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We present detailed development of the linear theory of wakefield amplification by active medium and
its possible application to a two-beam accelerator (TBA) is discussed. A relativistic train of triggering
microbunches traveling along a vacuum channel in an active medium confined by a cylindrical waveguide
excites Cherenkov wake in the medium. The wake is a superposition of azimuthally symmetric transverse
magnetic modes propagating along a confining waveguide, with a phase velocity equal to the velocity of the
triggering bunches. The structure may be designed in such a way that the frequency of one of the modes is
close to active-medium resonant frequency, resulting in amplification of the former and domination of a
single mode far behind the trigger bunches. Another electron bunch placed in proper phase with the
amplified wakefield may be accelerated by the latter. Importantly, the energy for acceleration is provided by
the active medium and not the drive bunch as in a traditional TBA. Based on a simplified model, we analyze
extensively the impact of various parameters on the wakefield amplification process.
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I. INTRODUCTION

Classification of a novel acceleration paradigm distin-
guishes between plasma-based and structure-based
schemes. In the former case, a laser or an e-beam pulse
injected in plasma generates a space-charge wake that in
turn may accelerate electrons or positrons. Both methods
have demonstrated gradients of the order 100 GV=m—
more than 3 orders of magnitude the operating gradient in
existing linear accelerators. However, there are a few other
important characteristics (repetition rate, emittance, beam
transport, etc.) that are yet to be determined or improved
before the plasma-based schemes become a realistic alter-
native to the International Linear Collider (ILC).
A less drastic change in the acceleration approach is

adopted in the structure-based schemes. In this case, an
electromagnetic wave is injected or generated inside an
electromagnetic structure which is designed to support a
TM01 mode propagating at the speed of light and whose
longitudinal electric field may accelerate electrons or
positrons. Several approaches are relevant to the study
that follows, therefore we briefly describe them. The
compact linear collider (CLIC) [1] is developed at
CERN and its essence is to extract microwave power from
a drive beam (high-current medium-energy) using a peri-
odic metallic structure. This power is injected in a regular,
room-temperature, metallic structure which accelerates a
low-current high-energy main beam. The two electron

beams move along parallel lines which do not coincide.
At Argonne National Laboratory (ANL) [2] and Yale
University (Omega P) [3] a similar program is pursued
except that extraction units consist of a dielectric loaded
waveguide—thus the name dielectric wakefield accelerator
(DWA). In another configuration of DWA a Cherenkov
wake produced by the drive beam traveling along the a
dielectric-loaded waveguide may be used to accelerate a
trailing beam in the same structure. In this case both drive
and accelerated beams move along the same axis. The
theory of a wakefield in a dielectric-loaded waveguide is
presented in Ref. [4].
At optical frequencies, Ohm loss makes the metallic

acceleration structures irrelevant and they must be replaced
by equivalent dielectric structures [5–7]. A general treat-
ment of a wakefield confined by a dielectric structure is
given in Ref. [8]. Preliminary results from dielectric
acceleration structures driven by laser were recently
reported [9], indicating gradients in excess of 0.25 GV=m.
In the present study we propose a novel paradigm that

combines two concepts: (i) the well-known two-beam
accelerator (TBA) and the recently proposed (ii) enhanced
Cherenkov wake amplification by active medium [10]. Its
essence is two trains of microbunches propagating along
the same axis of a structure that contains active medium. In
a specific module of the TBA, the first train contains the
trigger bunches which generate Cherenkov radiation that in
turn is amplified by the active medium (AM). Slightly after
the medium reaches saturation ðLsatÞ, the amplitude of the
Cherenkov wake is constant and it is there where we place
the trailing train in antiphase with the former such that its
bunches are accelerated. In both trains, the spacing between
two adjacent microbunches is the resonant wavelength of
the medium. By the active medium we mean a medium
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whose distribution is inverted either electrically or opti-
cally. Conceptually, the medium can be solid state or
gaseous, though in the specific assessments that follow
we consider the latter.
This new scheme, see Fig. 1, is closely related to the

coaxial DWA described by Ref. [4] with one principal
distinction—the energy required for the acceleration proc-
ess is not carried by the trigger train, but rather stored in the
active medium. Consequently, similar low-current medium-
energy beams may be used as both trigger and trailing
(accelerated) beams. As already indicated, the role of the
former is to generate initial Cherenkov radiation which will
be amplified by the active medium and then accelerate the
latter. Typically, in the trailing beam there are order of a few
106 electrons and the gradient is of the order of 1 GV=m.
For satisfying the luminosity requirements, the electrons
must reach the interaction point at a rate of 1014 electrons
per second [11]. Consequently, the repetition rate of the
system must be of about 100 MHz corresponding to 3 m
spacing between two consecutive trailing trains. Energy
wise, considering a 1 m long module, the total energy the
train absorbs is 0.1 mJ thus assuming 10% conversion
efficiency the active medium should contain at least 1 mJ in
each one meter long module. Whatever optical energy is
lost, it has to be replenished within 10 nsec such that the
next trigger train of bunches experiences the same con-
ditions. In the rough assessment from the above, it was
tacitly assumed that the saturation length is negligible
comparing to the spacing between two consecutive trigger
trains—for the characteristic values to be discussed sub-
sequently, Lsat ∼ 2–10 cm.
It warrants clarifying here that we use the word train in

two different contexts: (i) at the single module level, we
have the train of trigger microbunches and train of trailing
(accelerated) microbunches. The spacing between the two
microtrains is of the order of the saturation length (cen-
timeters). (ii) At the system level we have two trains. One
contains all the trigger microtrains and the other consists of
all the trailing microtrains. The spacing between two
macrotrains is determined by the repetition rate of the
laser (meters).
Figure 2 shows a schematic of a single module. The

vacuum channel, where the electrons propagate, is confined

by a relatively thick dielectric layer designed to sustain the
high pressure gas mixture which consists the active
medium. As the only role of the dielectric layer is to
provide a vacuum channel in a gaseous active medium, in
case the latter is solid (NdYAG) no dielectric layer would
be required. The ultrarelativistic electron beam passing the
vacuum channel polarizes both the dielectric and the active
medium triggering in both a Cherenkov wake which will
propagate through the structure with velocity of the
triggering beam. The whole structure may be designed
in such a way that one of the eigenfrequencies of the
triggered wake is equal to the resonant frequency of the
active medium. The analysis that follows shows that this
resonant mode will be amplified by the active medium. A
part of the amplified Cherenkov radiation will propagate
through the vacuum channel behind the triggering beam
with phase velocity equal to that of the trigger and may be
used to accelerate trailing beam branches. The active
medium and the Cherenkov wake are confined by the
Bragg waveguide. In spite that it confines the Cherenkov
radiation generated by the electrons, the Bragg waveguide
facilitates full transfer of optical energy to ensure popula-
tion inversion of the mixture of gases. While detailed
design of the confining Bragg structure is beyond the scope
of this study, a good example of such design may be found
in Ref. [7]. For instance, in a case of a CO2 mixture as an
active medium, the structure may be engineered to confine
the 10.6 μm Cherenkov wake and to be transparent for

FIG. 1. An off-scale schematic of the proposed active-medium
two-beam accelerator (AM-TBA) concept. The trigger train in
each module generates Cherenkov radiation, which is amplified
by the active medium—its amplitude is schematically described
by the green line. As this amplification process saturates, the
amplitude of the wake is virtually constant and it accelerates the
trailing train of bunches.
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FIG. 2. Schematic (not in scale) of the conceived configuration.
The vacuum tunnel facilitates smooth transport of electrons.
Between the high vacuum region and the pressurized active gas
there is a low-loss thick dielectric vessel designed to withstand
the pressure gradient. The active medium is confined by a Bragg
structure designed to confine an evanescent field but transfer
propagating waves. A pulsed CO2 laser (not shown) excites a
CO2 based mixture from the outside the Bragg waveguide,
ensuring uniform population inversion.
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pumping radiation at 4.2 μm from an HBr laser [12] or
3.5–4.0 μm from a DF laser [13]. For NdYAG the corre-
sponding numbers are 1.06 μm and 808 or 812 nm.
Throughout this study we are biased by the assumption
that the active medium is gaseous (CO2) since we assume
that it will be easier to make micrometer long microbunches
than submicrometer; however, by no means do we rule out
the possibility of solid-state active medium.
In the present study, we bring a detailed account of the

concept briefly introduced in [10]. First the essence of the
concept is described in details on the basis of a simplified
model. In the latter the electrons are allowed to move freely
through the active medium without a need to account for
presence of the vacuum channel and the solid dielectric
surrounding it. Another departure of the simplified model
from the reality is that the confining Bragg structure is
replaced with an ideal metal wall. The absolute value of the
reflection coefficient for the frequency of interest from a
metallic surface or a Bragg mirror is close to unity in both
cases, while the phase of the reflected wave is different.
Obviously in a detailed design this phase difference should
be accounted for by proper selection of the structure
geometry, but it is beyond the scope of the present
conceptual study. In Sec. II we summarize the main
positions of our simplified model for wake amplification
by active medium. Section III provides formalism for
power exchange in the structure. Section IV determines
the main parameters for a specific active medium.
Section V is devoted to impact of various parameters on
the wake amplification. In Sec. VI we provide simulation
results for wake amplification with some geometry opti-
mization for two different pressure levels of the gaseous
medium. In the context of this study simulation is a
numerical evaluation of analytical results. In Sec. VII we
return to the realistic configuration shown schematically in
Fig. 2, presenting a mathematical model for wake dynamics
and power considerations.

II. SIMPLIFIED MODEL

In [10] we have briefly considered a simplified model in
order to emphasize the physical essence of the paradigm. In
the present study we show a more detailed analysis based
on that model and improve the latter in an attempt to make
the assessments more realistic. Explicitly, we have dem-
onstrated that operation close to the cutoff of Cherenkov
radiation results in an enhanced gain. In the framework of
the simplified model, the Bragg waveguide is replaced by a
metallic waveguide ignoring for simplicity’s sake Ohm loss
and the way the medium is excited; its radius is denoted by
Rw. Further, we ignore the small-angle scattering effect of
the gaseous medium on both trigger and accelerated
electrons, therefore the dielectric layer that buffers between
the vacuum tunnel and the active medium is ignored such
that the electrons propagate freely in the active medium.

An assessment of the gain enhancement can be per-
formed in three steps: first we observe that assuming
lossless wall, a discrete spectrum of Cherenkov eigenfre-
quencies ωs ¼ ðcps=RwÞðεr − β−2Þ−1=2 is generated; here
ps are the zeros of the Bessel function of the zero order and
first kind J0ðpsÞ≡ 0; s ¼ 1; 2;…;∞, εr > 1 is the
(frequency independent) dielectric coefficient in the
absence of the active medium and β is the normalized
velocity of the charged particle. In the ultrarelativistic
regime ðγ → ∞Þ the Cherenkov slippage

ε̄≡ εr − β−2 ≃ εr − 1 ð1Þ
is virtually independent of the energy of the electrons.
Second, assuming a linear regime, the active medium is
described by

εðωÞ ¼ εr þ
ω2
p

ω2
0 þ jωΔωþ ðjωÞ2 ; ð2Þ

where ω0 is the resonance of the medium, Δω is its
bandwidth, ω2

p ¼ −2cαΔω ffiffiffiffi
εr

p
and α is the gain per unit

length. The expression for ω2
p is derived from a consid-

eration that gain α for a plane wave at resonance equals the
gain associated with the imaginary component of the wave
vector. Third, we design the parameters such that there is
only one eigenmode ðs ¼ s0Þ whose eigenfrequency
ðωs¼s0Þ virtually equals the resonant frequency of the
medium ðω0Þ, namely ωs0 ≃ ω0. This eigenmode will be
amplified by the active medium—similar to a TEM mode.
We emphasize similar and not identical since, in the
Cherenkov case, the phase and group velocities are
determined by the trigger bunch velocity. Consequently,
the amplification occurs both in space and in time. In the
case of a laser, both velocities are determined by the
medium and the amplification may occur in space (ampli-
fier) or in time (oscillator due to reflections). In the latter
case, the medium and the boundary conditions impose the
growth rate.

A. Kinematics

In the presence of the active medium, the eigenreso-
nances, associated with the bunch-medium interaction, are
a solution of a fourth order polynomial, rather than second
order in its absence, and the dominant of the four modes are
given by

ω� ¼ ω0 þ j
Δω
4

ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16a2

p
Þ≡ ω0 þ jδω� ð3Þ

wherein a2 ≡ cα=2ε̄Δω; for example, if Δω≃ 2π × 37×
109, ε̄ ¼ 1.42 × 10−3 and α ¼ 1 m−1, then a≃ 0.674. This
analytic expression clearly reveals the effect of the
Cherenkov “slippage” factor ε̄ on the enhancement process
explicitly, δω� ¼ ðΔω=4Þð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8cα=ε̄Δω
p Þ and at the
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limit ε̄ → 0 the Cherenkov wake is close to its “cutoff” and
consequently, the growth rate of the wake is very large.

B. Dynamics

To each one of the eigenfrequencies corresponds an
eigenmode, and in what follows we establish the wake in
terms of these modes in two dimensions (r, z) as well as in
time defining τ≡ t − z=v. We start with the exact expres-
sion for the longitudinal electric field given the current
density Jzðr; z; tÞ ¼ −ðqv=2πrÞδðr − rσÞδðz − zσ − vtÞ
namely,

Eðs;σÞ
z ðr; τÞ ¼ q

4π2ε0εr

X
s

Gsðr; rσÞ

×
Z

∞

−∞
dωjωFsðωÞ exp

�
jω
�
τ þ zσ

cβ

��
:

ð4Þ
Note that q is the charge of an infinitesimally thin loop of
radius rσ which at t ¼ 0 is located at z ¼ zσ and

FsðωÞ≡
1 − 1

εðωÞβ2

c2 p2
s

R2
w
− ½εðωÞ − 1

β2
�ω2

≃ 1

εr

ω2
0 þ jωΔω − ω2

ðω2
C;s − ω2Þðω2

0 þ jωΔω − ω2Þ − ω2
C;pω

2
; ð5Þ

where ω2
C;s≡c2p2

s=R2
wε̄ and ω2

C;p≡ω2
p=ε̄. The former deter-

mines the poles of longitudinal Green’s function, whereas
Gsðr;r0Þ≡J0ðpsr=RwÞJ0ðpsr0=RwÞ½R2

wJ21ðpsÞ=2�−1 is the
radial component of Green’s function. In the approximation
of Eq. (5) we had ignored the poles associated with the
dielectric alone, εðωÞ ¼ 0.
Based on this formulation, we demonstrated in [14] that

the eigenfrequencies are exact expressions subject to the
assumptions made and had shown that the interacting mode
ðs ¼ s0Þ satisfies

Eðs0;σÞ
z

�
r; τ þ zσ

cβ

�
¼ q

2πε0εr
Gs0ðr; rσÞU

�
τ þ zσ

cβ

�
; ð6Þ

where

UðτÞ≡ hðτÞ
δωþ − δω−

×

8>>><
>>>:

δω−δωþ
ω0

sinðω0τÞ
�
expð−δωþτÞ
− expð−δω−τÞ

�

þ cosðω0τÞ
�
δωþ expð−δω−τÞ
−δω− expð−δωþτÞ

�
9>>>=
>>>;
: ð7Þ

As the δω−; δωþ ≪ ω0, components of UðτÞ proportional
to sin ðω0τÞ are negligible, while from the two remaining

components only one, proportional to exp ð−δω−τÞ, is
growing in τ. Thus, many resonance wavelengths behind
the trigger bunch ðτc=λ0 ≫ 1Þ, the field dynamics may be
approximated as

UðτÞ≃ δωþ
δωþ − δω−

cosðω0τÞ expð−δω−τÞ ð8Þ

clearly revealing the exponentially growing character of the
wake ðδω− < 0Þ. For reasons that will become clear
subsequently, it is important to notice that Uð0Þ ¼ 1=2.

III. POWER CONSIDERATIONS

A. Trigger bunch

With the single-particle wake established, we may now
proceed to evaluation of the power generated by a train of
microbunches of a given transverse f⊥ðrÞ and longitudinal
f∥ðzÞ distributions. For our present purposes, wemay assume
that the two distributions are statistically independent—
without any loss of generality. Formally, the power
generated by a current density as determined prior to

Eq. (4) is given by PðspoÞ ¼ R dVJzðr; z; tÞEðs0;σÞ
z ðr; z; tÞ

thus, PðspoÞ ¼ ðq2v=2πε0εrÞ
P

σGs0ðrσ; rσÞUð0Þ. As indi-
cated above, Uð0Þ ¼ 1=2 and using the definition of the
radial Green’s function the noncoherent component of the
power generated by Nel electrons in the resonant mode is

PðspoÞ ¼ −Nelq2v
4πε0εrR2

w

2

J21ðps0Þ
FðspoÞ
⊥ ð9Þ

wherein FðspoÞ
⊥ ≡ 2π

R Rw
0 drrf⊥ðrÞJ20ðps0r=RwÞ is the trans-

verse spontaneous form factor.
For assessment of the coherent component of the

power, we recall that the current density associated with
the ensemble is Jzðr; z; tÞ ¼ −ðqv=2πrÞPσδðr − rσÞ×
δðz − zσ − vtÞ implying that the wakefield Eðs0Þ

z ðr; z; tÞ ¼
ðq=2πε0εrÞ

P
σGs0ðr; rσÞU½t − ðz − zσÞ=cβ�; the coherent

component of the power is PðcohÞ ¼ R dVJzðr; z; tÞ×
Eðs0Þ
z ðr; z; tÞ − PðspoÞ; therefore the coherent power is

PðcohÞ ¼ −Nelq2v
4πε0εrR2

w
ðNel − 1Þ 2

J21ðps0Þ
FðcohÞ
⊥ FðcohÞ

∥ ð10Þ

wherein FðcohÞ
⊥ ≡ ½2π R Rw

0 drrf⊥ðrÞJ0ðps0r=RwÞ�2 is the

coherent transverse form factor, whereas FðcohÞ
∥ ≡

2
R
∞
−∞ dzf∥ðzÞ

R
∞
−∞ dζf∥ðζÞU½ðz − ζÞ=cβ� represents the

longitudinal counterpart.
Finally, the total power emitted

PðtotÞ ¼ −Nelq2v
4πε0εrR2

w
½FðspoÞ

⊥ þ ðNel − 1ÞFðcohÞ
∥ FðcohÞ

⊥ �: ð11Þ
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Assuming transverse distribution to be Gaussian and
characterized by rms value σ⊥, namely f⊥ðrÞ ¼
ð1=2πσ2⊥Þ exp ð−r2=2σ2⊥Þ and assuming Rw ≫ σ⊥ we
may approximate the transverse form factors by semi-
indefinite integrals having analytical solutions, which with
definition σ̄⊥ ≡ ps0σ⊥=Rw read

FðspoÞ
⊥ ≃ 1

σ2⊥

Z
∞

0

drr exp

�
−

r2

2σ2⊥

�
J20

�
ps0

r
Rw

�
¼ expð−σ̄2⊥ÞI0ðσ̄2⊥Þ ð12Þ

FðcohÞ
⊥ ≃

�
1

σ2⊥

Z
∞

0

drr exp

�
−

r2

2σ2⊥

�
J0

�
ps0

r
Rw

��
2

¼ expð−σ̄2⊥Þ: ð13Þ

Solution for integrals in Eq. (12) and (13) may be found
in [15], Eq. (10.22.67). In Fig. 3 we present spontaneous
and coherent transverse form factors as a function of
the transverse distribution rms value for s0 ¼ 355
and Rw ¼ 50 mm.
As in the case of transverse form factors we expect the

longitudinal distribution of a single microbunch to be close
to a Gaussian characterized by rms value σ∥. Longitudinal

form factor FðcohÞ
∥ is calculated numerically for 10 atm

active medium values summarized in Table I and the
resulting function is presented in Fig. 4. A rough analytic

estimation of the form factor FðcohÞ
∥ is presented in

Appendix A.
It shall be emphasized that we had considered in this

section only resonant mode s0. In reality, the contribution
of other modes in the near field is not negligible; con-
sequently, the superposition of modes shall be taken into
account for an accurate estimate of the power exchange.

B. Far field

Several thousands of λ0 behind the trigger bunch the
resonant mode dominates the wakefield and the amplitude
of the longitudinal electric field may be approximated by
this resonant mode only. For an ultrarelativistic triggering
bunch of length Lt ≫ λ0 density modulated at the medium
resonance frequency with depth Am, while Am ¼ 1 means
100% modulation depth, the amplitude of the wake many
wavelengths behind the trigger is approximated as

jEðs0Þ
z ðτ; Lt; AmÞj≃ Eðs0;σÞ

z ð0Þ 1þ ð1þ 16a2Þ−1=2
2

× expð−δω−τÞ
jδω−j
ω0

FðmodÞ; ð14Þ

where

FIG. 3. Spontaneous FðspoÞ
⊥ and coherent FðcohÞ

⊥ transverse form
factors for a Gaussian transverse distribution as functions of the
rms value σ⊥ for s0 ¼ 355 and Rw ¼ 50 mm.

TABLE I. Simulation parameters.

Parameter Value

Medium (CO2)
Resonance wavelength λ0 10.6 μm
Resonance frequency ω0 1.78 × 1014 rad=s
Resonance bandwidth Δω 4.62 × 1010 rad=s (@∼2 atm)

2.32 × 1011 rad=s (@∼10 atm)
Growth rate coefficient α 1 m−1

Relative permittivity εr 1.00028 (@∼2 atm)
1.00142 (@∼10 atm)

Waveguide
Radius Rw 50 mm
Resonance mode s0 158 (@∼2 atm)

355 (@∼10 atm)
e-beam
Lorentz factor γ 600
Total charge Qtotal 109 e
Length Ltr 150 λ0
Modulation Am 0.2
Radius (rms) σb 30 μm

FIG. 4. Coherent longitudinal form factor FðcohÞ
∥ for a Gaussian

longitudinal distribution as a function of the rms value σ∥ for
10 atm active medium values summarized in Table I.
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FðmodÞ ≡ ω0

jδω−j
1 − expð−2πNλ

jδω−j
ω0

Þ
2πNλ

×

�
1 Am ¼ 0

Am
2

ω0

jδω−j Am ∼ 0.1
: ð15Þ

Here Nλ is the length of the modulated trigger bunch,
expressed in the medium resonance wavelengths. A der-
ivation of expression (14) is shown in Appendix B. This
approximation is in agreement with simulation results
shown in Sec. VI. The factor FðmodÞ is accounting for
the contribution of the bunch’s finite length and its
modulation. For a zero bunch modulation ðAm ¼ 0Þ and
for short bunches ðNλ → 0Þ this factor approaches its
maximum value of unity. One would expect the field to
be identically zero for Lt > λ0 at Am ¼ 0, but the ampli-
fication ðδω− < 0Þ along the bunch length prevents exact
compensation of the field produced by the bunch charge
along wavelength λ0. On the other hand, for significant
modulation values ðAm ∼ 0.1Þ the contribution of the
bunch’s finite length and its modulation is limited by the
maximum value of Am=2 and gradually degrades toward
zero with increase of the bunch length Nλ.

IV. MEDIUM PARAMETERS

So far no attempt has been made to optimize the active
medium for our purposes. While solid-state lasers have a
clear advantage of relatively high efficiency, the CO2 laser
has the inherent advantage of long wavelength, making the
bunch generation much easier. A more pragmatic reason for
our choice of a CO2 based mixture is the future feasibility
of testing the concept at BNL-ATF. In the present section,
we consider the parameters of the active medium or more
specifically, we estimate realistic values for the parameters
of Eq. (2) for a CO2 mixture.
It should be pointed out that while we focus here on CO2

active medium, most arguments hold for other gaseous
media (HeNe, Arþ, Kr, Xe or excimer). While the CO2 has
a variety of resonances, the dominant corresponds to
10.6 μm wavelength or ω0 ¼ 1.78 × 1014 rad=s; the
remaining parameters are inferred based on proven laser
systems—BNL [17] and UCLA [18] and other sources,
referenced comprehensively in our past publications [10]
and [14]. In particular, for pressure of 10 atm, small-signal
gain with respect to the intensity at resonance is estimated
as α ¼ 1 m−1, effective bandwidth of the active spectral
line as Δωeff ≃ 2π × 37 GHz and dielectric coefficient εr
for the CO2∶N2∶He (1∶1∶14) mixture is taken to be
εr − 1≃ 1.42 × 10−3. Note that closely located 10R as
well as 9P and 9R branches of CO2 spectral lines may affect
significantly relative dielectric coefficient value at 10.6 μm.
We should keep in mind that for a realistic configuration a
“fine-tuning” of the mixture will be required in order to
achieve desirable εr value at the wavelength of interest.

V. PARAMETRIC DEPENDENCE

Our goal in this section is to estimate general trends of
the wakefield amplification dependence on main parame-
ters of the active medium. First we want to evaluate these
parameters assuming them to be independent variables,
although it is not the case for an actual system, as will
be shown subsequently, as virtually all of them depend
on the pressure. The specific pressure value will depend
on constrains of a chosen operation regime. In this study
we chose to consider two pressure values—2 and
10 atm.
Dependence on the resonant wakefield mode amplitude

on main parameters of the medium 2000λ0 behind the
trigger found from Eq. (14) are shown in Fig. 5 by dashed
lines. For comparison results from the full simulation
taking in account 1000 modes of the wake are shown by
circles on the same graph. Two trends are evident: first,
increasing the bandwidth by a (magnification) factor
M ¼ 2 leads to an order of magnitude increase in the
gradient whereas a similar magnification of the gain leads
to increase of more than 2 orders of magnitude in the
gradient. Note that the gradients above 10 GV=m should be
considered only as indicators since breakdown and satu-
ration will limit the electric field to this level. The second
important trend is the slippage effect. Enhancing the
slippage by a factor of M ¼ 2 leads to more than an order
of magnitude reduction in the gradient.

A. Pressure

In Fig. 5 the three parameters were assumed to be
independent. In practice, they are dependent and the
pressure affects them all. In what follows we develop a
relatively simple model that will allow us to make a more
reliable, self-consistent assessment of the gradient

FIG. 5. Dependency on the resonant wakefield mode amplitude
on main parameters of the medium (α, Δω and ε̄≡ εr − β−2) at
2000λ0 behind the trigger found from Eq. (14) (dashed lines).
Results from the full simulation taking in account 1000 modes
are shown by circles. Nominal values for the parameter are
corresponding to values in Table I for 10 atm.
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assuming that the geometrical parameters are kept constant.
Our starting point is to assume the pressure broadening to
be a dominant mechanism affecting the spectral linewidth
and the Δω to be proportional to the gas mixture pressure.
The UCLA group assumes in [18] the CO2 spectral
linewidth to be 37 GHz at 10 atm due to pressure broad-
ening for the CO2∶N2∶He (1∶1∶14) mixture. Explicitly this
assumption may be formulated as

ΔωðPÞ ¼ 2πgPP: ð16Þ

Consequently, the pressure broadening coefficient for the
mixture is estimated as gP ¼ 3.7 GHz=atm. This value is of
the same order of magnitude as the pressure broadening
values for CO2 spectral lines from the HITRAN database
[19], where for the 10.6 μm (944.2 cm−1) spectral line
pressure self-broadening and air broadening are specified
as 5.88 GHz=atm and 4.30 GHz=atm (FWHM values).
The growth rate coefficient α is related to population

difference density Δn as

α ¼ 1

2

λ20
2π

A21

Δω
Δn; ð17Þ

where Einstein’s A coefficient A21 ≃ 0.2 s−1 for CO2

spectral lines according to [19] and the sign of Δn is
positive for inverted population. Thus knowing α and Δω
we can estimate the population difference density and in
our case

Δn ¼ 4π
αΔω
λ20A21

≃ 1.300 × 1023 m−3: ð18Þ

The density of CO2 molecules at a pressure of 10 atm and at
room temperature for CO2∶N2∶He (1∶1∶14) mixture is

nCO2
≃ 1.48 × 1025 m−3: ð19Þ

The relative population difference density is

Δn̄≡ Δn
nCO2

≃ 0.88%: ð20Þ

It was shown by Siegman [20] that for a “good laser
system” the pressure-dependent nonradiative decay rates
may be neglected for a rough assessment of the relative
population difference density and for a four-level system
the latter is estimated as

Δn
n0

≡ Δn̄≃ ηWpτrad
1þ ηWpτrad

: ð21Þ

Here Δn is an absolute population difference density, n0 is
the total density of the molecules or atoms, η is the
fluorescence quantum efficiency, Wp is a pumping rate
associated with pumping transition probability and τrad is a
reciprocal of the radiative decay rate for the active transition
of the medium—see Appendix C for details.
Assuming that for a realistic laser mixture, from which

our parameters are taken, η is on the order of unity, we may
estimate that the relative population difference density Δn̄
is approximately constant over pressure as long as mixture
proportions are unchanged. Then expressing the growth
rate coefficient α in terms ofΔn̄ and substituting expression
for Δω we find

αðPÞ ¼ 1

2

λ20
2π

A21

ð2πgPPÞ
�

1

1þ 1þ 14

P
kBT

�
Δn̄: ð22Þ

The assumption that the relative population difference
densityΔn̄ is independent of pressure makes the growth rate
coefficient α defined by Eq. (22) independent of pressure as
well. If for a particular gas mixture Δn̄ would show some
pressure dependence, it may be easily taken into account. For
what follows we will consider αðPÞ ¼ const.
Based on Lorentz-Lorenz equation electric susceptibility

ðεr − 1Þ is proportional to the pressure and since εrðPÞ ¼
1þ fPP we have

ε̄ðPÞ ¼ fPP −
1

γ2 − 1
≃ fPP − γ−2; ð23Þ

for our parameters fP ¼ 1.42 × 10−4 atm−1.
We now may express an effective enhanced gain as a

function of pressure

αeffðPÞ ¼ −
Δω
4c

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8

ε̄

cα
Δω

r �

≃ −
2πgPP
4c

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

π

cα
fPgPP2

s !
: ð24Þ

It is important to keep in mind that expression (24) is valid
only for values of pressure satisfying the resonance con-
dition ω0 ¼ ðcps=RwÞε̄−1=2 and the latter is affected by
pressure via ε̄ðPÞ. If we assume the waveguide radius Rw
is unchanged, the resonance condition is satisfied for
“discrete” values of pressure Pðs0Þ defined by

ps0 ¼ 2π
Rw

λ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε̄½Pðs0Þ�

p
ð25Þ

consequently, the pressure values satisfying the resonance
condition are
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Pðs0Þ ¼
ðps0
2π

λ0
Rw
Þ2 þ 1

γ2−1

fP
≃ ðs0−1=4

2
λ0
Rw
Þ2 þ γ−2

fP
: ð26Þ

In the last expression we took in account that the roots of
the zero-order Bessel function of the first kind may be
approximated as psðsÞ≃ πs − π=4; thus, the dependence
of the resonant mode on the pressure may be expressed as

s0ðPÞ≃ Integer

�
1

4
þ 2

Rw

λ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fPP − γ−2

q �
: ð27Þ

From here the minimal pressure value for our set
of parameters is P1 ≃ 0.0196 atm, and the pressure
“resolution” required in order to distinguish between
different modes s is

ΔPðs0Þ≃ s0
2fP

�
λ0
Rw

�
2

ð28Þ

thus, if s0 ¼ 360, then ΔPð360Þ≃ 0.05 atm.
Let us summarize the effects of the gas mixture pressure

in short: as the pressure directly affects the mixtures
permittivity, namely εr − 1 ∝ P, for an ultrarelativistic
beam the Cherenkov slippage factor ε̄ is also proportional
to the pressure, Eq. (23), thus making the squared eigen-
frequencies of the wake to be inversely proportional to the
pressure (ω2

C;s ≡ c2p2
s=R2

wε̄). Spectral linewidth is directly
proportional to the pressure and finally the enhanced gain
depends on pressure as shown by Eq. (24). In the next
sections we will show the complex effect of the pressure on
the wake growth rate. As the relative population difference
density is expected to be constant, the absolute population
difference density is directly proportional to the pressure,
whichmakes an estimated saturation of squared electric field
of thewake to be directly proportional to the pressure aswell.

B. Energy spread

Assessment for the enhanced gain, Eq. (24), is based on
assumption that the resonance condition ωs0 ¼ ω0 ¼
ðcps=RwÞε̄−1=2 is perfectly matched for a given energy
of the triggering bunch. In reality, there is a certain spread
in the bunch energy resulting in some “detuning” from the
resonance for each electron. In order to take this into
account we assume the Lorentz factor γ to be normally
distributed with a standard deviation Δγ and an expectation
value γ0:

fγðγÞ ¼
1ffiffiffiffiffiffi
2π

p
Δγ

exp

�
−
ðγ − γ0Þ2
2Δγ2

�
: ð29Þ

In practice, the growth rate coefficient α is in general
frequency dependent and for a case when the pressure
broadening is dominant this dependency is approximated
by a Lorentzian line shape [21]

αðωÞ ¼ πα0ðΔω=2Þ
�
1

π

Δω=2
ðω − ω0Þ2 þ ðΔω=2Þ2

�
ð30Þ

and an averaged effective enhanced gain for a wake
generated by the energy distributed triggering bunch
may be calculated from

EzðLÞ
E0

¼
Z

∞

−∞
dγfγðγÞ exp½αeffðγÞL�≡ expðhαeffiLÞ ð31Þ

or explicitly

hαeffi ¼
1

L
ln

�Z
∞

−∞
dγfγðγÞ exp ½αeffðγÞL�

�
: ð32Þ

We calculated hαeffi from Eq. (32) numerically for γ0 ¼
600 andΔγ=γ0 ¼ 0.001. The results are presented in Fig. 6.
As the Cherenkov slippage approaches zero at low

pressures, the gain for a wake produced by particles with
the energy satisfying the resonance condition exactly,
grows by an order of magnitude. However, due to the
energy spread of the particles at the pressure values below
0.5 atm a significant part of the triggering bunch produces
wake out of resonance reducing the average gain for the
wake. At the same time for pressure values well above
0.5 atm the energy spread of Δγ=γ0 ¼ 0.001 has virtually
no effect on the average gain; with pressure, the value of
hαeffi approaches asymptotically the curve corresponding
to Δγ ¼ 0. The effective gain, defined by Eq. (31), depends
on the distance L behind the trigger bunch and on the
degradation due to low pressure; the latter is less prominent
for large values of L. In other words, hαeffi approaches the
curve corresponding to Δγ ¼ 0 for large values of L. We
need to keep in mind that present assessment does not take

FIG. 6. Averaged effective enhanced gain for triggering bunch
distribution Δγ=γ0 ¼ 0.001 at different distances L behind the
triggering bunch and for Δγ=γ0 ¼ 0.
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into account the effect of saturation due the population
difference density reduction which obviously will be faster
at lower pressure.

VI. GRADIENT

In this section we revisit our simulation results for wake
amplification in 10 atm CO2 mixture published in [14],
with a set of parameters updated according to the above
considerations and summarized in Table I. The e-beam
radius is reduced to 30 μm (rms); resonance bandwidth,
relative permittivity of the mixture and the resonance
eigenmode are considered for pressure values of approx-
imately 2 and 10 atm. As in the previous publication, the
trigger beam is assumed to be density modulated at the
resonant frequency of the medium—ω0. The transverse
density of the beam is assumed to be a Gaussian,
f⊥ðrÞ ¼ ð1=2πσ2bÞ expð−r2=2σ2bÞ, thus the current density
is expressed by

Jzðr; τÞ ¼ f⊥ðrÞv
Qtotal

Ltr
½1þ Am cosðω0τÞ�

×

�
hðτÞ − h

�
τ −

Ltr

v

��
: ð33Þ

The objective of numerical simulation is an exact
evaluation of longitudinal electric field as defined by
Eq. (4) for a trigger beam in the form defined by
Eq. (33). The procedure employed is to find numerically
roots of the denominator of the spectrum function, Eq. (5),
for a specific mode s of interest. When the roots are known,
the integral in Eq. (4) may be solved analytically and a
contribution of each mode, including its propagating and
evanescent components, to the wakefield is found exactly
as a function of time and longitudinal coordinate for a
given trigger bunch position zσ. We had superimposed the
calculation for the first 1000 modes of the wakefield. Radial

FIG. 7. Contribution of the various modes to Ez. In the inset we
compare resonance and off-resonance conditions near the
peak. (a) Pressure is approximately 2 atm; (b) pressure is
approximately 10 atm.

FIG. 8. Amplitude of Ez behind the trigger bunch (time
domain) for 1000 Bessel harmonics (red curve), the single
resonant Bessel harmonic (blue curve). For both (a) 2 atm and
(b) 10 atm about 1000 λ0 away from the trigger bunch the
resonant mode is dominant.
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distributions of the trigger and accelerated beams are
taken to be of identical Gaussian form and assuming
the beam transverse dimensions to be small relative to
waveguide radius the radial component of the Green’s
function is averaged as 2π

R∞
0 dr0f⊥ðr0Þr0J0ðpsr0=RwÞ×

2π
R
∞
0 drf⊥ðrÞrJ0ðpsr=RwÞ ¼ expð−p2

sσ
2
b=R

2
wÞ. All that is

left is to integrate the result over any given trigger bunch
distribution which may be done numerically for a desired
resolution in zσ . In the particular case of trigger bunch
described by Eq. (33) the integration is done analytically
with a result for propagating and evanescent components of
each mode in a form of Eq. (14).
It is important to emphasize at this point that the results

of numerical assessment presented here are exact only in
the framework of the linear analysis of the model.
Investigation of the nonlinear regime for a similar con-
figuration is presented in Ref. [22].
Figure 7 shows the contribution of the various modes at a

distance L ¼ 2000λ0 behind the modulated trigger bunch

for the mixture pressure values of 2 and 10 atm. Due to
reduced beam radius the contribution of the low eigenm-
odes is lower and the contribution of the modes in vicinity
of the resonance is higher, comparing to the 4 mm beam
considered in our simulations in [14]. As a result, according
to the linear model, while no saturation or gas breakdown is
taken in account, the amplified wake exceeds electric field
values of the order of GV=m already at 2000λ0 (∼2 cm)
behind the trigger.
For both pressure values only one or two modes in the

vicinity of the resonance have a significant contribution and
the rest are orders of magnitude weaker. While waveguide
radius is unchanged for both cases (50 mm) the mixture
pressure is adjusted (a) to 1.989 atm, corresponding to the
resonance mode s0 ¼ 158; and (b) to 9.977 atm, corre-
sponding to the resonance mode s0 ¼ 355. The insets

FIG. 9. Amplitude of Ez behind the trigger bunch (time
domain) employing 1000 Bessel harmonics in the case of
resonance ωs0;C ¼ ω0 (red curve) and off resonance (blue curve).

FIG. 10. Amplitude of Ez behind the trigger bunch (time
domain) employing 1000 Bessel harmonics in the case of
resonance ωs0;C ¼ ω0 with modulated (red curve) and not
modulated (blue curve) beam. The typical signal to noise ratio
is about 40 dB for an initial 20% modulation for both pressure
values.
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illustrate off-resonance behavior—the pressure is shifted in
order to have the resonance exactly between two eigen-
frequencies: (a) 2.001 atm sets the resonance between
modes 158 and 159; (b) 10.006 atm sets the resonance
between modes 355 and 356. It may be seen from Fig. 7
that the exact tuning of the eigenfrequency is more critical
at lower pressure—the amplitude of the amplified wake is
reduced by about 4 orders of magnitude while off reso-
nance at pressure of 2 atm and only by about 1 order of
magnitude at pressure of 10 atm. The amplification is
higher at lower pressure due to the fact that the Cherenkov
slippage factor is reduced with pressure. However one shall
keep in mind that this result is true for the linear model and
the picture will change dramatically when the energy
depletion by the growing wake will be considered. In
the latter case more dilute medium, storing less energy, will
deplete faster eventually limiting the amplification.
The enhanced exponential gain is clearly revealed in

Fig. 8 where the gradient is illustrated for two cases: a
single resonance mode ðs ¼ s0Þ and first 1000 modes
ð1 ≤ s ≤ 1000Þ; the asymptotic behavior in both cases is
determined by the resonant mode ðs0Þ while all the others
determine the “near-field,” adjacent to the trigger bunch.
Whether the resonance condition is exactly satisfied or

only approximately, may make significant difference as
revealed in Fig. 9. Finally, Fig. 10 shows that typically a
signal to noise ratio of 40 dB may be expected in the case of
a 20% modulated beam comparing to a zero-modulated
beam regardless of the pressure—2 or 10 atm.

VII. REALISTIC CONFIGURATION

While the configuration of a uniformly filled metallic
waveguide has its great advantage since it facilitates a
relatively simple analytic set of expressions that describe
the wake amplification, it has three deficiencies. (i) A
relativistic beam may ionize the gas mixture and as a result,
the active medium will be altered or even destroyed. (ii) For
the parameters of interest, the overall pressure of the gas
mixture must be of the order of 8–10 atm’s whereas in the
accelerator’s tunnel, the pressure is many orders of magni-
tude lower. Two thin vacuum windows between the two
regions would be exposed to a huge pressure difference.
Elevating the thickness may reduce this problem but it
generates a worst one: the emittance of the electron beam
traversing the two windows will increase dramatically.
(iii) Propagation of an e-beam in an 8–10 atm gas mixture
is accompanied by emittance increase associated with
small-angle scattering.
In order to avoid these impediments, we return now to

the original configuration that we described in Fig. 2
whereby a vacuum tunnel is surrounded by a thick
dielectric layer which in turn is surrounded the active
gas mixture. Since we know that a Bragg structure that can
confine the Cherenkov radiation in its inner part and allow
propagating waves from the outside inwards, can be

designed, we replace the Bragg wall with a metallic wall
of infinite conductivity.
In Appendixes D and E we demonstrate that the trigger

bunch, which moves in the vacuum region, generates
Cherenkov radiation in all of the volume including the
active medium. The latter amplifies the Cherenkov wake
according to a similar amplification factor, up to a filling
factor

Ff ¼
1

1þ εg
εr

Rext−Rint
Rw−Rext

ð34Þ

namely,

ω� ¼ ω0 þ j
Δω
4

h
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16a2Ff

q i
≡ ω0 þ jδω�

ð35Þ
provided two necessary conditions are satisfied by the thick
layer and the active medium

ω0

c

ffiffiffiffiffiffiffiffiffiffiffiffi
εr − 1

p
ðRw − RextÞ ¼

π

2
þ πn ≫ 1;

ω0

c

ffiffiffiffiffiffiffiffiffiffiffiffi
εg − 1

q
ðRext − RintÞ ¼

π

2
þ πm ≫ 1: ð36Þ

The present configuration has three geometric parame-
ters: Rint is the radius of the vacuum tunnel, Rext is the
external radius of the thick dielectric layer; as before, Rw is
the radius of the waveguide. The conditions in Eq. (36)
reduce the number of degrees of freedom to 1. The third
constraint emerges from the condition that, given a uni-

formly filled waveguide of radius RðfillÞ
w , we require that the

energy stored in the medium is the same in the glass-loaded
structure as in the filled waveguide thus

πðRðfillÞ
w Þ2 ¼ πR2

w − πR2
ext: ð37Þ

Explicitly, the geometric parameters are given by

Rext ¼ RðfillÞ
w

1

2

�
ps0

π=2þ πn
−
π=2þ πn

ps0

�

Rint ¼ RðfillÞ
w

2
64

1
2

	
ps0

π=2þπn −
π=2þπn
ps0



−

ffiffiffiffiffiffiffi
εr−1

p ffiffiffiffiffiffiffi
εg−1

p π=2þπm
ps0

3
75

Rw ¼ 1

2
RðfillÞ
w

�
ps0

π=2þ πn
þ π=2þ πn

ps0

�
: ð38Þ

A. Dynamics

As in the uniform case, our next step is to determine the
dynamics of the wake. In Appendix E it is shown that the
secondary electric field at its front ðτ ¼ 0Þ for a charged
ring of radius rσ is given by
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EðsecÞ
z ¼ q

2πε0εr

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16Ffa2

p
×

Ffεg=
ffiffiffiffiffiffiffiffiffiffiffiffi
εg − 1

p
2πðRw − RextÞ=λ0

I0ðΓ0rσÞI0ðΓ0rÞ
R2
int

; ð39Þ

where Γ0 ≡ 2π=γβλ0, thus

Ez

�
τ þ zσ

cβ

�
¼ EðsecÞ

z UðglassÞ
�
τ þ zσ

cβ

�
; ð40Þ

where

UðglassÞðτÞ≡ hðτÞ
δωþ − δω−

×

8>>>>>>>><
>>>>>>>>:

δω−δωþ
ω0

sinðω0τÞ

×

�
expð−δωþτÞ
− expð−δω−τÞ

�
þ cosðω0τÞ

×

�
δωþ expð−δω−τÞ
−δω− expð−δωþτÞ

�

9>>>>>>>>=
>>>>>>>>;

δω� ¼ Δω
4

h
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16a2Ff

q i
: ð41Þ

As in the simplified model we calculate spontaneous and
coherent power for the trigger bunch with Gaussian trans-
verse and longitudinal distributions

Pðspo;gÞ ¼ −Nelq2v
4πε0R2

int

Ff
εg
εr

ffiffiffiffiffiffiffi
1

εg−1

q
ω0

c ðRw − RextÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 16Ffa2
p Fðspo;gÞ

⊥

ð42Þ

Pðcoh;gÞ ¼ −Nelq2v
4πε0R2

int

Ff
εg
εr

ffiffiffiffiffiffiffi
1

εg−1

q
ω0

c ðRw − RextÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 16Ffa2
p

× ðNel − 1ÞFðcoh;gÞ
⊥ Fðcoh;gÞ

∥ ð43Þ

implying that the power generated by the particles is

Pðtot;gÞ ¼ −Nelq2v
4πε0R2

int

Ff
εg
εr

ffiffiffiffiffiffiffi
1

εg−1

q
ω0

c ðRw − RextÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 16Ffa2
p

× ½Fðspo;gÞ
⊥ þ ðNel − 1ÞFðcoh;gÞ

∥ Fðcoh;gÞ
⊥ �: ð44Þ

Here Fðspo;gÞ
⊥ ≡ 2π

R Rint
0 drrf⊥ðrÞI20ðΓ0rσÞ, Fðcoh;gÞ

⊥ ≡
½2π R Rint

0 drrf⊥ðrÞI0ðΓ0rÞ�2 and Fðcoh;gÞ
∥ ≡ 2

R
∞
−∞ dzf∥ðzÞ×R

∞
−∞ dζf∥ðζÞUðglassÞðz−ζcβ Þ.

For f⊥ðrÞ ¼ ð1=2πσ2⊥Þ exp ð−r2=2σ2⊥Þ and assuming
Rint ≫ σ⊥, the transverse form factors may be evaluated
analytically as a function of parameter σ̄⊥g ≡ ð2π=γβÞσ⊥=λ0:

Fðspo;gÞ
⊥ ≃ 1

σ2⊥

Z
∞

0

drr exp

�
−

r2

2σ2⊥

�
I20ðΓ0rσÞ

¼ expðσ̄2⊥ðgÞÞI0ðσ̄2⊥ðgÞÞ ð45Þ

Fðcoh;gÞ
⊥ ≃

�
1

σ2⊥

Z
∞

0

drr exp

�
−

r2

2σ2⊥

�
I0ðΓ0rÞ

�
2

¼ expðσ̄2⊥ðgÞÞ: ð46Þ

Solutions for integrals in Eqs. (45) and (46) may be found in
[15], Eq. (10.43.28). Dependency of the coherent transverse
form factor on the transverse distribution rms value is shown
inFig. 11. Forourparameters the spontaneous transverse form
factor differs negligibly from the coherent for the beam cross
section of relevant scale.
For a typical set of parameters, which will be defined in

the next section, the filling factor is close to unity and
consequently the longitudinal form factor for realistic
configuration is close to one for the simplified model

presented in Fig. 4, namely Fðcoh;gÞ
∥ ≃ FðcohÞ

∥ .

VIII. DISCUSSION

In Ref. [10] we demonstrated that for a CO2 mixture
similar to that reported by the UCLA group, a gradient of
the order of GV=m is feasible. This is limited by two
different processes: saturation and ionization. With this
regard, the CO2 mixture is not necessarily the best medium,
in fact, an ionized active medium (such as Arþ) may prove
to be a better choice simply because the second ionization
occurs at much higher field intensity. But maximizing
neither of the two is the scope of this analysis.

FIG. 11. Coherent Fðcoh;gÞ
⊥ transverse form factors for a Gaus-

sian transverse distribution as functions of the rms value σ⊥
for γ ¼ 600.
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In Ref. [14] we analyzed the beam loading effect for the
simplified model in the linear regime. It was shown that
exponential gain may compensate for the wakefield gen-
erated by accelerated bunches and eliminate the effect. It is
a matter of design to apply the same technique to the
realistic configuration presented here. In the saturated
regime there is a tradeoff between energetic efficiency of
the acceleration process and the scale of beam loading
effect. This case is addressed in Ref. [23].
The updated configuration considered in the present

paper prevents collisions of the bunch electrons with the
active medium components eliminating effects of scattering
and collisional ionization. Still one shall be aware that field
intensity of the amplified wake may cause ionization of
medium; also we do not expect this to happen at field
intensities below 2 GV=m [10]. Accurate assessment of the
wakefield intensity threshold for ionization of a particular
gas mixture is out of the scope of this paper.
Electrical breakdown of the confining structure material

also shall be taken into account in a framework of realistic
design. The amplified wakefield has its maximum at the
vacuum-dielectric interface, where both longitudinal and
radial components are contributing to the total field value
and the ratio between field component amplitudes in the
vacuum channel is

jErj
jEzj

≃ ω0=v
2π=γβλ0

¼ γ: ð47Þ

Thus the total electric field amplitude on the interface is
related to the longitudinal field amplitude on the vacuum
channel axis as

jEtotðr ¼ RintÞj ¼ jEzðr ¼ 0Þj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I20ðρÞ þ γ2I21ðρÞ

q
; ð48Þ

where ρ≡ 2πRint=γβλ0. Equation (48) reveals that in order
for the total electric field on the interface to be of the order
of the longitudinal field on the axis of the vacuum channel,
the radius of the latter shall be on the scale of the resonant
wavelength. Assuming the length of an accelerated train of
microbunches to be on the scale of 100λ0 the minimal
duration τp of the amplified wake required in the CO2 case
is of an order of 3 ps. It is shown in Ref. [7] based on
experimental data from Ref. [24] that for pulses on such a
scale dielectric breakdown will limit the field by

Emax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25.1=ð0.5ε0εvτ3=4p Þ

q
× 103 ≃ 2 GV=m: ð49Þ

In this publication we presented the growth of the
wake in a realistic configuration (glass loaded structure)
in terms of a filling factor. In order to maintain a realistic
gain, the filling factor needs to be of the order of 0.96. For
example a typical set of parameters that ensure this value is
specified next: εg=εr ∼ 2, Rw ≃ 50 mm, Rext ≃ 1.0 mm,

Rint ≃ 10 μm and length of interaction d≃ 2000λ0. The
gain in this case may be defined as

GðglassÞ ≃ 10 log

8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ16a2Ff

q
×exp½Δω

4cβ dð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16a2Ff

p
− 1Þ�

9=
;

ð50Þ

and for a filling factor of 0.96 the calculated gain is
GðglassÞ ¼ 28 dB, about 1 dB less than the case Ff ¼ 1.0
namely GðglassÞ ¼ 28.9 dB.
Length of a typical bunch is expected to be on the scale

of a hundred of resonant wavelengths and in the absence of
amplification, in a passive medium, such a bunch will
trigger no wake. We had shown that with a nonzero
amplification, in an active medium, long bunches will
trigger a wake even while not modulated. However trigger
bunch modulation at the medium resonant frequency
increases initial wake amplitude by a factor of
Amω0=2jδω−j, corresponding in our case to about 2 orders
of magnitude for 20% density modulation.
For chosen active medium composition and structure

geometry it is essentially convenient to tune the system to
resonance regulating the gas mixture pressure. For a typical
configuration at pressure of about 10 atm, separation
between two adjacent pressure levels bringing the system
to a resonance is about 5 kPa. Therefore pressure shall be
tuned with accuracy on a level of tens Pa. Lowering the
pressure will bring the system closer to Cherenkov thresh-
old and thus make the wake growth larger (increased gain
enhancement). However, system sensitivity to resonance
tuning and trigger bunch energy spread will increase and
even more importantly, assuming the relative population
difference density unchanged, reduction of the pressure will
reduce the saturation level of the wakefield.
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APPENDIX A: ANALITICAL ESTIMATION OF
THE LONGITUDINAL FORM FACTOR

For an analytical estimation of the longitudinal form

factor FðcohÞ
∥ we neglect the component of UðτÞ propor-

tional to sin ðω0τÞ in Eq. (7) and with definition ω� ≡
ω0 þ jδω� rewrite the latter as

LINEAR ANALYSIS OF ACTIVE-MEDIUM TWO-BEAM … Phys. Rev. ST Accel. Beams 18, 071302 (2015)

071302-13



UðτÞ≃ hðτÞ
δωþ − δω−

Re

�
δωþ expðjω−τÞ
−δω− expðjωþτÞ

�
: ðA1Þ

For the sake of simplicity we approximate the Gaussian
distribution by a shifted-up-cosine function f∥ cosðζÞ ¼
ðK=2πÞ½1þ cos ðKζÞ�, which is characterized by rms value
σ∥ when K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2=3 − 2

p
=σ∥ ≡ b=σ∥. Then, defining

k� ≡ ω�=c≡ k0 þ jδk�, the coherent transverse form
factor may be found as

FðcohÞ
∥ cos ≃ ðK=2πÞ2

δωþ − δω−

Z
π=K

−π=K
dz½1þ cosðKzÞ�

×
Z

z

−π=K
dζ½1þ cosðKζÞ�

×

8>>><
>>>:

δωþ exp½jk−ðz − ζÞ�
þδωþ exp½−jk−ðz − ζÞ�
−δω− exp½jkþðz − ζÞ�
−δω− exp½−jkþðz − ζÞ�

9>>>=
>>>;
: ðA2Þ

Solving the integrals we find

FðcohÞ
∥ cos ≃ δωþ

δωþ − δω−

�
K2

K2 − k2−
sinc

�
π
k−
K

��
2

−
δω−

δωþ − δω−

�
K2

K2 − k2þ
sinc

�
π
kþ
K

��
2

: ðA3Þ

Assuming jδk�j ≪ k0;K we may further approximate
Eq. (A3) and substituting the expressions for K and k� we
finally have

FðcohÞ
∥ cos ≃

�
b2c2

b2c2 − σ2∥ω
2
0

�
2

sinc2
�
π

bc
σ∥ω0

�

×
½δωþcosh2ð πbc σ∥δω−Þ − δω−cosh2ð πbc σ∥δωþÞ�

δωþ − δω−
:

ðA4Þ

Parameter b here is defined as b≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2=3 − 2

p ≃ 1.14. The
function represented by Eq. (A4) for the resonant mode at
our parameters is shown in Fig. 12.
Comparing the graph in Fig. 12 with the result of

numeric calculation for Gaussian beam distribution shown
in Fig. 4 we note that while qualitatively two functions
looks similar, quantitatively they are significantly different.
For instance, the first null in the longitudinal form factor for
Gaussian distribution appears at σ∥ ≃ 6.1 μm, while for
shifted-up-cosine distribution at σ∥ ≃ 3.8 μm; at the same
time the form factor for shifted-up-cosine distribution has
the first lobe about 3 orders of magnitude higher than the
one for the Gaussian distribution. Evidently, the coherent

longitudinal form factor is sensitive to the form of the
trigger microbunch longitudinal distribution.

APPENDIX B: SOLUTION FOR DENSITY
MODULATED TRIGGER BEAM

From Eq. (8) the field corespondent to a zero length
bunch for large values of τ is approximated as

Eðs0;σÞ
z ðτÞ ¼ Eðs0;σÞ

z ð0Þ δωþ
δωþ − δω−

Re½exp ðjω−τÞ�: ðB1Þ

Looking for a solution for a density modulated triggering
beam of length Lt ¼ Nλλ0 (where Nλ is a natural number)
and a modulation index 0 ≤ Am ≤ 1 we consider the
following:

Eðs0Þ
z ≡ Eðs0Þ

z ðτ; Lt; AmÞ

¼ 1

Lt

Z
Lt

0

du

�
1þ Am cos

�
2π

λ0
u

��
Eðs0;σÞ
z

�
τ −

u
v

�
:

ðB2Þ

Evaluating the integral we have

Eðs0Þ
z ¼ Eðs0;σÞ

z ð0Þ δωþ
δωþ − δω−

× Re

8<
:

v
jω−

expðjω−τÞ 1−expð−
jω−
v LtÞ

Lt

×
h
1þ Am

1þð2πλ0
v

jω−
Þ2
i

9=
;: ðB3Þ

A homogeneous bunch of a length equal to a round
number of the resonance wavelengths of the medium,
propagating in a medium with no spatial growth, namely
a passive medium, triggers no wake. Observing the result in
Eq. (B3) we note that even for a zero modulation of the
triggering beam density the resulting wake is not zero as

FIG. 12. Coherent longitudinal form factor FðcohÞ
∥ cos for a shifted-

up-cosine longitudinal distribution as a function of the rms value
σ∥ for 10 atm active medium values summarized in Table I.
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long as δων is not zero, meaning that in an active medium a
nonmodulated bunch exceeding the resonance wavelength
by many times will trigger a wake.
Substituting ω� ¼ ω0 þ jδω�, δω� ≡ ðΔω=4Þð1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16a2

p
Þ, and bearing in mind that v≃ c, the amplitude

of the field is approximated as

jEðs0Þ
z j≃ Eðs0;σÞ

z ð0Þ 1þ ð1þ 16a2Þ−1=2
2

×
1 − expð−2πNλ

jδω−j
ω0

Þ
2πNλ

× expð−δω−τÞ
�

1 Am ¼ 0
Am
2

ω0

jδω−j Am ∼ 0.1:
ðB4Þ

APPENDIX C: RELATIVE POPULATION
DIFFERENCE CONSIDERATION

According to Siegman [20], Chapter 6.1, for a four-level
laser system the pumping rate equation is written using
optical approximation, which is appropriate at frequencies
satisfying ℏω=kBT ≫ 1. At this condition thermally stimu-
lated relaxation rates are negligible comparing to sponta-
neous emission rates and the rate equations are written as

dN4

dt
¼ WpðN1 − N4Þ − ðγ43 þ γ42 þ γ41ÞN4

≡WpðN1 − N4Þ − N4=τ4 ðC1Þ

dN3

dt
¼ γ43N4 − ðγ32 þ γ31ÞN3

≡ N4=τ43 − N3=τ3 ðC2Þ

dN2

dt
¼ γ42N4 þ γ32N3 − γ21N2

≡ N4=τ42 þ N3=τ32 − N2=τ21: ðC3Þ

At steady state we have

N4 ¼
Wpτ4

1þWpτ4
N1 ðC4Þ

N3 ¼
τ3
τ43

N4 ðC5Þ

N2 ¼
�
τ21
τ32

þ τ43τ21
τ42τ3

�
N3 ≡ βN3: ðC6Þ

Here Ni are populations of correspondent levels, Wp is a
pumping rate associated with pumping transition proba-
bility and γij are the total decay rates, including both
radiative and nonradiative, between correspondent levels
and τij ≡ 1=γij are correspondent lifetimes.

Using conservation of atoms N1 þ N2 þ N3 þ N4 ¼ N
we may find the normalized population difference

N3 − N2

N
¼

ð1 − βÞ τ3τ4τ43
Wp

1þ ð1þ β þ 2 τ43
τ3
Þ τ3τ4τ43

Wp
: ðC7Þ

Let us take a closer look to the lifetime τ3 ≡ 1=γ3. The
total decay rate γ3 is a sum of radiative and nonradiative
decay rates. The latter shall be directly proportional to the
atoms’ density, Siegman [20], page 200:

γ3 ≡ γ32rad þ γ32nr þ γ31rad þ γ31nr: ðC8Þ

For simplicity of notation the decay rate on the lasing
transition is denoted simply as γrad ≡ γ32rad. Siegman
defines a fluorescence quantum efficiency factor η [20],
Eq. (6.10), as

η≡ γ43
γ4

×
γrad
γ3

¼ τ4
τ43

×
τ3
τrad

: ðC9Þ

The first ratio in Eq. (C9) indicates what fraction of atoms
decaying from level 4 decays to level 3 and not to other
levels. The second ratio indicates what fraction of decay
from level 3 is the radiative decay into level 2. Obviously
for a good laser system the factor η shall be close to unity,
Siegman [20], Equation (6.12).
In summary the following assumptions are appropriate:

(i) level 4 decays primarily into level 3, namely τ4 ≈ τ43 and
consequently τ43 ≪ τ42; (ii) decay rate of level 4 into level
3 is much faster than level 3 into level 2 and directly into
level 1, namely τ43 ≪ τ3; (iii) decay rate of level 2 into
level 1 is much faster than level 3 into level 2 and directly
into level 1, namely τ21 ≪ τ3 ¼ τ32 þ τ31. Thus τ4=τ43 ≈ 1,
β ≪ 1, τ43=τ3 ≪ 1 and Eq. (C7) may be approximated
using the definition (C9) as

Δn
n0

¼ N3 − N2

N
≈

ηWpτrad
1þ ηWpτrad

≈
Wpτrad

1þWpτrad
: ðC10Þ

The last expression holds while the system may be
considered as a “good laser system” according to
Siegman’s terminology, namely β ≪ 1 and η ≈ 1. We
assume that for the pressure range up to 10 atm in the
CO2 laser mixture, similar to that described in UCLA [18],
these conditions are satisfied.

APPENDIX D: HOMOGENEOUS SOLUTION FOR
REALISTIC CONFIGURATION

As a first step, we consider the electromagnetic problem
in the absence of the electrons. A TM0s mode is assumed to
propagate along the waveguide and it is described by the z
component of the magnetic vector potential, which reads
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Az ≡ Azðr; z;ωÞ
¼ exp ð−jkzÞ

×

8>><
>>:

AI0ðΓrÞ 0 < r < Rint

BJ0ðκrÞ þ CY0ðκrÞ Rint < r < Rext

DT0ðΛrÞ Rext < r < Rw

ðD1Þ

wherein

Γ2 ¼ k2 −
ω2

c2
¼ ω2

v2
−
ω2

c2
¼ ω2

c2
1

β2γ2

κ2 ¼ εg
ω2

c2
− k2 ¼ εg

ω2

c2
−
ω2

v2
¼ ω2

c2
ðεg − β−2Þ

Λ2 ¼ εa
ω2

c2
− k2 ¼ εa

ω2

c2
−
ω2

v2
¼ ω2

c2
ðεa − β−2Þ ðD2Þ

and

T0ðΛrÞ≡ J0ðΛrÞY0ðΛRwÞ − Y0ðΛrÞJ0ðΛRwÞ
T1ðΛrÞ≡ J1ðΛrÞY0ðΛRwÞ − Y1ðΛrÞJ0ðΛRwÞ: ðD3Þ

Boundary conditions at the vacuum-dielectric disconti-
nuity (r ¼ Rint) imply

Ez∶
c2

jω

�
ω2

c2
−
ω2

v2

�
AI0ðΓRintÞ

¼ c2

jωεg

�
εg
ω2

c2
−
ω2

v2

�
½BJ0ðκRintÞ þ CY0ðκRintÞ�

Hϕ∶ ΓAI1ðΓRintÞ ¼ −κ½BJ1ðκRintÞ þ CY1ðκRintÞ� ðD4Þ

whereas the second discontinuity of the thick-dielectric
layer (r ¼ Rext) provides

Ez∶
c2

jωεg

�
εg
ω2

c2
−
ω2

v2

�
½BJ0ðκRextÞ þ CY0ðκRextÞ�

¼ c2

jωεa

�
εa

ω2

c2
−
ω2

v2

�
DT0ðΛRextÞ;

Hϕ∶ − κ½BJ1ðκRextÞ þ CY1ðκRextÞ� ¼ −ΛT1ðΛRextÞ:
ðD5Þ

Defining

gint ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
εg − 1

p ω

c
Rint; gext ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
εg − 1

p ω

c
Rext;

aext ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
εa − 1

p ω

c
Rext; aw ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
εa − 1

p ω

c
Rw;

uint ¼
2εgffiffiffiffiffiffiffiffiffiffiffiffi

εg − 1
p

ω
c Rint

ðD6Þ

and assuming γ → ∞ the dispersion relation may be
deduced from

uint ¼
BJ0ðgintÞ þ CY0ðgintÞ
BJ1ðgintÞ þ CY1ðgintÞ

εg
ffiffiffiffiffiffiffiffiffiffiffiffi
εa − 1

p

εa
ffiffiffiffiffiffiffiffiffiffiffiffi
εg − 1

p T0ðaextÞ
T1ðaextÞ

¼ BJ0ðgextÞ þ CY0ðgextÞ
BJ1ðgextÞ þ CY1ðgextÞ

: ðD7Þ

Since in practice uint ≪ 1 we conclude that BJ0ðgintÞ þ
CY0ðgintÞ≃ 0 implying

εg
ffiffiffiffiffiffiffiffiffiffiffiffi
εa − 1

p

εa
ffiffiffiffiffiffiffiffiffiffiffiffi
εg − 1

p J0ðaextÞY0ðawÞ − Y0ðaextÞJ0ðawÞ
J1ðaextÞY0ðawÞ − Y1ðaextÞJ0ðawÞ

¼ Y0ðgextÞJ0ðgintÞ − Y0ðgintÞJ0ðgextÞ
Y1ðgextÞJ0ðgintÞ − Y0ðgintÞJ1ðgextÞ

: ðD8Þ

For large arguments gint, gext, aw, aext ≫ 1:

εg
ffiffiffiffiffiffiffiffiffiffiffiffi
εa − 1

p

εa
ffiffiffiffiffiffiffiffiffiffiffiffi
εg − 1

p tan

�
ω

c

ffiffiffiffiffiffiffiffiffiffiffiffi
εa − 1

p
ðRw − RextÞ

�

¼ − tan

�
ω

c

ffiffiffiffiffiffiffiffiffiffiffiffi
εg − 1

q
ðRext − RintÞ

�
: ðD9Þ

Option I.—At resonance ω ¼ ω0 we design the glass
layer such that

tan

�
ω0

c

ffiffiffiffiffiffiffiffiffiffiffiffi
εr − 1

p
ðRw − RextÞ

�
¼ 0

⇒
ω0

c

ffiffiffiffiffiffiffiffiffiffiffiffi
εr − 1

p
ðRw − RextÞ ¼ πn ≫ 1

tan

�
ω0

c

ffiffiffiffiffiffiffiffiffiffiffiffi
εg − 1

q
ðRext − RintÞ

�
¼ 0

⇒
ω0

c

ffiffiffiffiffiffiffiffiffiffiffiffi
εg − 1

q
ðRext − RintÞ ¼ πm ≫ 1: ðD10Þ

Thus assuming ω ¼ ω0 þ δω and εa ¼ εr þ δε,

εg
ffiffiffiffiffiffiffiffiffiffiffiffi
εr − 1

p

εr
ffiffiffiffiffiffiffiffiffiffiffiffi
εg − 1

p � δω
c

ffiffiffiffiffiffiffiffiffiffiffiffi
εr − 1

p ðRw − RextÞ
þ ω0

c
1

2
ffiffiffiffiffiffiffi
εr−1

p δεðRw − RextÞ
�

¼ −
�
δω

c

ffiffiffiffiffiffiffiffiffiffiffiffi
εg − 1

q
ðRext − RintÞ

�
; ðD11Þ

hence

δω ¼ −
ω0

2

1

ðεr − 1Þ þ ðεg − 1Þ εr
εg

Rext−Rint
Rw−Rext

δε: ðD12Þ

At the limit ε̄ → 0 the dispersion relation is independent of
ε̄ therefore irrelevant to our needs.
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Option II.—The dispersion relation may be rewritten as

εg
ffiffiffiffiffiffiffiffiffiffiffiffi
εa − 1

p

εa
ffiffiffiffiffiffiffiffiffiffiffiffi
εg − 1

p cot

�
ω

c

ffiffiffiffiffiffiffiffiffiffiffiffi
εg − 1

q
ðRext − RintÞ

�

¼ − cot

�
ω

c

ffiffiffiffiffiffiffiffiffiffiffiffi
εa − 1

p
ðRw − RextÞ

�
: ðD13Þ

At resonance ω ¼ ω0,

cot
�
ω0

c

ffiffiffiffiffiffiffiffiffiffiffiffi
εr − 1

p
ðRw − RextÞ

�
¼ 0

⇒
ω0

c

ffiffiffiffiffiffiffiffiffiffiffiffi
εr − 1

p
ðRw − RextÞ ¼

π

2
þ πn ≫ 1

cot
�
ω0

c

ffiffiffiffiffiffiffiffiffiffiffiffi
εg − 1

q
ðRext − RintÞ

�
¼ 0

⇒
ω0

c

ffiffiffiffiffiffiffiffiffiffiffiffi
εg − 1

q
ðRext − RintÞ ¼

π

2
þ πm ≫ 1 ðD14Þ

thus

δω ¼ −
ω0

2

1

1þ εg
εr

Rext−Rint
Rw−Rext

δε

εr − 1
: ðD15Þ

Further, up to the filling factor Ff ¼ ½1þ
εgðRext − RintÞ=εrðRw − RextÞ�−1 the expression is identical
to the fully filled waveguide

δω ¼ −
ω0

2

δε

εr − 1
ðD16Þ

and the eigenfrequencies ω� ≡ ω0 þ jδω� ¼ ω0 þ
ðjΔω=4Þ½1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16a2Ff

p
�.

APPENDIX E: NONHOMOGENEOUS SOLUTION
FOR REALISTIC CONFIGURATION

The nonhomogeneous solution namely, in the presence
of a charged ring of radius rσ is found as

Az;rσ ðr; z;ωÞ
¼ exp ð−jkzÞ

×

8>>><
>>>:

AI0ðΓrÞ þ Ap
K0ðΓrσÞ
I0ðΓrσÞ I0ðΓrÞ 0 < r < rσ

AI0ðΓrÞ þ ApK0ðΓrÞ rσ < r < Rint

BJ0ðκrÞ þ CY0ðκrÞ Rint < r < Rext

DT0ðΛrÞ Rext < r < Rw;

ðE1Þ

wherein Γ, κ, Λ, T0 and T1 are defined by Eq. (D2), and Ap

is assumed to be known Ap ¼ −½μ0q=ð2πÞ2�I0ðωrσ=γβcÞ.
As in Appendix D the boundary conditions at r ¼ Rint

imply a set of equations similar to Eq. (D4) with the
addition of terms proportional to Ap:

Ez∶
c2

jω

�
ω2

c2
−
ω2

v2

�
½AI0ðΓRintÞ þ ApK0ðΓRintÞ�

¼ c2

jωεg

�
εg
ω2

c2
−
ω2

v2

�
½BJ0ðκRintÞ þ CY0ðκRintÞ�

Hϕ∶ Γ½AI1ðΓRintÞ − ApK1ðΓRintÞ�
¼ −κ½BJ1ðκRintÞ þ CY1ðκRintÞ�: ðE2Þ

The boundary condition at r ¼ Rext provides a set of
equations identical to Eq. (D5).
Using definitions in Eq. (D6) and defining

b ¼ ω

γβc
Rint ðE3Þ

the amplitude in vacuum is

A ¼ −
K0ðbÞ þ ζintK1ðbÞ
I0ðbÞ − ζintI1ðbÞ

Ap ðE4Þ

wherein

ζext ≡ εg
εa

aext
gext

T0ðaextÞ
T1ðaextÞ

ζint ≡ 1

εg

gint
b

− Y0ðgextÞ−ζextY1ðgextÞ
J0ðgextÞ−ζextJ1ðgextÞ J0ðgintÞ þ Y0ðgintÞ

− Y0ðgextÞ−ζextY1ðgextÞ
J0ðgextÞ−ζextJ1ðgextÞ J1ðgintÞ þ Y1ðgintÞ

: ðE5Þ

For large arguments, gint; gext ≫ 1 and b → 0

ζext ≃ εg
εa

aext
gext

tanðaw − aextÞ≡ ζ̄ext tanðaw − aextÞ

ζint ≃ 1

εg

gint
b

1þ ζextcotanðgext − gintÞ
cotanðgext − gintÞ þ ζext

ðE6Þ

A ¼ −
Ap

1þζ̄ext tanðaw−aextÞcotanðgext−gintÞ
cotanðgext−gintÞþζ̄ext tanðaw−aextÞ

1 − gint
2εg

1þζ̄ext tanðaw−aextÞcotanðgext−gintÞ
cotanðgext−gintÞþζ̄ext tanðaw−aextÞ

¼ −
Ap

εg

gint
b2

×
½1þ ζ̄ext tanðaw − aextÞ�½1þ cotanðgext − gintÞ�8<
:

cotanðgext − gintÞ þ ζ̄ext tanðaw − aextÞ

− gint
2εg

�
1þ ζ̄ext tanðaw − aextÞ

×cotanðgext − gintÞ

� 9=
;

:

ðE7Þ

We assumed the ultrarelativistic limit (b → 0) K1ðbÞ≃
1=b and next we take gint ≫ 1

LINEAR ANALYSIS OF ACTIVE-MEDIUM TWO-BEAM … Phys. Rev. ST Accel. Beams 18, 071302 (2015)

071302-17



A ¼ 2Ap

b2
½cotðaw − aextÞ þ ζ̄ext�½1þ cotðgext − gintÞ�

cotðaw − aextÞ þ ζ̄ext cotðgext − gintÞ
:

ðE8Þ

In Appendix D we show that the relevant resonances
occur for

cot ðaw − aextÞ ¼ 0 cot ðgext − gintÞ ¼ 0: ðE9Þ

We conclude that

Aðω ∼ ω0Þ≃ 2ζ̄ext
b2

Ap

cotðaw − aextÞ þ ζ̄ext cotðgext − gintÞ

≃
−2cFf

εg
εr

ffiffiffiffiffiffiffi
1

εg−1

q
ðω0

γβc RintÞ2ðRw − RextÞ
Ap

δωþ δεFfω0

2ðεr−1Þ
ðE10Þ

and defining ω̄≡ ðω0 − ωÞ=Δω we find

Aðω ∼ ω0Þ≃
2cqμ0
ð2πÞ2

ðω0

γβc RintÞ2
Ff

εg
εr

ffiffiffiffiffiffiffi
1

εg−1

q
ðRw − RextÞΔω

×
ðω̄þ j

2
ÞI0ð2πγβ rσ

λ0
Þ

ω̄2 þ j
2
ω̄þ αcFf

2Δωðεr−1Þ
: ðE11Þ

The secondary longitudinal electric field is found from

EðsecÞ
z ðr; rσ; z; tÞ ¼

Z
∞

−∞
dω exp

�
jω

�
t −

z
v

��

× I0

�
2π

γβ

r
λ0

�
jω
γ2

AðωÞ ðE12Þ

and defining radial Green’s function GðglassÞ
r ðr; rσÞ≡

I0ð2πr=γβλ0ÞI0ð2πrσ=γβλ0Þ we have

EðsecÞ
z ≡ EðsecÞ

z

�
r; rσ; t ¼

z
v

�

¼ GðglassÞ
r ðr; rσÞ

2cqμ0ω0

ð2πÞ2

ðω0

c RintÞ2
Ff

εg
εr

ffiffiffiffiffiffiffi
1

εg−1

q
ðRw − RextÞΔω

×
Z

∞

−∞
dωj

ω̄þ j=2
ω̄2 þ ðj=2Þω̄þ ā2

: ðE13Þ

The integral in Eq. (E13) may be transformed into form

IðāÞ≡
Z

∞

−∞
dωj

ω̄þ j=2
ω̄2 þ ðj=2Þω̄þ ā2

¼ −2
Z

∞

0

du
−ā2=2

ðu2 þ ā2Þ2 þ ðu=2Þ2 ; ðE14Þ

where ā2 ¼ αcFf=2Δωðεr − 1Þ and then evaluated analyti-
cally:

IðāÞ ¼ ā2
Z

∞

0

du
1

ðu2 þ ā2Þ2 þ ðu
2
Þ2 ¼

πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16ā2

p :

ðE15Þ

Thus expression for the secondary electric field is

EðsecÞ
z ¼ q

2πε0R2
int

Ff
εg
εr

ffiffiffiffiffiffiffi
1

εg−1

q
ω0

c ðRw − RextÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 16ā2
p

× I0

�
2π

γβ

r
λ0

�
I0

�
2π

γβ

rσ
λ0

�
: ðE16Þ
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