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Abstract—This paper is focused on the performance analysis Error- chamet - Chamel?
! ; S ) J\V4>2 [ chamnel2  |————=| Decoder ——
of binary linear block codes (or ensembles) whose transmission —| orrection === yapper [_chamerz ]
takes place over independent and memoryless parallel channels. "L~ cramets -
New upper bounds on the maximum-likelihood (ML) decoding er-
ror probability are derived. The framework of the second version Fig. 1. System model of parallel channels.

of the Duman and Salehi (DS2) bounds is generalized to the case
of parallel channels, along with the derivation of optimized tilting
measures. The connection between the generalized DS2 and the

1961 Gallager bounds, known previously for a single channel, is f th ble of bi i block cod d
revisited for the case of parallel channels. The new bounds are SPECtrum of the ensemble of binary linear block codes under

used to obtain improved inner bounds on the attainable channel consideration (to be defined in Section II).

regions under ML decoding. These improved bounds are applied  Using a similar approach, we derive a parallel-channel

to ensembles Qf turbo-like .co.des, focusing on repeat-accumulategeneranzatmn of the DS2 bound introduced in [3], [8]; for

codes and their recent variations. the case of parallel channels, we re-examine the well-known

relations which exist for the single channel case between this
I. INTRODUCTION bound and the 1961 Gallager bound (see [2], [8]).

. . The new bounds are compared with the ones in [6] for
_Pe_rformance analysis of linear block co_des \_/vhose tra;ge(}rallel Gaussian channels, and show significant improvement

mission takes place over parallel channels is of interest si

communication over parallel channels models various practi%ﬂ

scenarios. In this case the message is partitioned into sever

disjoint subsets, and the bits in each subset are transmitm

over a different channel. This enables one to model transn1118F

sion over block-fading channels, rate-compatible puncturing

of turbo-like codes, incremental redundancy retransmissi . . . .
schemes. cooperative coding. and multi carr?:er sianalin ngtem model is presented in Section II, as well as prelim-
' P 9, 9 9. inary material related to our discussion. In Section I, we

Tight analytical bounds serve as a pot.ent tool for assessia\grive the improved upper bounds under ML decoding when
tEe perforT?n_ce;if rr:(oldernherro(;-_corrr]ectlon schemes, bOtE {RE transmission takes place over parallel MBIOS channels.
the case of finite block length and In the asymptotic case Wheigainaple channel regions for ensembles of codes are derived

channel, thesg bO,U”‘?'S can be apF_’”?d in order to obtain a NYS&der is referred to the full paper version [9] where proofs
threshold which indicates the minimum channel condmor'gnd further mathematical details are provided.

necessary for reliable communication. When generalizing to
the scenario of independent parallel channels, this threshold is [I. PRELIMINARIES
transformed into a multi-dimensional barrier in terms of the
parallel-channel parameters, dividing the space into attaina@Ie
and non-attainable channel regions. The communication model consists df statistically in-
The performance of code ensembles operating under tHgpendent, memoryless, binary-input and output-symmetric
setting was recently addressed by Liu et al. [6]; their analydi¥IBIOS) channels, as shown in Fig. 1. Using a block cGde
adapts the 1961 Gallager-Fano bounding technique [4] fof Size M = 2%, the encoder selects a codeword with equal
communication over parallel channels. The upper bounds Bipbability (7) for transmission. Each codeword consists of
the ML decoding error probability enable to derive achievable symbols, and the coding rate is definedrag: l‘)g’% = %
regions which ensure reliable communications under ML de-The channel mapper selects for each coded symbol one
coding where the block length of the codes (or ensembles) tesfdJ channels through which it is transmitted; the transition
to infinity; these regions depend on the asymptotic distanpeobability of thej-th channel ie(y|z; 7). The received vector

er these bounds. They are also exemplified for various

ﬁembles and provide tighter inner bounds on the boundary of
channel regions which are asymptotically attainable under
decoding. The tightness of these bounds is exemplified

ensembles of accumulate-based codes.

The remainder of the paper is organized as follows. The

System Model



is maximum-likelihood (ML) decoded at the receiver where andv(-;j), j =1,...,J are arbitrary probability tilting

the specific channel mapping is assumed to be known. measures (which are subject to optimization, together
Liu et al. [6] introduced the concept of a random channel with the parameters andp). The bound in (2) is referred

mapping device which takes a symbol and assigns it to chan- to as the DS2 bound for parallel channels.

nel j with probability «;, and the assignment is independent « Consider the partitioning of the codé to constant

of that of other symbols. This approach enables the derivation Hamming-weight subcodefC;};_, where the subcode

of an upper bound for the parallel channels which is averaged Cj, consists of all the codewords ¢hof Hamming weight

over all possible channel assignments and calculated in terms A plus the all-zero codeword. Applying the union bound

of the distance spectrum of the code (or ensemble). over the subcodes yields

B. Distance Properties of Ensembles of Turbo-Like Codes

Bounds on the ML decoding error probability of binary
linear block codes or ensembles are often based on their
distance properties (see, e.g., [8] and references therein).

Let [C(n)] be an ensemble of codes of length We
also consider @aequence of ensemblg¥n4)], [C(n2)], ... all
possessing a common rafe For a given binary linear block
codeC, let A,CL (or simply A;) denote the distance spectrum,
i.e., the number of codewords of Hamming weighReferring
to ensembles of codes, denoteh&f("” the average distance
spectrum of the ensemble. We are interested in studying the
asymptotic case where — oo. To this end, we define the
asymptotic exponent of the distance spectasn

F < Zpe\o(h) (3)
h=0

where Fgo(h) is the decoding error probability for the
subcodeC;, given that the all-zero codeword is trans-
mitted. Rather than optimizing the tilting measure in
the bound given by Eq. (2), we apply the DS2 bound
for every subcode and use Eq. (3) to evaluate the over-
all bound on P.. The key result is that applying the
bound in this manner allows us to optimize tlidilting
measures for each subcoseparately The total number

of subcodes does not exceed the block length of the
code (or ensemble). Consequently, the use of the union
bound does not degrade the related error exponent of
In A€ the overall bound, but on the other hand, the optimized

C A g C(n C(n A h . .
r(s) £ ,}EEOT[ @), i) £ " 1) titing measures are tailored for each of the constant-
. , , Hamming weight subcodes, a process which can only
A b
whered = . is thenormalized distance improve the exponential behavior of the resulting bound.
I1l. | MPROVED BOUNDS FORINDEPENDENTPARALLEL The conditional ML decoding error probability of the
CHANNELS UNDER ML DECODING constant-weight subcod@, is therefore upper-bounded
A. The DS2 Bound by
In this section, we present a generalization of the DS2 bound J hp
to the case of independent parallel MBIOS channels. For a Peo(h) < Z% X ;3o (5 )
discussion on the DS2 bound for a single MBIOS channel,

the reader is referred to the tutorial paper [8, Chapter 4].

(n—h)
Theorem 1 [The Generalized DS2 Bound for Parallel Chan- ) )
nels]: Consider the transmission of binary linear block codes Z%’B(p;],d)(-;])) (4)
(or ensembles) under the scenario described in Section IlI-A. =
We have the following results: which can be written equivalently in the exponential form

o The ML decoding error probability is upper-bounded by

h
n J
Pe < ) A, (Z%A(A,p;j,w(-;j))) where
h=0 j=1

Pyo(h) < e Ba"op I {ed)

n—hY)P EDSZ()‘vp7 J7 {aj}) £ _p,rC((S)
J J
(2 O‘jB(p;J’W'”))) (2) —péln (Z %A(/\,p;j,w(-;j)))
j= =1
where0 < p < 1,2 >0, i
. IS RIS (1—90)In a;jB(p;j,(55)) | - (5)
A(/\,p;J,w(-;y))éZ(w(yu)l *p(yl0;5) 7 =1
Yy
Pyl ,)A) This exponential form will be useful in Section IV for
J the discussion on attainable channel regions.
B(p; 7. 0( éZﬁ, p(y|0; j)% The pptimized_ set _of probgb_ility tilting measures
v {¢(-;7) 3']:1 which attains the minimal value of the upper



bound (4) is given (fori =1,...,J) by
Hk(p(yu;j))* B
p(y]0;7) '

The optimal parametefsandg; j =1,...,J are related
by the following implicit equations

0> {aClyih)}

k= g J=1y€ey
=0 ()N
22 {%C(‘”’” (%)
)\
1+k<p(y0;j)) ]
Can A\ P -1
B = lZP(yO;j)<1+k<p<y|l’j)> > ] )

ey p(yl0; )

Y(y;7) = Bip(yl0;7)

where

Cly;j) & ﬁ;ﬁp(ylo;j)

In order to evaluate the bound in (4) for a fixed pair og
A and p, we find the optimized tilting measures in (6) by
,3s) and then iterating
between (7) and (8) until we get a fixed point for thes
equations. For a fixed, we need to optimize numerically the

first assuming an initial vectdisy, . . .

bound in (4) w.r.t. the two parameteksand p.
B. The 1961 Gallager Bound

In this section we discuss the 1961 Gallager bound f&f

parallel MBIOS channels.

optimized tilting measures for the 1961 Gallager bound.
The optimal choice for the set of functiods'(-;5)} is
given by

- [a-o
fly;g) =
1-s(1—p— 1

2¢ (p(l0si)p(yl1id))  °
p(yl0;5) = +p(y[1;5)1 =2

l-s(—p~h 1-sa-p~H)?
(p(yIO;J) 2 —p(y[1:5) 2 )

p(y]055) == +p(y|1;5) 1=

}L , (p,s,c) €10,1)3.

where the parameteys s, ¢ are optimized numerically so
as to get the tightest bounds within this form.

Discussion.In [6], simple choices for these functions are
used to evaluate the 1961 Gallager bound for parallel channels,
rather than the optimized tilting measures. Consequently, the
bounds in [6] are looser.

The connection between the DS2 bound and the 1961
Gallager bound for a single MBIOS channel has been explored
in [2], [8]. In this case, it was demonstrated that the DS2
ound is tighter than the Gallager bound. At first, one would
xpect that a similar result would also hold for the general
case where the communication takes place dvierdependent
Earallel MBIOS channels. It is shown in [9] that this is

ot necessarily the case. Consequently, we cannot draw a
conclusion establishing the superiority of one of these bounds
over the other for the case whefe> 1. We present numerical
results which verify this observation. For technical details, the
ader is referred to [9].

IV. INNER BOUNDS ONATTAINABLE CHANNEL REGIONS

Theorem 2 [The 1961 Gallager Bound for Parallel Chan-
nels]: Consider the transmission of binary linear block codes A .J-tuple of transition probabilities characterizing a par-
(or ensembles) under the scenario described in Section Il-#ilel channel is said to be aattainable channel pointvith
We have the following results: respect to a code ensemhleif the average ML decoding

« The 1961 Gallager bound for parallel channels is givegrror probability vanishes as we let the block length tend to

by (see [6]) infinity. The attainable channel regionf an ensemble whose
h transmission takes place over parallel channels is defined as the
closure of the set of attainable channel points. Since the exact
decoding error probability under ML decoding is in general

n J
Po < 2M003N" AL 1D 0 Z(r55)
h=1 J=1 unknown, we evaluate inner bounds on the attainable channel

; n—hY P ; n(1—p)  regions whose calculation is based on upper bounds on the
' » W ML decoding error probability.
Z; a;G(r:J) Z; a;G/(:7) Our numerical results referring to inner bounds on attainable
- = channel regions are based on the following theorem.
wherer <0, s>0, Theorem 3 [Inner bounds on the attainable channel re-

] L ] gions for parallel channels]Consider the transmission of a
G(r;j) = > pWlosi) " fly;5)" inary li
' ' ' sequence of binary linear block codes (or ensemHlgx))|}
Y takes place over a set of parallel MBIOS channels. Let

057 17 = [y 5)"
zy:[p(yl NN fly:d) % S Vw0l ), el )

p 2 0<p<t

sS—7T

Z(r;j) =

(1>

designate the Bhattachryya constants of the channels. Assume
and f(-;j) is an arbitrary tilting measure, constrained tghat the following conditions hold:
be non-negative and even (i.€(y;j) = f(—y;J)). 1)

« By partitioning the code into constant Hamming-weight

. DS2
subcodes and using the union bound as in (3), we obtain inf E78) >0,

so Vg € (071)



where, for0 < ¢ < 1, EPS(§) is calculated from (5) 10
by maximizing w.rt.\, p (A > 0 and0 < p < 1) and
the probability tilting measure§y(-; 5)}7 o

. . J=1r 107 ]
2) The inequality
o
€1(5) J o °
. T 1072k 4
lim sup < —In ;4 o
50 5 ; J 17
z o
is satisfied. g 107 |
3) There exists a sequené®,,} of natural numbers tend- %
ing to infinity with increasingn so that el |

D,
lim sup Z AEIC(")] =0.

&

10°F (Eb/NO)l =0dB

4) The normalized exponent of the distance spectrum

—— DS2 bound

€] converges uniformly id € [0, 1] to its asymptotic 10°L |~ 1961 Gallager bound 1
|- -t 1 —+ LMSF bound
Imi ( ) —— Union Bound

O lterative Log—MAP decoder (10 iterations)

Then, theJ-tuple vector of parameters characterizing these -
channels lies within the attainable channel region under ML o o5 1 15 2 25 3 35 4 45 5
decoding &, [

DiscussionWe note that conditions 3 and 4 in Theorem 3
are similar to the last two conditions in [5, Theorem 2.3Fig. 2. PeffOftman?e t|>0tl_mds fOTItthe ?itteffft%r pffbab’\i/lli/lglpugdﬂ('j\(lL d(eC_?r?Tg

P - . Vi us computer simulation results of Iterative L0g- ecoding (wi

Condition 2 abov_g happens to be a natural generallzatlonit§ﬁtions)_
the second condition in [5, Theorem 2.3] to a set of parallel
channels. The distinction between [5, Theorem 2.3] which

relates to typical-pairs decoding over a single channel apgd; pit to spectral noise density of the first channel is set to
the statement in Theorem 3 for ML decoding over a set ¢fe,\ _ 4B The parallel-channel version of the union

independent parallel channels lies mainly in the first Conditi%é\ﬁné shown in the figure (see [9, Appendix CJ) is obtained

of both theorems. : . :
A similar result which involves the generalized 1961 Galk?y averaging the union bound over all channel assignments, a
imilar process by which the improved bounds are obtained.

lager bound for parallel channels is given in a similar fash?\je LMSF bound (yielding the tightest modified Shulman-

by replacing the first condition with an equivalent relatio . L : .
: : . der [10] bound) is a combination of the union bound with
involving the exponent of the 1961 Gallager bound maximiz 5‘; Shulman-Feder bound (see [6], [9] for details on the

over its parameters, instead of the error exponent of the DS2. ™. . .
P P erivation of this bound), and was presented in [6] as a

bound. special case of the 1961 Gallager bound. Clearly, the DS2
V. PERFORMANCEBOUNDS FORTURBO-LIKE and the 1961 Gallager bounds with the&iptimized tilting
ENSEMBLES OVERPARALLEL CHANNELS measuresshow a remarkable improvement in their tightness

In this section, we exemplify the performance bound2ver the union and LMSF bounds in [6]; for a bit error
derived in this paper for various ensembles of turbo-likerobability of 10~%, the improved bounds exhibit a gain of
codes whose transmission takes place over parallel Gaus$lgh dB over the LMSF bound. The DS2 bound gains very
channels. We also compare the bounds to those introdudiéée over the 1961 Gallager bound (about 0.05 dB) at a bit

in [6], showing the superiority of the new bounds with theifmor probability oftl0—3. In spite of the remarkable advantage
optimized tilting measures. of the improved bounds over the union and LMSF bounds,

computer simulations under (the sub-optimal) iterative Log-
A. Performance Bounds for Uniformly Interleaved Turb@iap decoding with 10 iterations show a gap of about 0.4 dB
Codes in favor of the performance under iterative decoding. This
Fig. 2 compares upper bounds on the bit error probabilitydicates that there is still room for further improvement in
of the ensemble of uniformly interleaved turbo codes dhe tightness of the analytical bounds under ML decoding.
rate R = % bits per channel use. The encoder consists
of two convolutional encoders with polynomials(D) = B. Attainable Channel Regions for Various Ensembles of

[1,%} and the interleaver between them id\ccumulate-Based Codes

of length 1000. The transmission is assumed to take placdn this section, we compare inner bounds on the attain-
over two (independent) parallel binary-input AWGN channelgble channel regions of accumulate-based codes under ML
where each bit is equally likely to be assigned to one afecoding. The comparison refers to three ensembles of rate

these channelsof = ay = %), and the value of the energyone-third, as depicted in Fig. 3; the first is the ensemble of



uniformly interleaved and non-systematic repeat-accumulate
(RA) codes withg = 3 repetitions; the second and the third
are uniformly interleaved and systematic ensembles of RA &
codes and accumulate-repeat-accumulate [1] (ARA) codes,
respectively, where the number of repetitions is equal t06 !
and, as a result of periodic puncturing, every third bit of the
non-systematic part is transmitted (so the puncturing period is
p = 3). For simplicity of notation, we make use of the abbre-
viations NSRAN, ¢), SPRAN, p, q) and SPARAN, M, p, q)

for the encoders shown in Fig. 3 (a)—(c), respectively (i.e., the
abbreviations 'NS’ and 'SP’ stand for ’non-systematic’ and -
'systematic and punctured’, respectively). In this notatién,
is the input block length.

In[9], it is shown that the asymptotic growth rate of the dis-
tance spectra of these ensembles is such that the second, third, _4
and fourth conditions of Theorem 3 are satisfied. The distance )
spectra of the SPRA and SPARA ensembles considered here

were calculated in [9] using the techniques introduced in [1l-]‘|'g. 4, Attainable channel regions for the rate 1/3 accumulate-based
ensembles depicted in Fig. 3. The communication takes place over two parallel
L){ Repetition } i } Interleaver }

(E,/N,), [4B]

Cutoff Rate

— NSRA =3

—x— SPRA p=3, =6

—+— SPARA p=3, =6, 0=1/4
O  SPARA p=3, q=6,a=2/15

—— Capacity Limit

-3 -2 -1 0 1 2 3
(E,/N,), [dB]

binary-input AWGN channels witly; = ao = 0.5. The capacity limit and

N T
Accumulate | _ gN . . .
the attainable channel region which refers to the cutoff rate are referenced.

code
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The improved performance of the ensembles of SPARKH
codes under ML decoding is demonstrated by the Gallagé]
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