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PASER:PASER:
Particle Acceleration by Stimulated Emission of Radiation

Phys. Lett. A, 205, p.355 (1995)
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demonstrated  experimentally!!
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Wake-Field AmplificationWake-Field Amplification
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Wake-Field Amplification - Eigen-frequenciesWake-Field Amplification - Eigen-frequencies

The dispersion equation:
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Ignore resonance

Resonance introduces a change:
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Wake-Field Amplification - Dispersion CurvesWake-Field Amplification - Dispersion Curves
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single mode will be amplified - provided the mode separation 
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Wake-Field Amplification - GradientWake-Field Amplification - Gradient

Longitudinal component of the electric field:
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Wake-Field Amplification - SaturationWake-Field Amplification - Saturation

At high intensities the inversion is reduced by the field:
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Wake-Field Amplification - Parameter AnalysisWake-Field Amplification - Parameter Analysis

Geometric and Electrical parameters

R[cm]             = 1
D[cm]             = 100
Rd [cm]           = 0.01
∆ [cm]             = 0.1
Eacc [GV/m]    = 1
Esat [MV/m]    = 10



Wake-Field Amplification - Parameter AnalysisWake-Field Amplification - Parameter Analysis
ND:YAG
[Y3AL5O12]

TI SAPPHIRE
[TI3+: AL2O3]

εr 1.82 1.76
λ [µm] 1.06 0.514
Νdop [atom/cm3] 5.8x1019 3.3x1019

Dopant Yttrium (1%) Ti2O3  (0.1%)
p 5.362x 104 9.981x 104

Zint [MΩ] 8.64 16.41
Energy [kJ] 3.24 3.8
Nacc [50% eff] 1.0x1013 1.2x1013

δω/ω0 0.134 0.051
Ed  [V/m] 3x10-4 6x10-5

dw [m] 0.36 0.49
P[MW] 5.78 3.05
S[MW/cm2] 1.8 0.97
Gain [dB/cm] 6.9 5.4



SummarySummary

•• PASER: Electrons gain energy stored  in the  PASER: Electrons gain energy stored  in the  
medium. For ``competitive`` gradients the charge medium. For ``competitive`` gradients the charge 
density required is very high thus the alternative isdensity required is very high thus the alternative is

•• WakeWake--Field Amplification.  Energy is in the Field Amplification.  Energy is in the 
medium medium ---- no need for optical system.no need for optical system.

•• Acc. mode moves at the speed of  trigger bunch.Acc. mode moves at the speed of  trigger bunch.

•• Inherent longitudinal electric field.Inherent longitudinal electric field.

•• Growth controlled by the population inversion.Growth controlled by the population inversion.

•• Less than  0.1Less than  0.1ππ mmmm--mradmrad emittanceemittance growth.growth.



SummarySummary

•• Vacuum acc. by combining solidVacuum acc. by combining solid--state medium.state medium.

•• Although the transverse dimension entails many Although the transverse dimension entails many 
modes excitation, they all move at modes excitation, they all move at VVdd and all and all 
oscillate at the frequency of the medium oscillate at the frequency of the medium ωω00

•• NdNd: YAG and Ti: Sapphire store sufficient : YAG and Ti: Sapphire store sufficient 
energy to accelerate more than 10 energy to accelerate more than 10 99 electrons electrons --
ignoring the longitudinal spaceignoring the longitudinal space--charge effect. charge effect. 



Experiment Suggested at ORIONExperiment Suggested at ORION

•• Goal: Goal: 
Acc. with Energy Stored in the Medium Acc. with Energy Stored in the Medium 
Amplification of Cerenkov RadiationAmplification of Cerenkov Radiation

•• Investigate: Investigate: 
Saturation effects Saturation effects 
Energy out vs. Energy stored Energy out vs. Energy stored 
Trigger bunch effect (Trigger bunch effect (NNdd,,,,γγdd,,, energy spread) , energy spread) 
Transition radiation effect.Transition radiation effect.

ε ( ω )
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