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Electron dynamics in the presence of an active medium incorporated
in a Penning trap

Levi Schächtera)

Department of Electrical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel

(Received 15 October 2010; accepted 25 January 2011; published online 15 March 2011)

Based on an idealized 1D model we demonstrate that electrons oscillating in a Penning trap may

get bunched, at the resonant frequency of the active medium. During multiple round trips in the

trap, the bunched electrons gain energy and, therefore, they may escape the trap forming a low

energy optical injector. VC 2011 American Institute of Physics. [doi:10.1063/1.3559761]

I. INTRODUCTION

A free electron moving in the vicinity of an excited

atom may absorb the energy from the bounded electron, this

is called collision of the second kind. Contrary to collisions

of the first kind where free electrons lose kinetic energy by

exciting the atom, in this case, the electron is accelerated and

if we assume that all or at least the majority of atoms are

excited, then a flow of electrons may be accelerated. Macro-

scopically, this process resembles, to some extent, friction.

In normal conditions, similar to that of collisions of the first

kind, friction causes deceleration of the sliding body. Equiv-

alently, in conditions similar to collisions of the second kind,

the friction coefficient is negative and the sliding body accel-

erates. To better envision the process, consider a swing: a

child starts to swing with a given amplitude but due to air

and joints friction he or she eventually comes to a rest. Now

imagine that there is a way to replace the air with a fictitious

medium of negative friction. If the acceleration due to this

medium is larger than the deceleration due to regular friction

at the joints, obviously the motion becomes unstable.

In a previous publication,1 we harnessed the above-por-

trayed concept in order to demonstrate conceptually that an

ensemble of electrons oscillating in a Penning trap may

become bunched, provided an active medium is present in its

close vicinity. These bunched electrons are accelerated by

the medium and, as a result, they may escape the trap. In this

study, we present a detailed analysis of the concept; how-

ever, before doing so, a short review of particle acceleration

by stimulated emission of radiation (PASER) is necessary. A

thorough review was published in Ref. 2.

Historically, collisions of the first kind were first employed

by Franck and Hertz (FH)3 for demonstrating the discrete char-

acter of energy states of an electron bounded in an atom. The

essence of the experiment was to show that bounded electrons

can absorb energy from a moving free electron only in discrete

quanta. Klein and Rosseland4 were actually those who coined

this process the notion of “collision of the first kind.” Laty-

scheff and Leipunsky (LL) demonstrated experimentally the

inverse process.5 Relying on the fact that stimulated absorption

of radiation manifests itself as a transition of the atom’s outer

electron from a low to a higher energy-state, they illuminated

vapors of mercury with light from a mercury lamp. A free elec-

tron moving near such an excited mercury atom might gain ki-

netic energy in quanta corresponding to that stored in the atom.

In this process, the bounded electron has dropped to the lower

energy-state delivering the energy to the free electron, enhanc-

ing its kinetic energy. In both FH and LL experiments the

vapors’ pressure was designed such that, on average, there was

only one collision of a free electron with a mercury atom and

consequently, the average electron’s energy gain/loss was of

the order of a few electron volts. Multiple collisions process

was demonstrated by Schawlow and Townes6 employing pho-

tons that were multiplied by excited atoms of ammonia in a

consecutive series of collisions. Today, this process is well

known as light amplification by stimulated emission of radia-

tion. Recently,7 we demonstrated that a train of relativistic

bunches of electrons may be accelerated by an ensemble of

excited atoms provided that the resonant frequency of the me-

dium corresponds to the frequency of the bunches. In the

PASER experiment8,9 a fraction of the moving electrons gained

about 200 keV, implying that such an electron has encountered

order of 2� 106 coherent collisions of the second kind.

This proof-of-principle experiment of acceleration at op-

tical wavelengths relies on existing accelerator (45 MeV),

wiggler. and high power laser. Motivated by the need for

replacing these three components with an optical equivalent,

we recently suggested a novel paradigm that relies on the

possibility that nonrelativistic electrons confined by a Pen-

ning trap will experience collisions of the second of kind,

leading to bunching of part of the electrons at the resonant

frequency of the medium. As the bunched electrons drain

energy from the active medium, their kinetic energy

increases, allowing them to escape the trap. Consequently,

this setup might play a pivotal role in a future optical

buncher. It should be emphasized that the nonrelativistic re-

gime is dictated by the facilities available in the author’s lab-

oratory and efforts are under way for the design and testing

of a relatively much higher energy version.10

For a better conceptual understanding of the process, we

must bear in mind that, essentially, collisions of the second

kind facilitate coupling between two independent processes:

storage of charged particles in a Penning trap and storage of

electromagnetic energy in active medium. In the absence of

the latter, electrons oscillate in the trap for a time duration

Ttrap

� �
determined by the cross section of scattering with thea)Electronic mail: levi@ee.technion.ac.il.
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remnant atoms present in the vacuum vessel. In the opposite

case, when only the active medium is present, the population

inversion density decays back to equilibrium with a charac-

teristic time Teq � Ttrap. From the electrons’ perspective the

energy transfer facilitated by collisions of the second kind

may be conceived as a monochromatic wave, oscillating at

the resonant frequency of the medium, causing electrons to

become bunched, leading to an enhanced decay rate of the

population inversion density.

In the framework of this study, we provide a detailed

account of the force exerted by the active medium on the sin-

gle electron and the corresponding energy exchanged. Simi-

lar to self-amplified spontaneous emission (SASE), the

buildup is assumed to start from noise. Subject to the

assumption that during a single round trip the effect of the

active medium on the electron is minuscule, the equations of

motion are simplified. Numerical solutions of the system’s

equations are presented and some analytic relations are

developed. Specifically, since collisions of the second kind

are represented by a “negative-friction” coefficient, the

effect of this parameter on the energy gain and energy spread

is investigated in detail.

II. DESCRIPTION OF THE MODEL

Consider a dielectric function representing a material

characterized by a series of resonances x0;i and spontaneous

decay coefficients T2;i ¼ Qi=2x0;i

� �
. Further assuming a

background (“dc”) relative dielectric coefficient er we may

formulate this function as

e x > 0ð Þ ¼ er þ
X

i

x2
p;i

x2
0;i þ jx=T2;i � x2

; (1)

with xp;i representing the “plasma frequency” of the elec-

tronic/vibrational/rotational resonances according to the spe-

cific medium considered. Explicitly, in case of linear regime,

the plasma frequency is related to the population inversion

density by x2
p;i ¼ �Dnir21;icer=T2;i. In the framework of this

notation Dni > 0 represents a population inversion density

corresponding to the resonance x0;i and similarly, r21;i

denotes the cross section for stimulated emission. It is impor-

tant to make two comments at this point: (i) the cross section

for stimulated emission is the same for both regular photons

and virtual photons. (ii) Ionization of the atoms/molecules

by the free electrons is ignored, although their kinetic energy

may suffice to trigger this process.

In order to get a sense of the typical values involved let

us consider a solid state medium namely, Nd:YAG: the

dielectric coefficient is er ¼ 3:312, the resonance occurs for

k0 ’ 1:06½lm�, the spontaneous life-time is T2 ¼ 240 ls, the

gain is 1% per centimeter provided the population inversion

is Dn21 � 1:1� 1022 m�3. However, much higher values

might be available; the cross section for stimulated emission

is r21 � 1:8� 10�22 m2.

In this dielectric, if gas, or in its very close vicinity if solid,

an ensemble of electrons is oscillating due to the presence of a

combination of electric and magnetic fields forming a Penning

trap, a schematic of the system is illustrated in Fig. 1.

Each individual electron follows a 2D trajectory repre-

sented by qmðtÞ and fmðtÞ however, in the framework of this

study, we consider only the dominant component of the cur-

rent density namely,

Jz r; z; tð Þ ¼ �qmp

X
m

_fm tð Þ 1

2pr
d r � qm tð Þ½ �d z� fm tð Þ½ �; (2)

qmp represents the charge of one macroparticle representing

Nel electrons, thus qmp ¼ eNel; the charge-to-mass ratio of

the macroparticle is identical to that of one electron e=mð Þ
and in the trap there are Nmp macroparticles; qm tð Þ; fm tð Þ½ �
describe the trajectory of the macroparticles. As an example,

let us assume that the trap is of length L� 10 cm and it stores

order of 1012 electrons. The ensemble can be divided into

2L=k0 � 2� 105 segments each one representing one optical

wavelength and for adequate description of the dynamics in

the range of one segment 500 macroparticles are required,

implying that each macroparticle contains order of 104 elec-

trons. Correspondingly, the average electrons’ density

assuming a 1 mm2 cross section is of the order of 5�1012

cm�3. In the absence of the active medium, the trajectory of

these electrons follows a damped helical oscillation where

the damping is due to scattering of the electrons with rem-

nant gas in the vacuum and eventually they become trapped.

As already stated, for simplicity sake, it is assumed that

the contribution of the radial and azimuthal motion to the

interaction with the active medium is negligible. Therefore,

we consider next the spatial and temporal Fourier transform

of the longitudinal current density

�Jz r;x; kð Þ ¼ 1

2p

ð1
�1

dz0 exp jkz0ð Þ

� 1

2p

ð1
�1

dt0 exp �jx t0ð ÞJz r; z0; t0ð Þ

¼ �qmpNmp

2pð Þ3r

ð1
�1

dt0 exp �jx t0ð Þ

� _fm t0ð Þ exp jkfm t0ð Þ½ �d r � qm t0ð Þ½ �
D E

m
(3)

FIG. 1. (Color online) Schematics of a Penning trap of electrons and an

active medium. Electrons from both ends are attracted by the anode located

off-axis but the longitudinal magnetic field generated by the coils confines

the electrons to the close vicinity of the axis. The moving electrons stimulate

the photons stored in the medium, resulting in a monochromatic wave that

in turn bunches the electron beam. Evidently, the bunched electrons stimu-

late more efficiently the active medium, thus draining faster the stored

energy. As electrons become bunched and acquire energy, they escape the

trap.
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In practice, a macroparticle has a nonzero length, Dmp,

implying that wherever the phase term exp jkfm tð Þ½ � occurs,

the transformation

exp jkfm tð Þ½ � ! exp jkfm tð Þ½ �sinc
1

2
kDmp

� �
(4)

should be kept in mind. In what follows, the notation in Eq.

(3) will be preserved.

This current density, Eq. (3), drives the magnetic vector

potential, which in the boundless case is given by

�Az r; k;xð Þ ¼ l0

ð
dr0 r0G Kr;Kr0ð Þ�Jz r0; k;xð Þ (5)

with K2 ¼ k2 � e xð Þx2=c2 and

G Kr;Kr0ð Þ ¼ I0 Krð ÞK0 Kr0ð Þ; r < r0

K0 Krð ÞI0 Kr0ð Þ; r > r0

�
(6)

Explicitly, back to the time domain, we get for the longitudi-

nal electric field

Ez r; z; tð Þ ¼ l0qmpNmp

2pð Þ3
ð1
�1

dx exp jxtð Þ

�
ð1
�1

dk exp �jkzð Þ c2K2

jxe xð Þ

�
ð1
�1

dt0 exp �jx t0ð Þ

� G Kr;Kqm t0ð Þ½ � _fm t0ð Þ exp jkfm t0ð Þ½ �
D E

m
; (7)

which in the framework of our 1D model accounts for the

energy exchange between the electrons and the active medium.

III. ACTIVE MEDIUM FORCE AND ENERGY EXCHANGE

Subject to the assumptions so far, the force on a single

macroparticle is

F m tð Þ ¼ �qmpEz qm tð Þ; fm tð Þ; t½ �

¼ �
l0q2

mpNmp

2pð Þ3
ð1
�1

dx exp jxtð Þ

�
ð1
�1

dk exp �jkfm tð Þ½ � c2K2

jxe xð Þ

ð1
�1

dt0 exp �jx t0ð Þ

� G Kqm tð Þ;Kql t0ð Þ
� �

_fl t0ð Þ exp jkfl t0ð Þ
� �D E

l
(8)

and the total energy exchange is given by

Wex ¼ Nmp

ð1
�1

dt _fm tð ÞF m tð Þ
D E

m

¼ �
l0q2

mpN2
mp

2pð Þ3
ð1
�1

dt

ð1
�1

dx exp jxtð Þ

�
ð1
�1

dk
c2K2

jxe xð Þ

ð1
�1

dt0 exp �jx t0ð Þ

�
	

_fm tð Þ exp �jkfm tð Þ½ �G Kqm tð Þ;Kql t0ð Þ
� �

_fl t0ð Þ
� exp jkfl t0ð Þ

� �

v; l (9)

At this stage we proceed by assuming that: (i) the transverse dis-

tribution is independent of the longitudinal one, (ii) the transverse

dynamics has negligible contribution to the energy exchange

process, and (iii) in the radial direction, the electrons are uni-

formly distributed in the range 0 < r < Rb. Based on these

assumptions it is convenient to define the transverse filling factor,

F? � G Kqm;Kql

� �	 

m;l

¼ 2

R2
b

ðRb

0

dr1 r1

2

R2
b

ðRb

0

dr2 r2 G Kr1;Kr2ð Þ

¼ 2

h2

ðh

0

dxx
2

h2

ðh

0

dyy
I0 xð ÞK0 yð Þ; x < y

K0 xð ÞI0 yð Þ; x > y

�

¼ 2

h2
1� 2K1 hð ÞI1 hð Þ½ � (10)

wherein h ¼ KRb. Consequently, the average (on the radial

direction) longitudinal force on the microbunch which has

the form of a “pancake” DmppR2
b

� �
is

F m tð Þ ¼ �
4q2

mpNmp

4pe0R2
b

1

2p

ð1
�1

dx
1

jxe xð Þ
1

2p

�
ð1
�1

dk exp jxt� jkfm tð Þ½ � 1� 2K1 KRbð ÞI1 KRbð Þ½ �

�
ð1
�1

dt0 _fl t0ð Þ exp �jx t0 þ jkfl t0ð Þ
� �� �

l

Wex ¼ �
4q2

mpN2
mp

4pe0R2
b

1

2p

ð1
�1

dx
1

jxe xð Þ

� 1

2p

ð1
�1

dk 1� 2K1 KRbð ÞI1 KRbð Þ½ �

�
ð1
�1

dt_fm tð Þ exp jxt� jkfm tð Þ½ �
� �

m











2

: (11)

The second term represents the energy exchange in the

framework of the approximations mentioned earlier.

Consider now a Penning trap characterized by an angu-

lar frequency X and ignoring the damping during one period
of the oscillation T ¼ 2p=Xð Þ, the particles’ trajectory is

assumed to be given by

fm tð Þ ¼ L

2
1þ cos X t� tmð Þ½ �f g; (12)

tm determines the location of the particle at t ¼ 0. Conse-

quently, the time integral in Eq. (11) is replaced by

L k;xð Þ �
ðT=2

�T=2

dt0 _fl t0ð Þ exp �jx t0 þ jkfl t0ð Þ
� �* +

l

; (13)

which may be evaluated analytically during one period

by employing the Bessel generating function, exp u=2ð Þ½
x� 1=xð Þ� ¼

P1
k¼�1 xkJk uð Þ,

L k;xð Þ¼�L

2
X

�
exp �jxtmð Þexp jkL=2ð Þ

P1
n¼�1

exp jnp=2ð ÞJn k L
2

� �
ÐtmþT=2

tm�T=2

dt sin X t� tmð Þ½ �exp j nX�xð Þ t� tmð Þ½ �

* +

m

(14)
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and the identity Jnþ1 uð Þ þ Jn�1 uð Þ ¼ 2n=uð ÞJn uð Þ,

L k;xð Þ ¼ pL exp �jxtmð Þh imexp jkL=2ð Þ

�
X1

n¼�1 sinc p n� x
X

� �h i
� exp jnp=2ð Þ n

Jn kL=2ð Þ
kL=2

� �
: (15)

Consequently, the two quantities of interest F m tð Þ;Wex½ � are

determined for one period duration. Explicitly, during one

period, the force and the energy exchange read

F m tð Þ ¼ �
4q2

mpNmppL

4pe0R2
b

1

2p

ð1
�1

dx
1

jxe xð Þ

� 1

2p

ð1
�1

dk exp jxt� jkfm tð Þ½ �

� 1� 2K1 KRbð ÞI1 KRbð Þ½ � exp �jxtl
� �	 


lexp jkL=2ð Þ

�
X1

n¼�1 sinc p n� x
X

� �h i
exp jnp=2ð Þ n

Jn kL=2ð Þ
kL=2

� �

Wex ¼ �
4q2

mpN2
mp pLð Þ2

4pe0R2
b

1

2p

ð1
�1

dx
1

jxe xð Þ

� 1

2p

ð1
�1

dk 1� 2K1 KRbð ÞI1 KRbð Þ½ � exp �jxtl
� �	 


l




 


2
�
X1

n¼�1 sinc p n� x
X

� �h i



� exp jnp=2ð Þ n

Jn kL=2ð Þ
kL=2

� �




2

(16)

Further, the infinite summation may be replaced by the reso-

nant term n ’ x=Xð Þ

X1
n¼�1

sinc p n� x
X

� �h i
exp

1

2
jpn

� � n Jn
kL

2

� �
kL

2

’ exp j
p
2

x
X

� �x
X

Jx=X
kL

2

� �
kL

2

: (17)

Thus the two quantities of interest read

F m tð Þ ¼ �
4q2

mpNmppL

4pe0R2
b

1

2p

ð1
�1

dx
1

jxe xð Þ
1

2p

�
ð1
�1

dk exp jxt� jkfm tð Þ½ � 1� 2K1 KRbð ÞI1 KRbð Þ½ �

� exp �jxtl
� �	 


lexp jkL=2ð Þ

� exp j
x
X

p
2

� � x
X

Jx=X kL=2ð Þ
kL=2

� �

Wex ¼ �
4q2

mpN2
mp pLð Þ2

4pe0R2
b

1

2p

ð1
�1

dx
1

jxe xð Þ

� 1

2p

ð1
�1

dk 1� 2K1 KRbð ÞI1 KRbð Þ½ �

� exp �jxtl
� �	 


l




 


2 x
X

Jx=X kL=2ð Þ
kL=2

� �2

: (18)

Before proceeding it is important to determine the condi-

tions for generation of Cerenkov radiation that obviously

decelerates the electrons and, therefore, competes with

the acceleration process associated with the motion in

the presence of an active medium. With this goal in

mind, consider only the contribution of the frequency-

independent dielectric coefficient. A nonzero time-average

radial component of the Poynting vector develops if

erx2=c2 � k2 > 0 therefore, having in mind that the modi-

fied Bessel functions satisfy K1 jxð Þ ¼ � p=2ð ÞH 2ð Þ
1 xð Þ,

I1 jxð Þ ¼ �jJ1 xð Þ we get

Wex ¼
q2

mpN2
mp 2pLð Þ2p

4pe0erR2
bX

2

1

p

ð1
0

dxx exp �jxtl
� �	 


l




 


2

� 1

p

ð xj j ffiffiffier
p

=c

0

dkJ2
1 Rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er

x2

c2
� k2

r !
Jx=X kL=2ð Þ

kL=2

� �2

:

(19)

For large orders Jm!1 xð Þ ’ ex=2mð Þm=
ffiffiffiffiffiffiffiffi
2pm
p

, there is a non-

zero contribution only if k > 4=eð Þ x=Xð Þ 1=Lð Þ implying

that

Wex ¼
q2

mpN2
mp 2pLð Þ2p

4pe0erR2
bX

2

1

p

ð1
0

dxx exp �jxtl
� �	 


l




 


2

� 1

p

ð xj j ffiffiffier
p

=c

4=eð Þ x=Xð Þ 1=Lð Þ
dkJ2

1 Rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er

x2

c2
� k2

r !
Jx=X kL=2ð Þ

kL=2

� �2

:

(20)

This is to say that the condition for a nonzero contribution

the integration limits satisfy xL
ffiffiffiffi
er
p

=c > 4=eð Þ x=Xð Þ . Con-

sequently, for Cerenkov radiation to develop in case of an

oscillating particle, the maximum velocity, XL=2, must be

larger than 0.736 the Cerenkov velocity c=
ffiffiffiffi
er
p� �

namely,

X
L

2
>

2

e

cffiffiffiffi
er
p : (21)

In what follows we assume that Cerenkov condition, Eq.

(21), is not satisfied and, as a result, the radiated energy is

zero and so is the decelerating force.

Now we are back to the evaluation of the energy

exchange as formulated in Eq. (20). The double integration,Ð
dx
Ð

dk is expected to have a maximum at the transition

between propagating and evanescent waves, k2 � e xð Þ
x2=c2 ’ 0 since the transverse wavelength seems much

larger than the radius of the electrons’ ensemble or explic-

itly, 1� 2K1 xð ÞI1 xð Þ ’ px=2ð Þ2 we get for the energy

exchange during one round trip

Wex ¼
q2

mpN2
mp 2pLð Þ2

4pe0R2
bX

2

p
2

� �2 1

2p

ð1
�1

dx
jx

e xð Þ exp �jxtl
� �	 


l




 


2

� 1

2p

ð1
�1

dk k2 � e xð Þx
2

c2

� �
Jx=X kL=2ð Þ

kL=2

� �2

; (22)

this being an excellent approximation for x < 0:02.
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Ignoring the space-charge term, we maintain only the

medium-dependent term and as already indicated, the system

operates below the Cerenkov condition. Therefore, only the

frequency-dependent term of the dielectric coefficient con-

tributes to the energy exchange

Wex ¼
4q2

mpN2
mpp

4

4pe0R2
bX

2

1

2p

ð1
�1

dx
jx

e xð Þ exp �jxtl
� �	 


l




 


2

� 1

p

ð1
0

dk Jx=X k
L

2

� �� �2

¼
�q2

mpN2
mp 2pð Þ4

4pe0e2
r X

2 2Lð Þ
X

i
x2

p;i

1

p

ð1
0

dq Jx0;i=X qð Þ


 

2

� 1

2p

ð1
�1

dx
jx exp �jxtl

� �	 


 

2
x2

0;i � x2 þ 2jxx0;i=Qi
: (23)

Bearing in mind that
Ð1

0
dqJm qð ÞJm�1 qð Þ ¼ 1=2 for large

orders we get

Wex ¼ �
q2

mpN2
mp 2pð Þ3

4pe0e2
r X

2 2Lð Þ
X

i
x2

p;i

� 1

2p

ð1
�1

dx
jx exp �jxtl

� �	 


 

2
x2

0;i � x2 þ 2jxx0;i=Qi

¼ �
q2

mpN2
mp 2pð Þ3

4pe0e2
r X

2 2Lð Þ
X

i
x2

p;i

� 1

2p

ð1
�1

dx
jx exp jx tm � tl

� �� �
x2

0;i � x2 þ 2jxx0;i=Qi

* +
m;l

¼ �
q2

mpN2
mp 2pð Þ3

4pe0e2
r X

2 2Lð Þ
X

i
x2

p;i

�
cos x0;i tm � tl

� �� �
� exp �x0;i

Qi
tm � tl
� �� �

h tm � tl
� ��

m;l

: (24)

Rather than repeating the procedure for evaluating the force

on the mth macroparticle we consider only the term that may

contribute directly to energy exchange

F m tð Þ ¼ fm sin X t� tmð Þ½ � (25)

and the question is what is fm. In the framework of our

approximation [Eq. (12)], the velocity of this macroparticle

is

_fm tð Þ ¼ �L

2
X sin X t� tmð Þ½ � (26)

and, therefore, the energy transferred during one period is

Wex ¼ Nmp

ðT=2

�T=2

dt F m tð Þ _fm tð Þ
D E

m

¼ � L

2
XNmp fm

ðT=2

�T=2

dt sin2 X t� tmð Þ½ �
* +

m

¼ � L

2
XNmp

1

2
T fmh in: (27)

Comparing the last result with Eq. (24) we get

fm ¼
2q2

mpNmp 2pð Þ2

4pe0e2
r X

2L2

X
i
x2

p;i

� cos x0;i tm � tl
� �� �

exp �x0;i

Qi
tm � tl
� �� �

h tm � tl
� �� �

l

:

(28)

In principle, there is an additional term that has zero contribu-

tion to energy transfer but it may affect the oscillating

frequency and includes the space-charge effect. Its form is

gm þ hm cos X t� tmð Þ½ �, in other words,F m tð Þ / fm tð Þ and it will

be assumed that this is negligible comparing to the harmonic

force X2fm



 

� F mj j=mmp associated with dc field of the trap.

The fact that fm is not zero, is one of the important results

of this study indicating that the force associated with colli-

sion of the second kind is proportional to the velocity of the

particle F m tð Þ / _fm tð Þ and in case of population inversion its

coefficient is negative, resembling a “negative fiction” force.

IV. EQUATION OF MOTION

The effective impact of the Penning trap on the particles

is represented by an ideal harmonic oscillator, its force being

proportional to the displacement, X2fm. This is a first order

approximation accounting for the fact that the voltage V0 on

the central anode determines the oscillating frequency

namely, X ¼ 2c=Lð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eV0=mc2

p
; L is the length of the trap.

In addition, the elastic collisions of the electrons with rem-

nant gas are represented by a decay time sscatt implying that

the equation of motion of the mth macroparticle is

d2fm

dt2
þ 2

s cskð Þ
m

þ 2

sscatt

 !
dfm

dt
þ X2fm ¼ 0; (29)

wherein s cskð Þ
m represents the “decay time” associated with

collisions of the second kind,

2

s cskð Þ
m

� �
X

i

1

hi

�
cos x0;i tm � tl

� �� �
� exp �x0;i

Qi
tm � tl
� �� �

h tm � tl
� ��

l

1

hi
� 1

T2;i

Dnir21;ireNmpNel

er=2p2ð Þ 2eV0=mc2ð Þ3=2
sinc2 1

2
x0;iTmp

� �
: (30)

re � e2=4pe0mc2 ’ 2:8� 10�15 m is the classical radius of

the electron and Tmp is the macroparticle duration. Clearly,

this parameter is negative in case of population inversion.

For establishing this quantity in terms of the particles’ loca-

tion in the phase space we must bear in mind that in the

framework of one-round-trip approximation we have

fm ¼
L

2
1þ cos X t� tmð Þ½ �f g

_fm ¼ �
XL

2
sin X t� tmð Þ½ �

9>=
>;) tm � tl

¼ 1

X
arctan

�fl

X

fl � fh i

0
@

1
A� arctan

�fm

X
fm � fh i

0
B@

1
CA

2
64

3
75 (31)
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wherein L=2 ¼ fmh i is the amplitude of the oscillation. A typ-

ical value for the growth rate in case of a single resonance for

T2 � 1 ms, Dn r21 � 1 m�1, NmpNel � 1012; x0Tmp � 1,

V0 � 200, er � 3 is s cskð Þ � 2:5 ls. Enhancing the population

inversion by an order of magnitude and the number of elec-

trons in a bunch by two orders of magnitude, the growth rate

increases by three orders of magnitude.

V. SIMULATION RESULTS

For simplicity sake, we define the effective scattering

decay coefficient 1=sm � 1=s cskð Þ
m þ 1=sscatt allowing us to

solve Eq. (29) analytically subject to the condition that dur-

ing one round trip in the trap, the decay parameter does not

change significantly. Assuming that we know the phase-

space distribution at t¼ 0 then

fm t 	 0ð Þ ¼
�

fm 0ð Þ cos Xtð Þ þ 1

X
_fm 0ð Þ þ 1

sm
fm 0ð Þ

� �

� sin Xtð Þ
�

exp �t=smð Þ (32)

Implying that after one round trip, Dt ¼ T ¼ 2p=X, the

ensemble’s phase-space coordinates are given by

fm Tð Þ ¼ fm 0ð Þ exp �T=smð Þ;
_fm Tð Þ ¼ _fm 0ð Þ exp �T=smð Þ: (33)

In all the examples that follow, we assume a single and dom-
inant resonance.

A. Single-particle effect

To some extent, the analysis so far was biased by the

thought that the electrons become bunched and, conse-

quently, collective effects become dominant. Before investi-

gating the collective effects let us briefly investigate the

single-particle process. According to Eq. (24), the average

power exchanged by one electron during one round trip is

Pex ¼ Wex=T or explicitly

Pex;1 ’
mc2ð Þ2

eV0T

p3L

2er

Dnr21re

cT2

1

Qx0T
’ mc2 c

L

p
2er

Dnr21re

x0T2ð Þ2
:

(34)

In case of Nel electrons stored in the trap, the “spontaneous”

power exchanged between electrons and the active medium

is the product of the single power emitted and the number of

electrons

P spð Þ
ex ’ NelPex;1 ’ Nelmc2 c

L

p
2er

Dnr21re

x0T2ð Þ2
: (35)

A typical value for the power for x0T2 � 102, Dnr21

� 10 m
�1

, Nel � 1012 , L¼0.1 m is P
spð Þ

ex ’ 10 nW. Note that

for this process to become significant we need to excite

many regular states; metastable states have small contribu-

tion to this mechanism.

B. Bunching process

In the numerical simulations that follow, we trace a frac-

tion of the ensemble that populates one optical period and

we further assume that there is no significant difference

between one optical period to another; therefore, an electron

can slip from one optical period to another. This is to say

that during one trap period, electrons in various optical peri-

ods experience virtually identical conditions—obviously at

different instants. Consequently, the macroparticles are

advanced in steps of one trap period at a time and during this

period, the decay, associated with the quality factor Qð Þ of

the medium, is ignored. Moreover, the transient associated

with the buildup of the electrons’ ensemble is assumed to

have decayed to zero; this implies that the Heaviside step

function is taken as unity. Subject to all these assumptions,

the equations of motion specified earlier have the same form,

d2fm

dt2
þ 2

s cskð Þ
m

þ 2

sscatt

 !
dfm

dt
þ X2fm ¼ 0;

2

s cskð Þ
m

� � cos w0 tm � tl
� �� �	 


l

1

T2

� Dnr21reNmpNel

er=2p2ð Þ 2eV0=mc2ð Þ3=2
sinc2 1

2
x0Tmp

� �
;

x0 tm � tl
� �

¼ x0

X
arctan

�fl
X

fl � fh i

0
@

1
A� arctan

�fm
X

fm � fh i

0
@

1
A

2
4

3
5;

fm Tð Þ ¼ fm 0ð Þ exp �T=smð Þ;
_fm Tð Þ ¼ _fm 0ð Þ exp �T=smð Þ: (36)

except that we trace only the electrons in one optical period.

In what follows we present numerical solution of the set of

equations in Eq. (36) for the parameters detailed in Table I.

TABLE I. Values of the parameters used in the simulations presented

below.

T(ns) 26.5 Dn mð Þ�3
1.1�1022 L(cm) 10

T2(ms) 0.24 r21 m2ð Þ 1.8�10�22 Nmp 360

k0 lmð Þ 1.06 er 3.3 Nel 109

V0 Vð Þ 400 sscatt msð Þ 0.1

FIG. 2. (Color online) Amplification factor exp �T=smð Þ with and without

the normal scattering included.
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As a starting point, we considered the amplification

factor exp �T=smð Þ with and without the normal scattering

included: in Fig. 2, we observe that in the absence of regu-

lar scattering a significant fraction of the electrons absorb

energy from the medium. This fraction diminishes as the

scattering effect increases. In order to envision the impact

of this effect we draw in Fig. 3 the relative change in the

total energy of the electrons after 500 round trips. In both

cases, part of the electrons gain energy from the active

medium—primarily those around phase p=2. As is

expected, the energy gain is strongly dependent on the

gain medium.

Figure 4 shows the phase-space for 300, 400 and 500

round trips ignoring normal scattering, as will be assumed to

be the case in all simulation results that follow. In the left-

frame the population inversion is assumed to be

Dnj j ¼ 1:1� 1022 m
�3

, whereas in the right-frame the popu-

lation inversion density is by 30% higher. This increase

leaves the decelerated electrons virtually unchanged but the

accelerated electrons more than double their peak energy

values. Since originally, these electrons are trapped, this

energy excess allows the accelerated electrons to escape the

trap. Evidently, their energy at the output is a function of the

number of round trips the electrons are undergoing as well as

the potential at the output. As collisions of the second kind

enhance the energy of a fraction of the electrons, their ampli-

tude of oscillation increases. We have already indicated that

for simplicity sake, we assumed an ideal trap (harmonic os-

cillator) and the escape process is not included in the

description of the system. Nevertheless, the energy of the

electrons may be inferred by assuming that beyond a given

point and at a given instant, the potential well is “turned-off”

and electrons are leaving the trap with the energy specified

in Fig. 4.

Figure 5 shows that the average energy increases line-
arly with the average amplitude of the electrons indicating

that, in zero order, for the chosen parameters the force acting

on the particles is independent of the oscillation amplitude.

Note that the harmonic oscillator describing the trap is

assumed to extend beyond fj j ¼ L=2. The solid line reveals

the linear dependence for Dnj j ¼ 1:1� 1022 m�3 whereas

the dashed line represents a higher population inversion

Dnj j ¼ 1:4� 1022½m�3�. In both cases, the slope is the same

but for the same number of round trips in the trap, the

FIG. 3. (Color online) The relative change in the total energy of the elec-

trons ensemble with and without normal scattering after 500 round-trips.

FIG. 4. (Color online) Phase-space for

300, 400 and 500 round-trips ignoring

normal scattering. In the left frame, the

population inversion is assumed to be

Dn ¼ 1:1� 1022 m�3, whereas in the

right frame the population inversion den-

sity is 30% higher.

FIG. 5. (Color online) The total average energy gained by the electrons is

linear in the amplitude of their oscillation.
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amplitude of the oscillation is significantly affected by the

population inversion as does the total energy (potential and

kinetic).

Let us now focus our attention on the phase space,

investigating the behavior of each one of the macroparticles.

Figure 6 shows the relative change in the total energy of the

mth macroparticle and the corresponding coefficient of colli-

sion of the second kind. The difference between the two

frames is the population density and we observe that if sm is

negative, the relative energy change is positive and may be

larger than 300%. However, the system may reach satura-

tion. This to say that electrons that originally have been

accelerated, may be decelerated and vice versa. In spite of

the fact that overall, the ensemble accelerates, a small frac-

tion of electrons experience a negative friction, yet the rela-

tive change in energy is negative.

Finally, we have examined the relation between the av-

erage and the standard deviation of the energy of the elec-

trons, as a function of 1=sh i and D 1=sð Þ in each round trip.

We illustrate the result of the numerical solution of the sys-

tem’s equations in Fig. 7 and the main trends are summar-

ized in Table II. Two features are evident: first the fact that

in zero order, the average energy gained by the electrons is

proportional to h1=si � h1=s cskð Þ
m i and second, that the stand-

ard deviation of the energy is linear with

D 1=sð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð1=sðcskÞ

m Þ2i � h1=sðcskÞ
m i2

q
. Less intuitive is the

fact that for low standard deviation, the average energy is

FIG. 6. (Color online) Relative change

in the total energy of the mth macropar-

ticle and the corresponding second kind

collision time. The difference between

the two frames is the population density.

FIG. 7. (Color online) Average and

standard deviation of the energy of the

electrons, as a function of 1=sh i and

D 1=sð Þ.
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proportional to D3 1=sð Þ as well as the fact that the standard

deviation of the energy is linear on the term 1=sh i1=3
.

VI. CONCLUSIONS AND DISCUSSION

Before summarizing the main results of the present anal-

ysis, let us first recapitulate the main assumptions:

(i) The dielectric function representing the material has a

single resonance.

(ii) Electron dynamics is confined to one dimension and its

velocity is below Cerenkov velocity.

(iii) Linear regime of operation—negligible change in the

population inversion.

(iv) Stimulated emission cross section for regular photons is

identical to that of virtual photons.

(v) Parasitic effects (e.g., ionization) of electrons on the

active medium are ignored; except if otherwise speci-

fied, collisions of the first kind are ignored in

simulations.

(vi) For the numeric simulations, the characteristic parame-

ters of Nd:YAG are considered.

(vii) The entire system has azimuthal symmetry.

With the model built based on these assumptions, we

have demonstrated that electrons oscillating in a Penning

trap may become bunched at the resonant frequency of the

active medium. During multiple round trips in the trap, the

bunched electrons gain energy and therefore, they may

escape the trap forming an optical injector. Specifically, the

main findings are:

(i) In the absence of regular scattering, a significant frac-

tion of the electrons absorb energy from the medium;

this fraction diminishes as the scattering effect

increases, Fig. 2.

(ii) After many round trips (500) of the electrons in the Pen-

ning trap, electrons get bunched at the resonant fre-

quency of the medium (Fig. 3). Collisions of the first

kind suppress somewhat the relative energy change but

do not avoid the bunching for typical values of the scat-

tering lifetime (0.1ms).

(iii) The longer the electrons are trapped, they gain more

energy from the medium (Fig. 4). At the same time, the

energy of the decelerated electrons varies only slowly.

For the parameters employed, a rough approximation of

peak relative energy change is given by

� 100fexp½3 Dn=1022ð Þ2 M=103ð Þ2� � 1g. This result has

limited validity since the population inversion is

assumed to be unchanged. Obviously, while the energy

depletion is accounted for, this peak relative energy

change reaches saturation.

(iv) For all practical purposes, if collisions are ignored, the

Penning trap may be conceived as a harmonic oscillator;

therefore, the total energy (kinetic and potential) is con-

stant. Our analysis has demonstrated that when colli-

sions of the second kind were accounted for, this energy

increases linearly with average-amplitude the electrons

are oscillating. From this result it can be inferred that

the average accelerating force exerted by the active me-

dium on the ensemble of electrons, is constant.

(v) Similar to the dynamics of electrons in regular accelera-

tors or in traveling wave tubes or free electron lasers, as

the interaction reaches saturation, energy flow changes

direction. If a specific (macro) particle was originally

accelerated, implying that energy was transferred from

the medium/radiation to the electrons, once saturation is

reached, electrons are decelerated. Therefore, energy is

transferred from the electrons to the field or medium.

(vi) During each round trip, the average energy gained

is proportional to the population inversion

ð/ h1=sðcskÞ
m imÞ.

The above-described process resembles SASE in the

case of lasers. Starting with a uniformly distributed beam,

the active medium causes the beam to become bunched and

as they get bunched, the energy extraction is enhanced and

so is the bunching. While the current analysis is motivated

by a low energy (nonrelativistic) injector, the concept is ap-

plicable to relativistic circular machines such as cyclotron or

betatron by replacing the (rf) accelerating units with a gase-

ous active medium. An intermediary energy configuration

has been suggested by Kimura et. al.10 and it employs exci-

mer (ArF) as an active medium.
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TABLE II. Average and standard deviation energy of the electrons as a

function of the collision of the second kind coefficient.

Eh in
Eh i1
¼ 1� ðÞ 1

s

	 
� �
n

Eh in
Eh i1
¼ 1þ ðÞ D 1

s

� �� �3n o
n

D Eð Þn
Eh i1
¼ ðÞ � ðÞ 1

s

	 
1=3
h i

n

D Eð Þn
Eh i1
¼ ðÞ þ ðÞD 1

s

� �� �
n
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