nd: YAG and Ti: Sapphire store sufficient energy to accelerate more than 10⁹ electrons ignoring the longitudinal space-charge effect.

Experiment Suggested at ORION • Goal: Acc. with Energy Stored in the Medium **Amplification of Cerenkov Radiation** $\epsilon(\omega)$ Investigate: Saturation effects Energy out vs. Energy stored Trigger bunch effect (N_{d} , γ_{d} , energy spread) Transition radiation effect.