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Abstract— This paper is focused on the performance analysis
of binary linear block codes (or ensembles) whose transmission
takes place over independent and memoryless parallel channels.
New upper bounds on the maximum-likelihood (ML) decoding er-
ror probability are derived. The framework of the second version
of the Duman and Salehi (DS2) bounds is generalized to the case
of parallel channels, along with the derivation of optimized tilting
measures. The connection between the generalized DS2 and the
1961 Gallager bounds, known previously for a single channel, is
revisited for the case of parallel channels. The new bounds are
used to obtain improved inner bounds on the attainable channel
regions under ML decoding. These improved bounds are applied
to ensembles of turbo-like codes, focusing on repeat-accumulate
codes and their recent variations.

I. I NTRODUCTION

Performance analysis of linear block codes whose trans-
mission takes place over parallel channels is of interest since
communication over parallel channels models various practical
scenarios. In this case the message is partitioned into several
disjoint subsets, and the bits in each subset are transmitted
over a different channel. This enables one to model transmis-
sion over block-fading channels, rate-compatible puncturing
of turbo-like codes, incremental redundancy retransmission
schemes, cooperative coding, and multi-carrier signaling.

Tight analytical bounds serve as a potent tool for assessing
the performance of modern error-correction schemes, both for
the case of finite block length and in the asymptotic case where
the block length tends to infinity. For a single communication
channel, these bounds can be applied in order to obtain a noise
threshold which indicates the minimum channel conditions
necessary for reliable communication. When generalizing to
the scenario of independent parallel channels, this threshold is
transformed into a multi-dimensional barrier in terms of the
parallel-channel parameters, dividing the space into attainable
and non-attainable channel regions.

The performance of code ensembles operating under this
setting was recently addressed by Liu et al. [6]; their analysis
adapts the 1961 Gallager-Fano bounding technique [4] for
communication over parallel channels. The upper bounds on
the ML decoding error probability enable to derive achievable
regions which ensure reliable communications under ML de-
coding where the block length of the codes (or ensembles) tend
to infinity; these regions depend on the asymptotic distance
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Fig. 1. System model of parallel channels.

spectrum of the ensemble of binary linear block codes under
consideration (to be defined in Section II).

Using a similar approach, we derive a parallel-channel
generalization of the DS2 bound introduced in [3], [8]; for
the case of parallel channels, we re-examine the well-known
relations which exist for the single channel case between this
bound and the 1961 Gallager bound (see [2], [8]).

The new bounds are compared with the ones in [6] for
parallel Gaussian channels, and show significant improvement
over these bounds. They are also exemplified for various
ensembles and provide tighter inner bounds on the boundary of
the channel regions which are asymptotically attainable under
ML decoding. The tightness of these bounds is exemplified
for ensembles of accumulate-based codes.

The remainder of the paper is organized as follows. The
system model is presented in Section II, as well as prelim-
inary material related to our discussion. In Section III, we
derive the improved upper bounds under ML decoding when
the transmission takes place over parallel MBIOS channels.
Attainable channel regions for ensembles of codes are derived
in Section IV. Numerical results are given in Section V. The
reader is referred to the full paper version [9] where proofs
and further mathematical details are provided.

II. PRELIMINARIES

A. System Model

The communication model consists ofJ statistically in-
dependent, memoryless, binary-input and output-symmetric
(MBIOS) channels, as shown in Fig. 1. Using a block codeC
of size M = 2k, the encoder selects a codeword with equal
probability ( 1

M ) for transmission. Each codeword consists of
n symbols, and the coding rate is defined asR , log2 M

n = k
n .

The channel mapper selects for each coded symbol one
of J channels through which it is transmitted; the transition
probability of thej-th channel isp(y|x; j). The received vector



is maximum-likelihood (ML) decoded at the receiver where
the specific channel mapping is assumed to be known.

Liu et al. [6] introduced the concept of a random channel
mapping device which takes a symbol and assigns it to chan-
nel j with probability αj , and the assignment is independent
of that of other symbols. This approach enables the derivation
of an upper bound for the parallel channels which is averaged
over all possible channel assignments and calculated in terms
of the distance spectrum of the code (or ensemble).

B. Distance Properties of Ensembles of Turbo-Like Codes

Bounds on the ML decoding error probability of binary
linear block codes or ensembles are often based on their
distance properties (see, e.g., [8] and references therein).

Let [C(n)] be an ensemble of codes of lengthn. We
also consider asequence of ensembles[C(n1)], [C(n2)], . . . all
possessing a common rateR. For a given binary linear block
codeC, let ACh (or simply Ah) denote the distance spectrum,
i.e., the number of codewords of Hamming weighth. Referring
to ensembles of codes, denote byA

[C(n)]
h the average distance

spectrum of the ensemble. We are interested in studying the
asymptotic case wheren → ∞. To this end, we define the
asymptotic exponent of the distance spectrumas

r[C](δ) , lim
n→∞

r[C(n)](δ), r[C(n)](δ) , ln A
[C(n)]
h

n
(1)

whereδ , h
n is thenormalized distance.

III. I MPROVED BOUNDS FORINDEPENDENTPARALLEL

CHANNELS UNDER ML D ECODING

A. The DS2 Bound

In this section, we present a generalization of the DS2 bound
to the case of independent parallel MBIOS channels. For a
discussion on the DS2 bound for a single MBIOS channel,
the reader is referred to the tutorial paper [8, Chapter 4].

Theorem 1 [The Generalized DS2 Bound for Parallel Chan-
nels]: Consider the transmission of binary linear block codes
(or ensembles) under the scenario described in Section II-A.
We have the following results:

• The ML decoding error probability is upper-bounded by

Pe ≤





n∑

h=0

Ah




J∑

j=1

αjA(λ, ρ; j, ψ(·; j))



h




J∑

j=1

αjB(ρ; j, ψ(·; j))



n−h




ρ

(2)

where0 ≤ ρ ≤ 1, λ ≥ 0,

A(λ, ρ; j, ψ(·; j)),
∑

y

(
ψ(y; j)1−

1
ρ p(y|0; j)

1−λρ
ρ

p(y|1; j)λ
)

B(ρ; j, ψ(·; j)),
∑

y

ψ(y; j)1−
1
ρ p(y|0; j)

1
ρ

andψ(·; j), j = 1, . . . , J are arbitrary probability tilting
measures (which are subject to optimization, together
with the parametersλ andρ). The bound in (2) is referred
to as the DS2 bound for parallel channels.

• Consider the partitioning of the codeC to constant
Hamming-weight subcodes{Ch}n

h=1 where the subcode
Ch consists of all the codewords inC of Hamming weight
h plus the all-zero codeword. Applying the union bound
over the subcodes yields

Pe ≤
n∑

h=0

Pe|0(h) (3)

where Pe|0(h) is the decoding error probability for the
subcodeCh given that the all-zero codeword is trans-
mitted. Rather than optimizing the tilting measure in
the bound given by Eq. (2), we apply the DS2 bound
for every subcode and use Eq. (3) to evaluate the over-
all bound onPe. The key result is that applying the
bound in this manner allows us to optimize theJ tilting
measures for each subcodeseparately. The total number
of subcodes does not exceed the block length of the
code (or ensemble). Consequently, the use of the union
bound does not degrade the related error exponent of
the overall bound, but on the other hand, the optimized
tilting measures are tailored for each of the constant-
Hamming weight subcodes, a process which can only
improve the exponential behavior of the resulting bound.
The conditional ML decoding error probability of the
constant-weight subcodeCh is therefore upper-bounded
by

Pe|0(h) ≤ (Ah)ρ




J∑

j=1

αjA(λ, ρ; j, ψ(·; j))



hρ




J∑

j=1

αjB(ρ; j, ψ(·; j))



(n−h)ρ

(4)

which can be written equivalently in the exponential form

Pe|0(h) ≤ e−nEDS2
δ (λ,ρ,J,{αj})

where

EDS2
δ (λ, ρ, J, {αj}) , −ρrC(δ)

−ρδ ln




J∑

j=1

αjA(λ, ρ; j, ψ(·; j))



−ρ(1− δ) ln




J∑

j=1

αjB(ρ; j, ψ(·; j))

 . (5)

This exponential form will be useful in Section IV for
the discussion on attainable channel regions.
The optimized set of probability tilting measures
{ψ(·; j)}J

j=1 which attains the minimal value of the upper



bound (4) is given (forj = 1, . . . , J) by

ψ(y; j) = βjp(y|0; j)

[
1 + k

(
p(y|1; j)
p(y|0; j)

)λ
]ρ

. (6)

The optimal parametersk andβj j = 1, . . . , J are related
by the following implicit equations

k =
δ

1− δ

J∑

j=1

∑

y∈Y
{αjC(y; j)}

J∑

j=1

∑

y∈Y

{
αjC(y; j)

(
p(y|1; j)
p(y|0; j)

)λ
} (7)

where

C(y; j) , β
1− 1

ρ

j p(y|0; j)

[
1 + k

(
p(y|1; j)
p(y|0; j)

)λ
]ρ−1

βj =

[∑

y∈Y
p(y|0; j)

(
1 + k

(
p(y|1; j)
p(y|0; j)

)λ
)ρ]−1

. (8)

In order to evaluate the bound in (4) for a fixed pair of
λ and ρ, we find the optimized tilting measures in (6) by
first assuming an initial vector(β1, . . . , βJ) and then iterating
between (7) and (8) until we get a fixed point for these
equations. For a fixedδ, we need to optimize numerically the
bound in (4) w.r.t. the two parametersλ andρ.

B. The 1961 Gallager Bound

In this section we discuss the 1961 Gallager bound for
parallel MBIOS channels.

Theorem 2 [The 1961 Gallager Bound for Parallel Chan-
nels]: Consider the transmission of binary linear block codes
(or ensembles) under the scenario described in Section II-A.
We have the following results:
• The 1961 Gallager bound for parallel channels is given

by (see [6])

Pe ≤ 2h(ρ)





n∑

h=1

Ah




J∑

j=1

αjZ(r; j)




h




J∑

j=1

αjG(r; j)




n−h




ρ 



J∑

j=1

αjG(s; j)





n(1−ρ)

wherer ≤ 0, s ≥ 0,

G(r; j) ,
∑

y

p(y|0; j)1−rf(y; j)r

Z(r; j) ,
∑

y

[p(y|0; j)p(y|1; j)]
1−r
2 f(y; j)r

ρ , s

s− r
, 0 ≤ ρ ≤ 1

andf(·; j) is an arbitrary tilting measure, constrained to
be non-negative and even (i.e.,f(y; j) = f(−y; j)).

• By partitioning the code into constant Hamming-weight
subcodes and using the union bound as in (3), we obtain

optimized tilting measures for the 1961 Gallager bound.
The optimal choice for the set of functions{f(·; j)} is
given by

f(y; j) =

{
(1−c)

(
p(y|0;j)

1−s(1−ρ−1)
2 −p(y|1;j)

1−s(1−ρ−1)
2

)2

p(y|0;j)1−s+p(y|1;j)1−s

+
2c

(
p(y|0;j)p(y|1;j)

) 1−s(1−ρ−1)
2

p(y|0;j)1−s+p(y|1;j)1−s

} ρ
s

, (ρ, s, c) ∈ [0, 1]3.

where the parametersρ, s, c are optimized numerically so
as to get the tightest bounds within this form.

Discussion.In [6], simple choices for these functions are
used to evaluate the 1961 Gallager bound for parallel channels,
rather than the optimized tilting measures. Consequently, the
bounds in [6] are looser.

The connection between the DS2 bound and the 1961
Gallager bound for a single MBIOS channel has been explored
in [2], [8]. In this case, it was demonstrated that the DS2
bound is tighter than the Gallager bound. At first, one would
expect that a similar result would also hold for the general
case where the communication takes place overJ independent
parallel MBIOS channels. It is shown in [9] that this is
not necessarily the case. Consequently, we cannot draw a
conclusion establishing the superiority of one of these bounds
over the other for the case whereJ > 1. We present numerical
results which verify this observation. For technical details, the
reader is referred to [9].

IV. I NNER BOUNDS ONATTAINABLE CHANNEL REGIONS

A J-tuple of transition probabilities characterizing a par-
allel channel is said to be anattainable channel pointwith
respect to a code ensembleC if the average ML decoding
error probability vanishes as we let the block length tend to
infinity. The attainable channel regionof an ensemble whose
transmission takes place over parallel channels is defined as the
closure of the set of attainable channel points. Since the exact
decoding error probability under ML decoding is in general
unknown, we evaluate inner bounds on the attainable channel
regions whose calculation is based on upper bounds on the
ML decoding error probability.

Our numerical results referring to inner bounds on attainable
channel regions are based on the following theorem.

Theorem 3 [Inner bounds on the attainable channel re-
gions for parallel channels]:Consider the transmission of a
sequence of binary linear block codes (or ensembles){[C(n)]}
takes place over a set ofJ parallel MBIOS channels. Let

γj ,
∑

y

√
p(y|0; j)p(y|1; j) , j ∈ {1, . . . , J}

designate the Bhattachryya constants of the channels. Assume
that the following conditions hold:

1)

inf
δ0<δ≤1

EDS2(δ) > 0, ∀ δ0 ∈ (0, 1)



where, for0 < δ ≤ 1, EDS2(δ) is calculated from (5)
by maximizing w.r.t.λ, ρ (λ ≥ 0 and 0 ≤ ρ ≤ 1) and
the probability tilting measures{ψ(·; j)}J

j=1.
2) The inequality

lim sup
δ→0

r[C](δ)
δ

< − ln

(
J∑

j=1

αjγj

)

is satisfied.
3) There exists a sequence{Dn} of natural numbers tend-

ing to infinity with increasingn so that

lim sup
n→∞

Dn∑

h=1

A
[C(n)]
h = 0.

4) The normalized exponent of the distance spectrum
r[C(n)] converges uniformly inδ ∈ [0, 1] to its asymptotic
limit (1).

Then, theJ-tuple vector of parameters characterizing these
channels lies within the attainable channel region under ML
decoding.

Discussion.We note that conditions 3 and 4 in Theorem 3
are similar to the last two conditions in [5, Theorem 2.3].
Condition 2 above happens to be a natural generalization of
the second condition in [5, Theorem 2.3] to a set of parallel
channels. The distinction between [5, Theorem 2.3] which
relates to typical-pairs decoding over a single channel and
the statement in Theorem 3 for ML decoding over a set of
independent parallel channels lies mainly in the first condition
of both theorems.

A similar result which involves the generalized 1961 Gal-
lager bound for parallel channels is given in a similar fashion
by replacing the first condition with an equivalent relation
involving the exponent of the 1961 Gallager bound maximized
over its parameters, instead of the error exponent of the DS2
bound.

V. PERFORMANCEBOUNDS FORTURBO-L IKE

ENSEMBLES OVERPARALLEL CHANNELS

In this section, we exemplify the performance bounds
derived in this paper for various ensembles of turbo-like
codes whose transmission takes place over parallel Gaussian
channels. We also compare the bounds to those introduced
in [6], showing the superiority of the new bounds with their
optimized tilting measures.

A. Performance Bounds for Uniformly Interleaved Turbo
Codes

Fig. 2 compares upper bounds on the bit error probability
of the ensemble of uniformly interleaved turbo codes of
rate R = 1

3 bits per channel use. The encoder consists
of two convolutional encoders with polynomialsG(D) =[
1, 1+D4

1+D+D2+D3+D4

]
and the interleaver between them is

of length 1000. The transmission is assumed to take place
over two (independent) parallel binary-input AWGN channels
where each bit is equally likely to be assigned to one of
these channels (α1 = α2 = 1

2 ), and the value of the energy
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Fig. 2. Performance bounds for the bit error probability under ML decoding
versus computer simulation results of iterative Log-MAP decoding (with 10
iterations).

per bit to spectral noise density of the first channel is set to(
Eb
N0

)
1

= 0 dB. The parallel-channel version of the union
bound shown in the figure (see [9, Appendix C]) is obtained
by averaging the union bound over all channel assignments, a
similar process by which the improved bounds are obtained.
The LMSF bound (yielding the tightest modified Shulman-
Feder [10] bound) is a combination of the union bound with
the Shulman-Feder bound (see [6], [9] for details on the
derivation of this bound), and was presented in [6] as a
special case of the 1961 Gallager bound. Clearly, the DS2
and the 1961 Gallager bounds with theiroptimized tilting
measuresshow a remarkable improvement in their tightness
over the union and LMSF bounds in [6]; for a bit error
probability of 10−4, the improved bounds exhibit a gain of
0.8 dB over the LMSF bound. The DS2 bound gains very
little over the 1961 Gallager bound (about 0.05 dB) at a bit
error probability of10−3. In spite of the remarkable advantage
of the improved bounds over the union and LMSF bounds,
computer simulations under (the sub-optimal) iterative Log-
MAP decoding with 10 iterations show a gap of about 0.4 dB
in favor of the performance under iterative decoding. This
indicates that there is still room for further improvement in
the tightness of the analytical bounds under ML decoding.

B. Attainable Channel Regions for Various Ensembles of
Accumulate-Based Codes

In this section, we compare inner bounds on the attain-
able channel regions of accumulate-based codes under ML
decoding. The comparison refers to three ensembles of rate
one-third, as depicted in Fig. 3; the first is the ensemble of



uniformly interleaved and non-systematic repeat-accumulate
(RA) codes withq = 3 repetitions; the second and the third
are uniformly interleaved and systematic ensembles of RA
codes and accumulate-repeat-accumulate [1] (ARA) codes,
respectively, where the number of repetitions is equal toq = 6
and, as a result of periodic puncturing, every third bit of the
non-systematic part is transmitted (so the puncturing period is
p = 3). For simplicity of notation, we make use of the abbre-
viations NSRA(N, q), SPRA(N, p, q) and SPARA(N,M, p, q)
for the encoders shown in Fig. 3 (a)–(c), respectively (i.e., the
abbreviations ’NS’ and ’SP’ stand for ’non-systematic’ and
’systematic and punctured’, respectively). In this notation,N
is the input block length.

In [9], it is shown that the asymptotic growth rate of the dis-
tance spectra of these ensembles is such that the second, third,
and fourth conditions of Theorem 3 are satisfied. The distance
spectra of the SPRA and SPARA ensembles considered here
were calculated in [9] using the techniques introduced in [1].
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N
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Repetition Accumulate
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Interleaver qN
qN qNN

Repetition

Accumulate PuncturingAccumulate
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qN qN qN
Repetition

N−M
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Fig. 3. Systematic and Non-systematic RA and ARA codes.

The improved performance of the ensembles of SPARA
codes under ML decoding is demonstrated by the Gallager
bounding technique (combined with the optimization of the
tilting measures) in Fig. 4. In this figure,α , M

3N denotes
the fraction of bits which do not pass through the outer
accumulator of the code. This enlargement of the attainable
channel region for the ensemble of SPARA codes is attributed
to the distance spectral thinning effect [7] which is more
pronounced for this ensemble as compared to the other two
(see [9]). This in turn yields an improved inner bound on the
attainable channel regions, as observed in Fig. 4. It is shown in
this figure that for the SPARA ensemble with the parameters
p = 3, q = 6 and α = 2

15 , the gap between the inner bound
on the attainable channel region under ML decoding and the
capacity limit is less than 0.05 dB.
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